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Abstract 
 

With the proliferation of multimedia data and ever-
growing requests for multimedia applications, new 
challenges are emerged for efficient and effective 
managing and accessing large audio-visual collections. In 
this paper, we present a novel framework for video event 
detection, which plays an essential role in high-level 
video indexing and retrieval. Especially, since temporal 
information in a video sequence is critical in conveying 
video content, a hierarchical temporal association mining 
approach is developed to systematically capture the 
characteristic temporal patterns with respect to the events 
of interest. In this process, the unique challenges caused 
by the loose video structure and skewed data distribution 
issues are effectively tackled. In addition, an adaptive 
mechanism is proposed to determine the essential 
thresholds which are generally defined manually in the 
traditional association rule mining (ARM) approach. This 
framework thus largely relaxes the dependence on the 
domain knowledge and contributes to the ultimate goal of 
automatic video content analysis.    
 
1. Introduction 
 

The fast proliferation of video data archives has 
increased the need for automatic video content analysis. 
Such automatic analysis greatly eases the authoring of 
content structure and increases data accessibility, which is 
critical for video database management and multimedia 
applications including broadcast video, video-on-demand, 
web search, etc.  

As an essential step to facilitate automatic video 
content analysis, video event detection has attracted great 
attentions from the research society. In the literature, most 

of the existing frameworks in video event detection are 
conducted in a two-step procedure [6]. The first step is 
video content processing, where the video clip is 
segmented into certain analysis units and their 
representative features are extracted. In order to 
effectively characterize the video documents, there are 
quite a number of research efforts devoted in this step to 
extract feature descriptors at low-level, mid-level and 
object-level [4], where a shot is generally adopted as the 
analysis unit. The second step is called the decision-
making process that extracts the semantic index from the 
feature descriptors. Decision-making can be roughly 
grouped into knowledge-based approaches and statistical 
approaches [7]. Knowledge-based approaches typically 
combine the output of different media descriptors into 
rule-based classifiers, whereas the statistical approaches 
include the use of C4.5 decision trees [3], support vector 
machines [1], dynamic Bayesian Network [10], etc. to 
improve the framework robustness. In this paper, we will 
focus our research efforts into two critical issues in video 
event detection which have yet not been well studied.  
• First, normally a single analysis unit (e.g., a shot) 

which is separated from its context has less capability 
of conveying semantics [11]. Temporal information 
in a video sequence plays an important role in 
conveying video content. Consequently, an issue 
arises as how to properly localize and model context 
which contains essential clues for identifying events. 
One of the major challenges is that for videos, 
especially those with loose content structure (e.g., 
sports videos), such characteristic context might 
occur at uneven inter-arrival times and display at 
different sequential orders. Some studies tried to 
adopt temporal evolution of certain feature 
descriptors for event detection. For instance, temporal 
evolutions of so-called visual descriptors such as 



 

“Lack of motion,” “Fast pan,” and “Fast zoom” were 
employed for soccer goal detection in [6], with the 
assumption that any interesting event affects two 
consecutive shots. In [5], the temporal relationships 
of the sub-events were studied to build event 
detection grammar. However, such setups are largely 
based on domain knowledge or human observations, 
which highly hinder the generalization and 
extensibility of the framework.  

• Second, the events of interest are often highly 
infrequent. Therefore, the classification techniques 
must deal with the class-imbalance (or called skewed 
data distribution) problem. The difficulties in learning 
to recognize rare events include: few examples to 
support the target class, the majority (i.e., nonevent) 
class dominating the learning process, etc.  

To address these issues, we propose a hierarchical 
temporal association mining approach which integrates 
association rule mining (ARM) and sequential pattern 
discovery to systematically determine the temporal 
patterns for target events in this paper. In addition, an 
adaptive mechanism is adopted to update the minimum 
support and confidence threshold values by exploring the 
characteristics of the data patterns. Such an approach 
largely relaxes the dependence on domain knowledge or 
human efforts. Furthermore, the challenges posed by 
skewed data distribution are effectively tackled by 
exploring frequent patterns in the target class first and 
then validating them over the entire database. The mined 
temporal pattern is thereafter applied to further alleviate 
the class imbalance issue. We use soccer videos as our 
test bed due to its popularity and loose structure.  

 The remainder of the paper is organized as follows. 
Section 2 introduces the background of this study as well 
as the related work. We detail the framework in Section 3. 
Section 4 shows the experimental results, and Section 5 
concludes this paper.  

 
2. Background and Related Work 
 

Association rules are an important type of knowledge 
representation revealing implicit relationships among the 
items present in a large number of transactions. Given I = 
{i1, i2, …, in} as the item space, a transaction is a set of 
items which is a subset of I. In the original market basket 
scenario, the items of a transaction represent items that 
were purchased concurrently by a user. An association 
rule is an implication of the form [X→Y, support, 
confidence], where X and Y are sets of items (or itemsets) 
called antecedent and consequence of the rule with X ⊂ I, 
Y ⊂ I, and X∩Y=Ø.  The support of the rule is defined as 
the percentage of transactions that contain both X and Y 
among all transactions in the input data set; whereas the 
confidence shows the percentage of transactions that 
contain Y among transactions that contain X. The intended 
meaning of this rule is that the presence of X in a 
transaction implies the presence of Y in the same 
transaction with a certain probability. Therefore, 
traditional ARM aims to find frequent and strong 
association rules whose support and confidence values 
exceed the user-specified minimum support and minimum 
confidence thresholds.  

 

 
E: Event; N: Non Event 

Pre-temporal 
window of size WP 

Post-temporal 
window of size WN 

…cdcf E abb … dbhc N bcg … dccc E bgf … cchg E bbb  … 

 
Figure 1. An example video sequence 

Intuitively, the problem of finding temporal patterns 
can be converted as to find adjacent attributes (i.e., X) 
which have strong associations with (and thus 
characterize) the target event (i.e., Y), and thus ARM 
provides a possible solution. Here, assume the analysis 
is conducted at the shot-level, the adjacent shots are 
deemed as the transaction and the attributes (items) can 
be the feature descriptors (low-, mid- or object-level 
extracted from different channels) or event types in the 
transaction. However, as discussed below, the problem 
of temporal pattern discovery for video event detection 
has its own unique characteristics, which differs 
greatly from the traditional ARM.   

Without loss of generalization, an event E is 
normally the result of previous actions (called pre-
actions or AP) and might result in some effects (post-
actions or AN). Given an example video sequence 
illustrated in Fig. 1, we define pre-transactions TP 
(such as {c, d, c, f} and {d, c, c, c}) and post-
transactions TN (such as {a, b, b} and {b, b, b}) as 
covered by the pre-temporal windows and post-
temporal windows, respectively. The characters ‘a’, ‘b’, 
etc. denote the attributes of the adjacent shots. Note 
that if the feature descriptors are used as the attributes, 
certain discretization process should be conducted to 
create a set of discrete values to be used by ARM. A 



 

temporal context for target event E is thus composed of 
its corresponding pre-transaction and post-transaction, 
such as <{c, d, c, f}{a, b, b}> and <{c, c, h, g}{b, b, 
b}>. The purpose of temporal association mining is 
thus to derive rules <AP, AN>→E that are frequent and 
strong, where AP ⊂ TP and AN ⊂ TN. Mainly, 
temporal pattern mining differs from the traditional 
ARM in two aspects.  
• First, an itemset in traditional ARM contains only 

distinct items without considering the quantity of 
each item in the itemset. However, in event 
detection, it is indispensable that an event is 
characterized by not only the attribute type but 
also its occurrence frequency. For instance, in 
surveillance video, a car passes by a bank once is 
considered normal, whereas special attention 
might be required if the same car appears 
frequently within a temporal window around the 
building. In soccer video, several close views 
appear in a temporal window might signal an 
interesting event, whereas one single close view is 
generally not a clear indicator. Therefore, a 
multiset concept is adopted, which as defined in 
mathematics, is a variation of a set that can contain 
the same item more than once. To our best 
knowledge, such an issue has not been addressed 
in the existing video event detection approaches. A 
slightly similar work was presented in [11], where 
ARM is applied to the temporal domain to 
facilitate event detection. However, it uses the 
traditional itemset concept. In addition, it searches 
the whole video to identify the frequent itemsets. 
Under the situation of rare event detection where 
the event class is largely under-represented, useful 
patterns is most likely overshadowed by the 
irrelevant itemsets.  

• Second, in traditional ARM, the order of the items 
appeared in a transaction is considered as 
irrelevant. Therefore, transaction {a, b} is treated 
the same as {b, a}. In fact, this is an essential 
feature we adopted to address the issue of loose 
video structure. Specifically, the characteristic 
context information can occur at uneven inter-
arrival times and display at different sequential 
orders as mentioned earlier. Therefore, given a 
reasonably small temporal window, it is preferable 
to ignore the appearance order of the attributes 

inside a pre-transaction or post-transaction. 
However, considering the rule <AP, AN>→E, AP 
always occurs ahead of its corresponding AN, and 
the order between them is important in 
characterizing a target event. Therefore, in this 
stage, we will adopt the idea of sequential pattern 
discovery [8], where a sequence is defined as an 
ordered list of elements. In our case, each element 
is a multiset. In other words, the sequence <{a, 
b}{c}> is considered to be different from <{c}{a, 
b}>. Note that in this paper, we use braces for 
multisets and angle brackets for sequences. 

After conveying the general concept via the simple 
example, we will first give an overview of the 
proposed framework. The technical details of the 
proposed hierarchical temporal association mining 
component will be presented in the next section.  

The proposed framework is divided into three major 
components based on their functionalities, namely 
visual and audio feature extraction, hierarchical 
temporal association mining, and multimodal data 
mining, as illustrated in Fig. 2. In the visual and audio 
feature extraction component, an unsupervised video 
shot boundary detection subcomponent [2] is used to 
temporally segment the raw soccer video sequences 
into a set of consecutive video shots. The detected shot 
boundaries are thus passed to the feature extraction 
subcomponent, where the shot-level multimodal 
features (visual and audio features) are extracted. Here, 
visual features are captured with the assistance of color 
analysis and object segmentation techniques, whereas 
audio features are exploited in both time-domain and 
frequency-domain. A complete list of multimodal 
features and their detailed feature descriptions can be 
found in [3]. The hierarchical temporal association 
mining component is then performed to explore the 
temporal patterns significant for characterizing the 
events and results in a set of temporal rules, which are 
effectively employed to capture the candidate video 
events and to alleviate the class-imbalance issue. Note 
that instead of predefining the temporal patterns 
subjectively as in [3], this proposed approach searches 
for optimal temporal patterns automatically and 
robustly. Finally, the events of interest are detected 
automatically in the multimodal data mining 
component.
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Figure 2. Framework architecture 

 
3. Hierarchical Temporal Association 

Mining 
 

Since we target to capture temporal patterns 
characterizing the contextual conditions around each 
target event, a hierarchical temporal association mining 
mechanism is proposed. As discussed earlier, due to 
the loose structure of videos, the attributes within the 
temporal windows (pre-temporal or post-temporal) 
have no orders. Meanwhile, the appearance frequency 
of the attributes is important in indicating the events. 
Hence, the proposed extended ARM algorithm is 
applied to find pre-actions AP and post-actions AN 
(called “Extended ARM” in Fig. 2), and then 
sequential pattern discovery is utilized where AP and 
AN are considered as the elements in a sequence 
(called “Sequential Patterns” in Fig. 2). Thereafter, the 
temporal rules are derived from the frequent and strong 
patterns. The approach is first presented with the 
predefined minimum support and confidence 
thresholds, and an adaptive updating mechanism is 
introduced to define them automatically.  

Let Dv = {Vi} be the training video database and NF 
be the number of attributes in the database, where Vi (i 

= 1, …, Nv) is a video clip and Nv is the cardinality of 
Dv, we have the following definitions.  

Definition 1. A video sequence Vi is an ordered 
collection of units Vi = <Vi1, Vi2, …, 

iinV >, where each 
unit Vij (j = 1, …, ni) is a 3-tuple Vij = (Fij, sij, Cij). 
Here, ni is the number of units in Vi, Fij = {Fijk} 
indicates the set of unit attributes (k = 1, …, NF), sij 
denotes its associated unit number, and Cij = {yes, no} 
is the class label showing the eventness of the unit. 

In our study, the unit is defined at the shot level and 
the unit attribute, as mentioned earlier, can be the 
feature descriptors or event types of the shot. As usual, 
the task is to find all frequent and strong patterns from 
the transactions given the target event E. Therefore, the 
pre-transactions (TP) and post-transactions (TN) need 
to be constructed.  

Definition 2. Given a unit Vij (j = WP+1, …, ni-WN), 
the pre-temporal window size WP and post-temporal 
window size WN, its associated TPij and TNij are 
defined as TPij = {Fip} (p = j-WP, …, j-1) and TNij = 
{Fiq} (q = j+1, …, j+WN).   
 
 



 

3.1. Frequent patterns  
 
We proceed by first finding all frequent patterns. 

Different from traditional ARM, to alleviate the 
problem of class imbalance problem, the frequent 
patterns are searched for the minority class only. In 
other words, in counting the frequent patterns and 
calculating the support values, only those TPE = {TPij} 
and TNE = {TNij} will be checked where Cij = ‘yes’. As 
shown in Fig. 1, the multisets {d, b, h, c} and {b, c, g} 
around the nonevent N will not be checked in this step. 
Then the discrimination power of the patterns is 
validated against the nonevent class (in Section 3.2).  

In order to mine the frequent pre-actions and post-
actions, the itemMultiset (the counterpart of itemset in 
traditional ARM) is defined.  

Definition 3. An itemMultiset T is a combination of 
unit attributes. T matches the characterization of an 
event in window WP or WN if T is the subset of TPij or 
TNij where Cij = ‘yes’.   

For example, if a post-temporal window with size WN 
for an event E (see Fig. 1) contains unit attributes {a, 
b, b}, then we call T = {b, b} a match of the 
characterization of event E, whereas T = {a, a} is not. 
Consequently, we revise the traditional support and 
confidence thresholds as follows. 

Definition 4. An itemMultiset T has support s in Dv if 
s% of all TPE = {TPij} (or TNE = {TNij}) for target 
event E are matched by T. T is frequent if s exceeds the 
predefined min_sup. 

 Mathematically, support is defined as  
 

     Support = Count(T, TPE)/|TPE|   (1)    
or Support = Count(T,TNE)/|TNE|   (2) 
 

 
From the equations, we can see that our definition 

of support is not simply an extension of the one used in 
traditional ARM. It is restricted to TPE = {TPij} or TNE 
= {TNij} which are associated with the target events 
(i.e., Cij = ‘yes’). An itemMultiset which appears in Dv 
periodically might not be considered as frequent if it 
fails to be covered by these TPE or TNE. The pseudo 
code for finding frequent itemMultisets is listed in 
Table 1. 

The general idea is to maintain in memory, for each 
target event, all the units within its associated TPij and 
TNij, which are then stored in Bp and Bn (steps 1 to 19), 
and Extended Apriori algorithm (extended Apriori like 

algorithm)  is applied to find the frequent pre-actions 
and post-actions from Bp and Bn (steps 20 to 21). 

 
Table 1. Logic to find all frequent actions 

Input: video database Dv, pre-temporal window size 
WP, post-temporal window size WN, minimum 
support min_sup, target-event type E 
Output: frequent actions AP, AN 
FrequentActions(Dv, WP, WN, min_sup, E) 
1) Bp =  Ø; T =  Ø; Bn =  Ø  
2) for each video sequence Vi ∈ Dv  
3)    for each unit Vij = (Fij, sij, Cij)∈Vi 
4)          for each unit Vik = (Fik, sik, Cik) ∈ T 
5)             if (sij - sik) > WP 
6)                  Remove Vik from T  
7)             endif 
8)       endfor 
9)       if Vij is a target event  // i.e., Cij = ‘yes’ 
10)              Bp = Bp ∪ {Fik | (Fik, ⋅) ∈ T} 
11)              PS = sij+1 
12)              while (PS - sij) < WN 
13)                    Bn = Bn ∪ {Fik | sik = PS} 
14) PS is set to its next shot until it is the  

end of Vi 
15)              Endwhile 
16)       endif 
17)       T = T ∪ Vij 
18)   Endfor 
19) endfor 
20) Use extended Apriori over Bp to find AP with 

min_sup 
21) Use extended Apriori over Bn to find AN with 

min_sup 
 
The procedure of the extended Apriori algorithm is 

shown in Table 2, which will be explained by an 
example. Since in the transactions (TP or TN) and 
itemMultisets we allow the existence of duplicated 
elements, we need to consider each unit attribute as a 
distinct element even though some attributes might 
have the same values, except for the construction of 1-
itemMultisets. The frequent pre-patterns and post-
patterns, obtained using the proposed extended Apriori 
algorithm upon the example video sequence shown in 
Fig. 1, are listed in Tables 3 and 4, respectively. 

Here, we assume the minimum support count is set 
to 2 and the frequent actions are highlighted in yellow. 
Since we consider the ordering of the units and the 
inter-arrival times between the units and target events 



 

within each time window to be irrelevant in finding the 
frequent pre- and post-patterns, for the sake of 
simplicity, all the units inside the transactions and 
itemMultisets are sorted in the algorithm. Note that the 
computational cost for such procedures is minimal 
because the transactions are constructed only for 
minority class and the number of elements in such 
transactions is small. Without loss of generality, the 
window size is reasonably small since only the 
temporally adjacent shots have strong association with 
the target events. 

 
Table 2. The procedure of extended A-priori 
algorithm 

 
 

Table 3. Frequent pre-actions 
1 # frequent 2  # frequent 3  # frequent

{c} 3 Yes {c,c} 3 Yes {c,c,c} 1 No 

{d} 2 Yes {c,d} 2 Yes {c,c,d} 2 Yes 

{f} 1 No {d,d} 0 No    

{g} 1 No       

{h} 1 No       

 
 

Table 4. Frequent post-actions 
1 # frequent 2  # frequent 3  # frequent

{a} 1 No {b,b} 2 Yes {b,b,b} 1 No 

{b} 3 Yes       

{g} 1 No       

{f} 1 No       

As mentioned earlier, the ordering between pre-
actions AP and post-actions AN needs to be observed, 
and so the idea of sequential pattern discovery is 
adopted (omitting the detailed algorithm here). 
However, it is worth noting that instead of scanning TP 
and TN to explore the frequent sequential patterns, the 
Apriori like principle can be applied to simplify the 
process, which states that for a particular sequence to 
be frequent, its element(s) must be frequent as well. 
For instance, given the examples shown in Fig. 1 and 
frequent pre- and post-actions listed above, 
respectively, we know sequence <{a}{d}> is not 
frequent since its pre-action element <{a}> is not 
frequent. Therefore, the frequent sequential patterns 
can be constructed upon the frequent AP and AN. Note 
that it is legal to have null pre-action or post-action in a 
sequential pattern (e.g., <{}{b, b}> or <{c, c, d}{}>).  

After we create the 1-itemMutlisets, we can extract 
the corresponding sequential patterns. Then when we 
make another pass over the transactions to find 
frequent 2-itemMultisets, the support of the constructed 
sequential pattern can be counted as well. The 
procedure terminates until no more frequent (k+1)-
itemMultisets can be identified. 

 
3.2. Strong patterns 

 
To validate that these patterns effectively 

characterize the event of interest, a restrict solution is 
to adopt the traditional association measure called 
confidence, where a similar idea presented in [9] can 
be adopted. The general idea is to count the number of 
times each of the patterns occurs outside the windows 
of the target events.  

Definition 5. A sequential pattern P has confident c 
in Dv if c% of all transactions matched by T are 
associated with the target event. P is strong if c 
exceeds min_conf. 

Intuitively, we take inputs of a set of transactions, 
which correspond to all TPN = {TPij} and TNN = {TNij} 
with Cij = ‘no’. In fact, such lists can be obtained in 
algorithm 1 when we scan through the unit sequence 
and store them in '

pB  and '
nB , respectively. Let x1 and 

x2 be the counts when the pattern T is matched in B and 
'B . Here B={b1, b2, …, bn} is constructed by linking 

Bp={bp1, bp2, …, bpn} and Bn={bn1, bn2, …, bnn}, where 

1) Construct 1-itemMultisets. Count their supports 
and obtain the set of all frequent 1-itemMultisets as 
in traditional Apriori algorithm  
2) A pair of frequent k-itemMultisets are merged to 
produce a candidate (k+1)-itemMultisets. The merges 
are conducted in two steps:  
     2.1) A pair of frequent k-itemMultisets are merged 
if their first (k-1) items are identical, and 
     2.2) A frequent k-itemMultiset can be merged 
with itself only if all the elements in the multiset are 
with the same value. 
3) The supports are counted and the frequent 
itemMultisets are obtained as the traditional Apriori 
algorithm. Go to step 2. 
4)  The algorithm terminates when no further merge 
can be conducted. 



 

bi=<bpi, bni>. Similarly, 'B  can be constructed by '
pB  

and '
nB . The confidence of P is defined as follows. 

 confidence(P, B, 'B ) = x1/(x1+x2). 
    

This metric is thus applied to compare with min_conf 
and to validate whether the temporal patterns are 
strong.  

 
3.3. Temporal rules 

  
Once we obtain the frequent and strong temporal 

patterns, we will build temporal rules to facilitate the 
event detection. The principle is defined as follows.  

Definition 6. Given two patterns, Pi and Pj, Pi Pj 
(also called Pi has a higher rank than Pj) if 
1. The confidence of Pi is greater than that of Pj, or 
2. Their confidences are the same, but the support of Pi  

is greater than that of Pj, or 
3. Both the confidences and supports of Pi and Pj are 

the same, but Pi is more specific than Pj (i.e., Pj is a 
subsequence of Pj). 

The rules are in the form of Pi→E (targeted event). 
Let R be the set of generated rules and Dv be the 
training database. The basic idea is to choose a set of 
high ranked rules in R to cover all the target events in 
Dv. Such temporal rules are applied in data pruning 
process to generate a candidate event set and to 
alleviate class imbalance problem in the data 
classification stage. 
 
3.4. Adaptive metrics updating mechanism 

 
The performance of the proposed approach is 

partially related to four parameters, namely WP, WN, 
min_sup and min_conf. Among them, WP and WN can 
be determined relatively straightforward as generally 
only the temporally adjacent shots have strong 
association with the target events. Therefore, they can 
be set to any reasonably small values such as 3 or 4. In 
addition, in our earlier work [1], an advanced approach 
was proposed to identify the significant temporal 
window with regard to the target event, which can be 
incorporated into this framework to define the window 
size. Therefore, in this section, an adaptive metrics 
updating mechanism is proposed to define min_sup 
and min_conf in an iterative manner.  

The richness of the generated patterns is partially 
dependent on min_sup, which in most existing works is 
defined manually based on domain knowledge. 
However, given a training database, it is infeasible to 
expect the users to possess the knowledge of the 
complete characteristics of the training set. Therefore, 
the proposed approach addresses this issue by refining 
the support threshold SupTHk+1 iteratively based on the 
statistical analysis of the frequent patterns obtained 
using threshold SupTHk.  

Given kth threshold SupTHk, let Rk be the number of 
attributes in the largest frequent itemMultisets, we have 
Supkr={supports of all r-itemMultisets}, where r=1, …, 
Rk. Equations (3) to (5) define min_sup. 

 
diff(r) = mean(Supkr)-mean(Supkr+1), r=1,…,Rk-1 (3) 
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else min_sup = SupTHk          (5) 

The idea is that the learned frequent patterns in the 
previous round can help reveal certain knowledge 
regarding the training data set and thus help refine the 
support threshold intelligently. Specifically, we study 
the biggest fluctuation between the supports of two 
adjacent itemMultisets. Since (r+1)-itemMultisets are 
rooted from r-itemMultisets, if the difference is greater 
than 

kR
2
1 , the support threshold is adjusted to avoid 

the possible over-fitting issue and improve framework 
efficiency. Note that the initial support threshold 
SupTH0 can be set to a reasonably small value.  

For the confidence threshold, a similar criterion is 
adopted to examine the biggest difference between two 
adjacent sequential patterns with the condition that the 
generated rules in R should be able to cover all target 
events in Dv. In other words, if the newly defined 
confidence threshold ConTHk+1 causes the missing of 
target events in Dv, ConTHk is chosen as min_conf. 

 
4. Experimental results  

 
To assess the performance of our algorithm, we use 

soccer videos as our test bed and goal shots as the 
target event. Totally 27 soccer videos with total 
duration of more than 9 hours were collected from a 
variety of sources with various production styles. In 



 

the data set, the number of goal shots and nongoal 
shots is 39 and 4,624, respectively, which shows a 
largely skewed data distribution.  

In the experiment, the training data set (2/3rds of 
the data) was used to train the model which was then 
tested by the remaining 1/3rd data (called testing data 
set). A so-called 5-fold cross-validation scheme was 
adopted, where the whole data set was divided 
randomly five times to obtain five different groups of 
training and testing data sets. Therefore, five models 
were constructed and each was tested by its 
corresponding testing data.  

In feature extraction process, 15 low-level features 
including 5 visual features (pixel-change, histo-change, 
grass_ratio, background_mean, background_var) and 
10 audio features (1 volume feature, 5 energy features 
and 4 spectrum flux features) are extracted at the shot-
level. Meanwhile, 2 clip-level volume features are also 
captured to explore information in a finer granularity. 
Here, an audio clip is defined as an audio track with 
the duration of one second. In addition, two middle-
level features (camera view and excitement label) are 
derived from low-level features and used to derive the 
temporal rules. This data pruning process filters out 
many inconsistent and irrelevant shots and produces a 
candidate event set where the goal shots accounted for 
about 6% of the remaining data set.     

The resulting candidate pool was then passed to the 
decision tree based multimodal data mining process for 
further classification. We chose C4.5 not only because 
it is one of the most commonly used algorithms in the 
machine learning and data mining communities but 
also because it has become a de facto standard against 
which every new algorithm is judged.  

Table 5. Performance of goal event detection 
 # of 

goal 
h

Iden Missed Misiden Recall 
(%) 

Precision
(%) 

Test 1 11 10 1 2 90.9 83.3 
Test 2 11 11 0 2 100.0 84.6 

Test 3 10 10 0 2 100.0 83.3 

Test 4 12 11 1 2 91.7 84.6 

Test 5 11 11 0 2 100.0 84.6 

 Average 96.5 84.1 

 
The precision and recall values were computed for 

all the testing data sets in these five groups (denoted as 

Test 1, Test 2, etc.) to evaluate the performance of our 
proposed framework. As shown in Table 5, the 
“Missed’ column indicates a false negative, which 
means that the goal events are misclassified as nongoal 
events; whereas the ‘Misiden’ column represents a 
false positive, i.e., the nongoal events are identified as 
goal events. 

Consequently, precision and recall are defined as 
follows: 

MissedIden
Iden Recall
+

= , 
MisidenIden

IdenPrecision
+

= . 

From the above results, we can clearly see that the 
performance is quite promising in the sense that the 
average recall and precision values reach 96.5% and 
84.1%, respectively. In addition, the performance 
across different testing data sets is greatly consistent. 
Furthermore, the dependency on predefined domain 
knowledge is largely relaxed since an automatic 
temporal association mining process is adopted in our 
framework to discover, represent, and apply the 
characteristic event temporal patterns. 

 
5. Conclusions 

 
As one of the main aspects for video database 

management, video content analysis attracts great 
interests from both the academia and industry. In this 
paper, we propose a novel framework for video event 
detection, which integrates the strength of feature 
extraction, temporal analysis, and multimodal data 
mining. Especially, the proposed hierarchical temporal 
association mining mechanism offers a robust solution 
to explore and employ the characteristic temporal 
patterns with respect to the events of interest. This 
approach effectively addresses the issues of loose 
video structure and skewed data distribution. It also 
largely relaxes the dependency on domain knowledge 
and contributes to the ultimate goal of automatic 
content analysis. Using soccer video as the test bed, the 
experimental results demonstrate the effectiveness and 
robustness of the proposed framework.  
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