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Abstract

Many multimedia systems stream real-time visual data
continuously for a wide variety of applications. These sys-
tems can produce vast amounts of data, but few studies take
advantage of the versatile and real-time data. This paper
presents a novel model based on the Convolutional Neural
Networks (CNNs) to handle such imbalanced and heteroge-
neous data and successfully identifies the semantic concepts
in these multimedia systems. The proposed model can dis-
cover the semantic concepts from the data with a skewed
distribution using a dynamic sampling technique. The pa-
per also presents a system that can retrieve real-time visual
data from heterogeneous cameras, and the run-time envi-
ronment allows the analysis programs to process the data
from thousands of cameras simultaneously. The evaluation
results in comparison with several state-of-the-art methods
demonstrate the ability and effectiveness of the proposed
model on visual data captured by public network cameras.

1 Introduction

Multimedia data, including visual, textual, and aural
data, can be considered as the biggest big data due to its
huge volume, high velocity, and variety [8]. Millions of
network cameras (a type of surveillance cameras) have been
deployed in city streets, tourist attractions, and many other
locations. Network cameras are stationary and can capture
and send real-time visual data (image or video) continu-
ously over the networks without human effort. It is possible
to use such rich data to observe long-term trends as well

as to detect the anomaly. Figure 1 (a)-(d) show example
images from network cameras, including roads, buildings,
vehicles, and people. Figure 1 (e)-(i) show example im-
ages from several popular datasets. In contrast to the most
commonly used datasets for classification, localization, ob-
ject detection, and segmentation, network cameras contain
many objects that occupy small portions of an image and
are not necessarily at the center. This paper introduces the
first version of the network camera image dataset.

(a) Seattle (b) Mall (c) Classroom (d) Zoo

(e) ImageNet (f) COCO (g) PASCAL (h) SUN (i) Places2

Figure 1. Comparison of images from network
cameras ((a)-(d)) and popular datasets ((e)-(i))

The data from many cameras are publicly available on
the Internet. Even though the data are public, there is no
easy way to find these cameras. Internet search usually finds
vendors of cameras, not real-time data streams. Crowd-
sourcing [5] is one method to find these cameras. Differ-
ent brands of cameras require different methods to retrieve
data and crowdsourcing is not effective enough to handle
the heterogeneity of the cameras. This paper presents a



systematic method to find network cameras. The cameras
can be classified into three categories: Internet Protocol (IP)
cameras that support HyperText Transfer Protocol (HTTP),
non-IP cameras whose data is aggregated at web servers,
and cameras using Real Time Messaging Protocol (RTMP).
This system uses only publicly available data, and has been
reviewed by the Institutional Review Board (IRB) and the
legal counsel of the authors’ university.

Most real-world data has a long tail distribution. In other
words, some of the concepts are very scarce while others are
abundant. This phenomenon is known as “imbalanced data
problem” [12] which is widely seen in different applications
such as medical, object classification, and surveillance sys-
tems. The problem is to classify the minority cases from the
overwhelming majority cases correctly.

Despite the great success of deep learning algorithms in
recent years, very few studies on deep learning consider
classification for imbalanced data [7]. The existing deep
neural networks such as CNNs can achieve very high per-
formance using a balanced dataset (e.g., CIFAR, MNIST,
Caltech, etc.) compared to the conventional classifiers.
However, based on our empirical study, they perform worse
in imbalanced datasets since they were not originally de-
signed to address this problem. In addition, in current stud-
ies, few evaluation metrics have been utilized to accurately
measure the performance of the deep learning models on
the minority concepts.

These challenges motivate us to propose a new deep
learning model to tackle the class imbalance problem in
real-world data. This model modifies the existing CNNs
to handle imbalanced data for multi-class classification in
an effective manner. For this purpose, the proposed model
dynamically modifies the samples of each class in each iter-
ation based on the F1-score of that class in the reference set.
We propose to integrate the scores of the F1-based model
with the basic CNN model and utilize data augmentation
and transfer learning (fine-tuning the pre-trained models)
techniques to avoid overfitting toward the minority classes
and to generalize the model. This approach will signifi-
cantly improve the performance of the minority classes and
maintain the performance of the majority ones.

The key contributions of this research study include: (1)
It proposes a new deep learning model to handle the class
imbalance problem in a multi-class classification problem.
(2) It presents a systematic method to discover network
cameras. (3) It introduces the first version of network cam-
era image datasets which include thousands of images con-
taining various real-world scenes.

2 Related Work

Visual data analysis is challenging because it is large-
volume and heterogeneous in nature. Analyzing this mas-

sive amount of data is computationally expensive. Over
the last decade, many studies have been conducted to man-
age and analyze visual data (images and videos) efficiently
and effectively. Deep learning has shown significant ad-
vancement in the last few years. Inception [13], ResNet [4],
and VGGNet [10] are examples of successful deep learning
networks in image classification. All such models require
training on large-scale datasets with enough data represen-
tations for each class.

Recent studies on the class imbalance problem can be
mainly divided into two groups: data and algorithmic. The
former manipulates the data distribution by either under-
sampling the majority classes or oversampling the minority
ones to provide a more balanced dataset. However, over-
sampling may cause overfitting; while undersampling may
lose some useful information. Synthetic Minority Over-
sampling Technique (SMOTE) [2] is proposed to handle
overfitting problem by synthetically generating minority in-
stances in feature-level rather than data-level using linear
interpolation between nearest neighbors. On the other hand,
the algorithmic techniques try to handle the data imbalance
problem by improving the learning procedure [1]. How-
ever, these techniques usually increase the computational
cost and training time to generalize the model.

The aforementioned studies do not address the class im-
balance problem in CNNs. Lately, few studies integrated
existing class imbalance solutions into the deep learning
algorithms. Yan et al. [14] proposed a bootstrapping ap-
proach combined with CNNs to handle the minority classes
in a binary classification task. A cost-sensitive learning
was proposed for better feature representation learning from
CNNs [6]. Different from existing techniques, an effective
dynamic sampling in CNNs is proposed to enhance classi-
fication performance of both minority and majority classes.

Figure 2. The proposed model.

3 The Proposed Deep Learning Model

The proposed model is depicted in Figure 2, which in-
cludes real-time data augmentation module, CNN transfer
learning module, and dynamic sampling module. Real-time
data augmentation module is used to generate the trans-
formed images for each training batch, transfer learning



module is utilized to fine-tune the model, and dynamic sam-
pling module is designed to automatically generate new
samples based on the performance of the reference set.

3.1 Real-time Data Augmentation

Augmentation can improve the generalization and pre-
vent overfitting while reducing the need for large-scale
datasets. This process can be done either offline before
training the model or real-time in each iteration of learning.
In offline augmentation, we need to re-create the dataset be-
fore starting the training process. However, in real-time
augmentation, we only transform a small batch of images
that are required for each training iteration. In this step, we
generate batches of image data via real-time data augmenta-
tion. This approach directly augments the input data to the
model in the data space.

3.2 Transfer Learning in CNNs

In Transfer Learning (TL), given a pre-trained source do-
main DS = {X,P (X)} and a source task TS = {Y, f(.)},
where X is the feature space, Y is the label space, and
P (X) is the marginal probability distribution (i.e., the prob-
ability distribution of the variables contained in X), the goal
is to improve the learning of the target objective function
fT (.) in target task TT by transferring the knowledge from
a source domain DS to a target domain DT , where either
DS 6= DT or TS 6= TT . In this paper, TS is the ImageNet
classification task, and TT is our network camera classifi-
cation task. Hence, the goal is to enhance the concept de-
tection objective function fT (.) using the knowledge from
ImageNet.

In this proposed work, the “InceptionV3” model MS

(originally pre-trained on ImageNet) is used to fine tune the
model on our dataset in two levels. First, we train only the
top layers that are randomly initialized and freeze all con-
volutional layers. Thereafter, only the top inception blocks
are trained, and the other first layers are frozen. This is
motivated by the fact that the early layers generate more
generic features (such as color, edge, and shape) which can
be leveraged in many tasks. However, later layers generate
more specific features related to the original dataset.

3.3 Dynamic Sampling in CNNs

The training data used for transfer learning is critical to
calibrate the parameters in the CNN model and those im-
balanced classes might not be learned well. In this paper,
the dynamic sampling mechanism is proposed to tackle this
problem. Inspired by the experience that humans practice
similar questions to avoid the same error happening again,
we utilize the performance metric on the reference dataset

to adjust the class distribution of the training samples, and
thus indirectly effects the training process. Here, the F1-
score metric is used, and the score is calculated based on
the one-against-all assumption for each class.

Algorithm 1: Model Training Framework with F1-
Based Dynamic Sampling

Data: Training Images Xtrain, Reference Images
Xref , Initial Model MS , and Class List C

Result: Dynamic-Sampling-Based Model M1

1 M1
0 ←−MS , i←− 1, N∗ ←− |Xtrain|

|C|
2 for each class cj ∈ C do
3 Ni,j ←− N∗

4 while ¬IsFullyTrained(M1
i−1) do

5 Xi ←− ImageSampling(Xtrain, Ni)
6 M1

i ←− Train(M1
i−1, Xi)

7 F1i ←− UpdateF1(M1
i , Xref)

8 for each class cj ∈ C do
9 Ni+1,j ←− UpdateSampleSize(F1i, cj)

10 i←− i+ 1

11 M1 ←−M1
i−1

In the proposed framework, the target model M1 is ini-
tialized by MS , trained by the set of images Xtrain, and the
dynamic sampling is performed based on the set of images
Xref . All the classes are given in the list C = {cj}. Algo-
rithm 1 shows the model training framework with dynamic
sampling, where |Xtrain| is the size of the training dataset
and |C| is the number of classes. In iteration i, the training
images Xi are sampled from Xtrain in the target domain
and augmented as mentioned in Section 3.1. The number
of the images of each class is determined by its F1-scores
in the previous iteration F1i−1. After the model is trained
by the generated sample set, the updated model is used to
predict the concept of each image in the reference dataset
Xref , where the images are completely different from those
in the testing dataset (obtained from either a different cam-
era or different time). The F1-scores of class cj in iteration
i, f1i,j , are thus calculated.

f1i,j =
2 · Reci,j · Prei,j
Reci,j + Prei,j

(1)

where Prei,j and Reci,j are the precision and recall met-
rics of the class cj in iteration i. Note that F1i = {f1i,j}
is the vector of the F1-scores of all the classes in iteration
i. If a class has a higher F1-score, it can be better distin-
guished from the other classes in C. Hence, it becomes
more important to improve the performance of the classes
with lower F1-scores and thus more samples (images) from
these classes will be selected in the next iteration; while the
total number of images trained in each iteration remains the
same. Eq. (2) defines the number of images of cj of the next



iteration. The number of images in any class cj is initialized
to N∗ which is the average number of samples in all classes,
i.e., f10,j = N∗.

UpdateSampleSize(F1i, cj) =
1− f1i,j∑

ck∈C
(1− f1i,k)

×N∗ (2)

3.4 Model Fusion

For image inference in the testing stage, a single model
might not work well for all the classes. The model trained
with dynamic sampling tends to perform better on most of
the imbalanced classes. Therefore, we propose to fuse two
models, where one model M1 performs better for the im-
balanced classes and the other model M0 performs better
for the relatively balanced classes, to further improve the
classification performance. The model M0 can be obtained
by any transfer learning without the sampling. The final in-
ferred class can be decided by the results from both models,
as shown in Eq. (3).

J =


J0, RJ0 > Tr & RJ1 > Tr

J1, RJ0 < Tr & RJ1 < Tr

J
argmax
θ∈{0,1}

[
Mθ(X,cJθ

)
], otherwise

(3)
where Jθ = argmax

cj∈C
(Mθ(X, cj)), Mθ(X, cj) is the score

of cj calculated by model Mθ for the input image X , Rj
is the ratio of the positive to negative samples (P/N ratio)
of cj , and Tr is the threshold of the P/N ratio to determine
the choice of the model. Tr is determined by the model
performance on the validation dataset.

Figure 3. The main components of the pro-
posed system

3.5 System Description

3.5.1 System Overview

To take advantage of the real-time visual data from thou-
sands of network cameras, we have built an open-source
system1. Figure 3 illustrates the main components of the

1The source code will be made available at
https://www.cam2project.net/

system: (a) Web user interface. A user can find cameras at
specific locations and analyze the data from these cameras.
(b) Camera database. Currently, the database has more than
120,000 cameras deployed worldwide by governments, uni-
versities, research labs, etc. (c) Run-time environment. The
system can retrieve real-time data and then analyze the data
immediately. The run-time system adopts an event-driven
programming interface. (d) Resource manager. The sys-
tem uses the cloud (Amazon EC2 or Microsoft Azure) for
retrieving and analyzing the data and also uses the cloud
(Amazon S3) for storing the data. (e) Visual data analysis.
This component analyzes the real-world image/video data
which can be further utilized in information retrieval sys-
tems. To the best of our knowledge, this is the only system
that can perform real-time analysis of data from thousands
of network cameras.

3.5.2 Discovering Heterogeneous Network Cameras

Although many network cameras provide data to the public,
finding them is not always easy because of the wide variety
of brands and models. The data from many network cam-
eras are aggregated on web servers, and there are many dif-
ferent ways of organizing the data streams. To use the data
from the network cameras, this system has a database of
publicly available network cameras. The process for find-
ing the network cameras depends on the types of the cam-
eras. Some cameras have built-in web servers to distribute
the data and each camera has a unique IP address. The data
can be accessed by connecting directly to this address and
using the HTTP GET requests. Different brands require dif-
ferent GET commands. For example, Axis cameras use
/mjpg/video.mjpg but Foscam uses /video.cgi. Many or-
ganizations, such as Department of Transportation, deploy
cameras and make the data available to the public. Re-
trieving data from these cameras requires sending the HTTP
GET request to the web servers, not to the cameras directly.
Some cameras employ RTMP stream and are rendered in
the user’s browser using Adobe Flash player. A program
connects to the server distributing the video streams and
monitors the network connections. The system inspects the
handshake that sets up the video streams. Once the hand-
shake request has been obtained, the system can connect
and save the stream using rtmpdump [11]. This system has
the same programming interface to analyze data from all the
network cameras.

4 Experiments and Analysis

4.1 Dataset Description and Preprocessing

For this experiment, the research team runs the archiver
program to retrieve an image from every active camera in



Figure 4. Comparison of F1-scores for each concept in the dataset.

the database. However, some cameras are offline and return
black/unavailable images. Therefore, a check program tra-
verses the directory to remove the bad quality images based
on their byte sizes. The final cleaned dataset contains over
10,000 images captured from network cameras. Those im-
ages include 19 semantic concepts (scenes) such as high-
way, intersection, yard, and mountain. The dataset is care-
fully divided into 70% training, 10% reference, and 20%
testing so that each set includes different samples from all
classes. All the images are resized to 299*299 pixels. In this
dataset, the P/N ratio for each concept ranges from 1.088
(concept “highway”) to as low as 0.002 (concept “airport”),
which leads to an imbalanced data classification problem.

4.2 Result Evaluation

The F1-score (Avg. F1) is adopted as the main evalu-
ation metric since it is the most valuable comparison met-
ric for imbalanced data and is the trade-offs between preci-
sion and recall. Moreover, the Weighted Average F1-score
(WAvg. F1) and top-1 accuracy (Acc.) metrics are used
to show that the proposed model can improve not only the
prediction of individual minority classes but also the over-
all performance results. Here, WAvg. F1 is the average
of the F1-scores of each class times its ratio of positive to
all samples. The results of the proposed network are com-
pared with the following models: (1) “Basic CNN”: a model
based on VGGNet [10] running from scratch on our dataset
(deeper models such as Inception will not converge well
on this dataset); (2) “Deep CNN features+SVM”: using a
deep CNN model as a fixed feature extractor and a linear
support vector machine as a classifier; (3) “TL+No Aug.”:
a fine-tuned CNN model without data augmentation; (4)
“TL+Basic Aug.”: a fine-tuned model with real-time data
augmentation; and finally (5) “TL+Balanced Aug.”: a fine-
tuned CNN model plus a modified data augmentation in

which each training batch includes a balanced number of
classes. This model utilizes both oversampling and under-
sampling techniques. In all transfer learning models, Incep-
tionV3 is used as the base CNN model. Stochastic Gradient
Descent (SGD) [9] is used as the optimization with learning
rate 0.0001 and momentum 0.9. The “ImageDataGenera-
tor” layer in Keras [3] is used for augmentation. Specifi-
cally, the augmentation parameters used in this paper are:
shear range=0.2, horizontal flip=True, rotation range=10,
width shift range=0.2, and height shift range=0.2. More-
over, the threshold of model fusion, Tr, is selected as 0.3
based on the model performance on the reference data.

Table 1 illustrates the detailed performance results on
this dataset. As can be inferred from the table, training a
CNN from scratch performs the worst for all three evalua-
tion metrics. This is due to the need for large-scale datasets
to accurately update the random weights in CNNs. Transfer
learning can significantly improve the results compared to
basic CNN as shown in the third row of the table. However,
it still cannot handle imbalanced data precisely. Similarly,
the “TL+No Aug.” model performs poorly on the dataset re-
garding the Avg. F1-score. However, the model “TL+Basic
Aug.” increases all the metrics compared to the no augmen-
tation model. The “TL+Balanced Aug.” model (a hybrid
oversampling and undersampling model) can obviously im-
prove the Avg. F1-score; however, its Acc. and WAvg. F1-
scores are less than the ones in the original augmentation
model. In other words, conventional imbalanced data tech-
niques boost the performance of the minority classes by sac-
rificing the majority ones. Finally, the last row of the table
shows how the proposed method improves the performance
results for all three evaluation metrics. That is, it improves
the prediction performance of the minority classes and also
maintains the average accuracy.

The visualized performance results are demonstrated in
Figure 4 which shows each concept (class) along with its



Table 1. Performance evaluation

Model Acc. Avg. F1 WAvg. F1
Basic CNN 0.649 0.254 0.630
Deep CNN
Features+SVM 0.746 0.528 0.747

TL+No Aug. 0.765 0.432 0.755
TL+Basic Aug. 0.792 0.502 0.779
TL+Balanced Aug. 0.759 0.553 0.766
Proposed Model 0.802 0.599 0.794

P/N ratio in the parentheses. As can be seen from this
figure, the distribution of the data is highly skewed. Sev-
eral concepts have very low P/N ratios (e.g., airport, bridge,
and playground), few concepts have higher P/N ratios (e.g.,
mountain view, intersection, and water), and the “highway”
concept has a very high P/N ratio. “Basic CNN” has the
lowest F1-score in all classes and cannot detect any in-
stances in classes with very low P/N ratios. The “TL+No
Aug.” model improves the results compared to “Basic
CNN”, but it still cannot detect the minority classes. “Deep
CNN features+SVM” performs better than all other models
in concept “Park+Building”, while it performs poorly in al-
most all other classes. “TL+Balance Aug.” can detect some
instances in the minority classes, though its performance
is much lower than the “TL+Basic Aug.” model in other
classes (e.g., highway and intersection). Despite the good
performance of the “TL+Basic Aug.” model in some con-
cepts (e.g., yard and street), it cannot detect any instances
in the low P/N ratio classes. Finally, the proposed model
can significantly improve the detection performance of the
minority classes, while maintaining or even improving the
performance of all other concepts. This shows the effec-
tiveness of the proposed model to classify imbalanced and
heterogeneous data from the real-world datasets.

5 Conclusion

This paper presents a multimedia system that is able
to discover network cameras whose data is publicly avail-
able on the Internet, retrieve real-time visual data from
these cameras, and analyze such imbalanced data for se-
mantic concept detection. The semantic concept detection
is achieved by the proposed dynamic sampling model which
is based on CNNs together with real-time data augmenta-
tion to enhance the performance results for both minority
and majority classes. The experimental results demonstrate
the ability and effectiveness of the proposed model on real-
time visual data captured by our multimedia system in de-
tecting semantic concepts, especially for imbalanced data.
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