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Abstract 

 
The dream of pervasive multimedia retrieval and reuse 

will not be realized without incorporating semantics in 
the multimedia database. As video data is penetrating 
many information systems, the need for database support 
for video data evolves. Hence, we propose an innovative 
database modeling mechanism called Hierarchical 
Markov Model Mediator (HMMM) which integrates low-
level features, semantic concepts, and high-level user 
perceptions for modeling and indexing multiple-level 
video objects to facilitate temporal pattern retrieval. 
Different from the existing database modeling methods, 
our approach carries a stochastic and dynamic process in 
both search and similarity calculation. In the retrieval of 
semantic event patterns, HMMM always tries to traverse 
the right path and therefore it can assist in retrieving 
more accurate patterns quickly with lower computational 
costs. Moreover, HMMM supports feedbacks and 
learning strategies, which can proficiently assure the 
continuous improvements of the overall performance. 
 
 
1. Introduction 
 

To make multimedia information pervasively 
accessible and reusable, the “semantic gap” issue needs to 
be addressed. This denotes the gulf between the rich 
meaning and interpretation that the users anticipate the 
database systems to associate their queries for searching 
and browsing multimedia data. The other crucial problem 
is how to efficiently derive and facilitate semantic 
annotations which require knowledge and techniques 
from assorted disciplines and domains, even though many 
of them are outside of the traditional computer science 
fields. Furthermore, another emerging challenge is how to 
proficiently model, accumulate, and query multimedia 
data, along with the specific semantic events or event 
patterns.  

To efficiently manage the large video archive, a 
promising solution is to architect the high-level semantic 

descriptions for multimedia content processing, 
management, and retrieval. In this paper, we present the 
Hierarchical Markov Model Mediator (HMMM) 
mechanism to efficiently store, organize, and manage 
low-level features, multimedia objects, and semantic 
events along with high-level user perceptions, such as 
user preferences, in the multimedia database management 
system (MMDBMS). In order to archive all valuable data, 
HMMM also adopts multi-disciplinary techniques, such 
as content-based image analysis, audio feature extraction, 
video shot detection and segmentation algorithms, 
machine learning methodologies, and relevance feedback 
techniques. 

By employing the proposed HMMM mechanism, the 
high-dimensional multimedia databases can be efficiently 
organized, indexed and managed. Moreover, the temporal 
relationships between the video shots are naturally 
integrated in HMMM such that the proposed mechanism 
can offer the capabilities to execute not only the 
traditional event queries but also the complicated 
temporal pattern retrieval towards the large scale video 
database in a quick and accurate manner. In addition, the 
feedback and offline learning strategies are incorporated 
in the HMMM mechanism such that high-level user 
perceptions and preferences as well as the low-level 
visual/audio features can be considered. In general, 
HMMM helps to bridge the semantic gap between 
concept-based and the content-based retrieval approaches 
to the underlying multimedia database modeling. 

The remainder of this paper is organized as follows. 
Section 2 reviews the current research projects and a 
variety of existing systems on multimedia database 
modeling, indexing, and retrieval. Section 3 introduces 
the temporal pattern query along with the architecture of 
the proposed framework. Section 4 provides the 
formalization and discussion of HMMM. Section 5 
describes the algorithm for the temporal pattern retrieval 
processing upon the HMMM-based database structures, 
and presents our experimental example and result. 
Finally, the conclusions are summarized in Section 6. 
 



2. Related Work 
 

Traditional video databases basically store the textual 
descriptors along with the source videos such that the 
textual based video queries can be easily performed. 
However, it has limited capabilities in browsing and 
querying video data. Some of the later researches allow 
browsing and querying based on the video structure data. 
As an example, an interactive content-based video 
browser is presented in [11], which supports a 
hierarchical navigation of video over the Internet through 
multiple levels of key frames. 

With the resurgence of research in multimedia 
database and retrieval systems, many approaches have 
been developed to support retrieval based on low-level or 
mid-level visual/audio features by using Query by 
Examples (QBE) [2][4][12]. In [2], a video-enhanced 
database system called VDBMS was proposed to support 
feature-based medical video data retrieval. [4] describes a 
system which applies image retrieval techniques to query 
videos by setting up the links between videos and images. 
In addition, IBM’s video retrieval system MARVEL [12] 
supports QBE in both the low-level feature space and the 
high-level model-vector space. However, QBE 
approaches have their own limitations because the users 
may not have the image/video example at hand when 
issuing the queries. In addition, QBE would not perform 
well if the query example is not taken with an appropriate 
angle or scale. 

Recently, there is a rapid proliferation of visual 
processing and analysis techniques, where the salient 
objects and their motions can be identified and utilized in 
video retrieval. For example, VideoQ was a web based 
video search system to search the video clips containing 
the object motion similar to the animated sketches 
provided by the user [3]. From the general users’ points 
of view, it is expected to find videos on the basis of the 
semantic content of the video. Therefore, the most recent 
researches mainly focus on semantic events retrieval. 
Some of the existing video query approaches utilize event 
annotations, which are generally described as time-
dependent information or values that are synchronous 
with the source data such as SMOOTH [14], GOALGLE 
[16], and IBM TRL’s MEPG-7 authoring system [13]. 
These approaches either support semantic queries and 
some basic temporal queries, or deploy event-based 
indexing via the inclusion of the event name, start time, 
and end time.  

The existing event-based and object-based video 
retrieval applications may encounter the problem that 
event detection and object segmentation require manual 
annotations of video events, salient objects, and their 
boundaries. [1] describes a system for content-based and 
model-based detection and retrieval of events and other 
concepts, where the semantic concept models are built by 

training the classifiers using labeled training videos. 
VideoQA was proposed to query a news video archive, 
where the speech recognition techniques are utilized for 
the semantic meaning retrieval [17]. Ideally, the semantic 
contents of the video data can be mined automatically by 
utilizing various machine interpretation techniques and 
therefore the videos can be automatically annotated. 
However, based on the state of the art in computer vision, 
this kind of complicated data abstractions may not be 
feasible in practice. Instead, the computer may perform 
automatic annotation with limited semantic interpretation.  

Due to the rapid propagation of multimedia 
applications that require video data management, it 
becomes more desirable to provide proper video database 
modeling and indexing techniques capable of 
representing the rich semantics in video data. The 
approach proposed in [9] employs high-dimensional 
points to represent the pixel regions. Another multilevel 
video indexing approach called ClassView was proposed 
in [10], which a set of hash tables are included in the 
database indexing structure for different visual concept 
levels, and a root hash table is utilized to integrate the 
information about all semantic clusters.  

Our research group has proposed semantic event 
mining methodologies to identify the “goal” and “corner 
kick” events from soccer videos [6][7], and a temporal 
query model related graphical query language for soccer 
event queries with the support of temporal relationships 
[8]. In this paper, we mainly aim at developing a 
comprehensive database modeling mechanism for video 
event pattern retrieval by considering temporal 
relationships with the help of user feedbacks and machine 
learning technologies. 
 
3. Overall Framework  
 

In general, multimedia data and metadata can be 
categorized into three groups: entities, attributes, and 
values, where the description of an entity is composed of 
the combinations of attributes and their corresponding 
values. One of the significant characteristics of video data 
is that video entities may pose various temporal or spatial 
relationships. Accordingly, the users are normally 
interested in specific semantic concepts and the 
associated temporal-based event patterns when querying a 
large scale video archive. However, some of the current 
computer vision and video/audio analysis techniques only 
offer limited query processing techniques on textual 
annotations or primitive low-level or mid-level features. 
Although a variety of researches start to consider the 
retrieval on semantic events and the salient objects, there 
lacks a comprehensive database modeling technique to 
support the access and query on the temporal based event 
patterns. 



Figure 1. Overall framework of video database modeling and temporal pattern retrieval utilizing HMMM

In this study, a temporal event pattern is defined as a 
sequence of semantic events which follow some specific 
temporal relations. Here, a semantic event annotation is 
used to mark real-world situations of the video shot, also 
referred to as events. For instance, in soccer video, the 
events such as “goal”, “corner kick”, “free kick”, “foul”, 
“goal kick”, “yellow card”, and “red card” are considered. 
An example temporal pattern query can be expressed as 
follows: “A user wants to search for a specific soccer 
video segment with the following temporal patterns. At 
first, a goal is resulted from a free kick. After that, a 
corner kick occurs at some point in time, followed by a 
player change, and finally another goal shot follows the 
player change.” In our proposed approach, the Markov 
Model Mediator (MMM) mechanism is extended to 
Hierarchical MMM such that the multiple-level video 
entities and their associated temporal or affinity 
relationships can be efficiently modeled to answer this 
type of temporal pattern queries.  

As illustrated in Figure 1, our proposed framework 
consists of five major components. The first step is to 
process the video data by utilizing the multi-disciplinary 
techniques to detect the video shot boundaries and extract 
the shot features. After the data cleaning procedure, data 
mining techniques are deployed to detect the semantic 
events. The detailed algorithms for soccer event detection 
can be found in [7]. Second, as shown in the lower-left 
box, HMMM is deployed to model the extracted features, 
detected events, segmented video shots and original 
source data, etc. Once a temporal pattern query is issued 
via the graphical retrieval interface, the third component 
(query translator) analyzes the user requirements and 

encodes the query to a set of expected events and their 
associated temporal patterns. These requirements are sent 
to the query processing component as inputs. The 
similarity matching process is then executed to achieve 
the candidate video shot sequences and finally they are 
sorted according to the similarity scores. Moreover, the 
HMMM mechanism can be trained via considering user 
feedbacks for continuous system learning. 
 
4. The Hierarchical Stochastic Model 
 
4.1. Definition of HMMM 
 

Markov Model Mediator (MMM) is a well-established 
mathematical construct capable of modeling complicated 
multimedia databases and can efficiently collect and 
report information periodically. MMM has been 
successfully applied in several applications such as 
content-based image retrieval [15].  In this study, MMM 
is extended to multiple level descriptions and utilized for 
video database modeling, storage and retrieval purposes. 
The formal description of an HMMM is defined as below.  
 
Definition 1: An HMMM is represented by an 8-tuple 

),,,,,,,( LPBAFSd Π=λ , where 
• d is the number of levels in an HMMM. The 

hierarchy index of the lowest level with the 
smallest multimedia object is 1 and the index for 
the highest level state is d. 

• S (Sn) represents distinct multimedia objects in 
different levels. For example, in the proposed 
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framework, S1
 is the set of states for the shot-

level video clips; while S2
 is a set of video states. 

A state of an HMMM is denoted by )(iSn , 
where i is the state index and n is the hierarchy 
index. Here, we also denote the number of the 
sub-states of an internal state )(iSn  as |)(| iSn . 

• F (Fn) is defined as the sets of distinct features of 
the specific multimedia objects. The entry )(iFn  
denotes the ith feature in the nth-level MMM. In 
this paper, the lower-level MMM model for 
video shots incorporates the feature sets as low-
level or mid-level visual/audio features, while 
the higher level MMM model for the videos 
integrates the features as the semantic events. 

• A (An → Sn × Sn) indicates the state transition 
probability distributions, where An denotes the 
nth level matrix for state transition probability. 
The entry ),( jiAn  actually indicates the 
relationship between the ith and jth multimedia 
objects in the nth level MMM. The higher this 
entry is, the tighter the relationship exists 
between these two objects. In the retrieval 
process, the possibility is also higher to traverse 
from )(iSn  to )( jSn . 

• B (Bn → Sn × Fn) denotes the feature matrices of 
different level MMMs by incorporating the 
associated feature values for each multimedia 
object. In this paper, B1 includes the visual/audio 
feature values for each of the video shots; while 
B2 consists of the numbers of semantic events 
associated with each of the videos. 

• Π  ( nΠ ) incorporates the information for the 
initial state probability distributions, where 

nΠ (i) represents the possibility that the ith 
multimedia object of the nth level MMM is 
chosen as the initial state in the retrieval process. 

• P ( 1, +nnP  → Fn × Fn+1) represents the weights of 
importance of the lower-level features (Fn) when 
describing the higher level feature concepts 
(Fn+1).  

• L ( 1, +nnL  → Sn × Sn+1) denotes the link 
conditions between the higher level states (Sn+1) 
and the lower level states (Sn). 

 
4.2. Construction of two-level HMMM  
 

In this paper, a two-level HMMM model is deployed 
to model the source video and their associated video 
shots. More specifically, the fundamental level of the 
MMM model consists of a series of consecutive video 
shots. It needs to be noted that the events are referred to 

as shot-level video clips in this paper. It is merely a 
choice of representation rather than a statement about the 
actual duration of a specific event. Thus, one local MMM 
model is architected for each video in the database; while 
an integrated MMM model is constructed to model all the 
source videos and incorporate all the lower level MMM 
models.  
 
4.2.1. Video shot level MMM 
 

As we stated above, the matrices for affinity 
relationship, feature, and initial state probability 
distributions at different levels may hold slightly 
dissimilar meanings although the general depiction is the 
same. In the most fundamental level, the states (S1) 
represent the video shots, which are the elementary units 
in the video database and describe the continuous action 
between the start and end of a camera operation. The 
feature set (F1) for the video shot level MMM consists of 
low-level or mid-level visual/audio features.  
 
4.2.1.1. A1: temporal-based relative affinity matrix 
 

A1 represents the temporal-based affinity relationship 
between the video shots in the video shot-level MMM. 
Let )(1 iS  and )(1 jS  (where 0 < i < j) represent two 
specific semantic events, and if they are frequently 
accessed together in one temporal event pattern, they are 
said to have a higher affinity relationship. Hence, their 
temporal based affinity relationship value from )(1 iS  to 

)(1 jS  will be larger. 
 
1) Initialization of A1 
 

Let N be the number of video shots {s1, s2, …, sN} 
annotated in the initial video database. Assume these 
video shots follow the normal temporal sequence, i.e., 

Nsss TTT <<< ...
21

, where 
isT  is the occurrence time 

of si. The number of event annotations in si is represented 
as NE(si). Accordingly, A1 can be initialized as follows. 
Basically, A1(i,j) is set as 0 when i > j. When 1 ≤ i < N 
and i < j ≤N, A1(i,j)= )1))(/(()( −∑ =

N
ik kj sNEsNE . If i = j 

and i ≠ N, A1(i,j)= )1))(/(()1)(( −− ∑ =
N

ik kj sNEsNE . 
When i = j = N, A1(i,j) value will be set as 1, which 
denotes that si is the last event of this video. 

Given an example, if in a soccer video V, there are 
originally three shots to be annotated. The first shot (s1) is 
denoted as “Free Kick”; the second shot (s2) is annotated 
as two events “Free Kick” and “Goal”; while the last shot 
(s3) is a “Corner Kick” shot. Based on the above 
descriptions, NE(s1)=1, NE(s3)=1, and NE(s2)=2. 



Therefore, we can calculate the values in matrix A as: 
3/2)1)121/((2)2,1(1 =−++=A , 3/1)3,1(1 =A , 2/1)2,2(1 =A , 

2/1)3,2(1 =A , 1)3,3(1 =A . 
 
2) Update of A1 
 

By adopting HMMM, the users are allowed to provide 
their feedbacks to the system. Those video shot sequences 
that are similar to the anticipated temporal event pattern 
will be marked as “Positive” patterns. This information is 
used to capture the user preferences to refine the system 
retrieval capability for the future update. A matrix AF1 is 
defined to capture the temporal-based affinity 
relationships among all the annotated video shots using 
user access patterns and access frequencies. For the kth 
pattern Rk, access1(k) represents its access frequencies, 
and use1(i, k) equals 1 if si (the ith video shot) was 
accessed in pattern Rk. Moreover, both sm and sn should 
belong to the “Positive” temporal pattern Rk and sm should 
occur before sn or they should occur at the same time. Let 
q be the number of positive patterns on the shot level. 

.,,
,)(),(),(),(),( 1 11111

nm ssknkm

q
k

TTRsRsiff
kaccessknusekmusenmAnmaff

≤∈∈

×××= ∑ = (1) 

Each entry of ),(1 nmaff  in AF1 indicates the 
frequency of sm and sn being accessed together in the first 
level MMM, and consequently the probability of these 
two video shots being accessed together in the temporal 
patterns. A1 can then be updated via normalizing AF1 per 
row and thus MMM represents the relative affinity 
relationships among all the video clips in the database. 
Let ),(1 nmA  be the element in the (m, n) entry in the 
first level MMM model and N be the video shot number 
of this model, then 

.11

,),(/),(),( 1 111

NnandNmwhere

jmaffnmaffnmA N
j

≤≤≤≤

= ∑ =          (2) 

For the sake of efficiency, the training system can only 
record all the user access patterns and access frequencies 
during a training period, instead of updating A1 matrix on-
line every time. Once the number of newly achieved 
feedbacks reaches a certain threshold, the update of A1 
matrix can be triggered automatically. All the 
computations should be done offline. 
 
4.2.1.2. B1: visual/audio feature matrix 
 

We consider both the visual and audio features in the 
feature matrix B1 for the video shot level MMM 
construction. As shown in Table 1, there are a total of 5 
visual and 15 audio features [6]. 

 
1) Normalization of B1 
 

The initial values of the features need to be normalized 
to achieve more accurate similarity measures. To capture 
the original value of a feature in a video shot, we define a 
temporal matrix BB1 whose rows represent the distinct 
video shots while the columns denote all the distinct 
features. The entry of BB1(i,j) denotes the original value 
of the jth feature in the ith video shot, where 1 ≤ j ≤ K, K is 
number of features, and 1 ≤ i ≤ N, N is the number of 
video shots. Our target is to normalize all of the features 
to fall between [0, 1]: 

)),((min)),((max

)),((min),(
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111
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111
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= ,         (3) 

where 1 ≤ i ≤ N, 1 ≤ j ≤ K. 
 
4.2.1.3. 1Π : initial state probability matrix for shots  
 

The preference of the initial states for queries can be 
achieved from the training data set. For any video shot 
state 1Ssm ∈ , the initial state probability is defined as the 
fraction of the number of occurrences of video shot sm as 
the initial state can traverse with respect to the total 

 
TABLE I. FEATURE LIST FOR THE VIDEO SHOTS 

Category Feature Name Feature Description 
grass_ratio Average percent of grass areas in a shot 

pixel_change_per
cent 

Average percent of the changed pixels 
between frames within a shot 

histo_change Mean value of the histogram difference 
between frames within a shot 

background_var Mean value of the variance of background 
pixels 

Visual 
Features 

background_mea
n Mean value of the background pixels 

volume_mean Mean value of the volume 

volume_std Standard deviation of the volume, normalized 
by the maximum volume 

volume_stdd Standard deviation of the difference of the 
volume  

volume_range Dynamic range of the volume, defined as 
(max(v)-min(v))/max(v)  

energy_mean Mean RMS energy 
sub1_mean Average RMS energy of the first sub-band 
sub3_mean Average RMS energy of the third sub-band 

energy_lowrate Percentage of samples with RMS power less 
than 0.5 times the mean RMS power  

sub1_lowrate 
Percentage of samples with RMS power less 
than 0.5 times the mean RMS power of the 
first sub-band 

sub3_lowrate 
Percentage of samples with RMS power less 
than 0.5 times the mean RMS power of the 
third sub-band 

sub1_std Standard deviation of the mean RMS power 
of the first sub-band energy 

sf_mean Mean value of the Spectrum Flux 

sf_std Standard deviation of the Spectrum Flux, 
normalized by the maximum Spectrum Flux 

sf_stdd Standard deviation of the difference of the 
Spectrum Flux, which is normalized too 

Audio 
Features 

sf_range Dynamic range of the Spectrum Flux.  



number of occurrences for all the initially traversed video 
shot states in the video database (D) from the training 
data set. 

∑ ∑
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∈ =
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kmuse
π .              (4)  

 
4.2.2. Video-level MMM 
 

The purpose of constructing video-level MMM is to 
cluster the videos describing similar events. A large video 
archive may contain various kinds of videos, such as 
news videos, movies, advertisement videos, and sports 
videos. The integrated MMM is constructed such that the 
system is able to learn the semantic concepts and then 
cluster the videos into different categories. 
 
4.2.2.1. A2: relative affinitive matrix for videos 
 

Based on the information contained in the training data 
set, the affinity relationships among the video sets in the 
database can be captured, i.e., the higher the frequency of 
two videos being accessed together, the closer they are 
related to each other. The relative affinity matrix A2 is 
constructed in two steps as follows:  

First, a matrix AF2 is defined to capture the affinity 
measures among all the videos using user access patterns 
and access frequencies. After that, each entry ),(2 nmaff  
in AF2 indicates the frequency of the two videos vm and vn 
being accessed together in the 2nd level MMM, and 
consequently how closely these two videos are related to 
each other. Let q’ be the number of queries on the video 
level. 

 
)(),(),(),( 22

'
1 22 kaccessknusekmusenmaff q

k ××= ∑ = .   (5) 
 
The matrix A2 can then be obtained via normalizing 

AF2 per row and thus represents the relative affinity 
relationships among all the M videos in the database (D).  

 

.11

,),(/),(),( 1 222

MnandMmwhere

jmaffnmaffnmA M
j

≤≤≤≤

= ∑ =              (6) 

 
Please note that A1 and A2 are different since A1 

considers the temporal relationships as well, while A2 
does not.  
 
4.2.2.2. B2: event number matrix for videos 
 

Matrix B2 includes the event numbers of each video, 
where each row represents a video and each column 
denotes one semantic event. Assume there are totally M 
videos in the database, where the video vi (1 ≤ i ≤ M) 

contains the set of C events denoted as {e1, e2, …, eC}, 
and ),(2 jiB  means the number of the jth event (ej) in vi. 
B2 does not need to be normalized and the integer values 
are kept.  

 
4.2.2.3. 2Π : initial state probability matrix for videos 
 

In the video-level, the access patterns and access 
frequencies for videos in use2 (instead use1) are used to 
construct the matrix 2Π .  
 
4.2.3. Connections between local MMM and 

integrated MMM 
 
4.2.3.1. P1,2: weight importance matrix 
 

Since there are only two levels of the MMM models in 
the proposed approach, only one weight importance 
matrix (P1,2) is required to denote the relationship 
between the features for video shots and the specific 
semantic events. This matrix is utilized to adjust the 
characteristic influences by learning the features of the 
annotated events. In P1,2, each row represents an event 
concept, while each column represents one of the visual 
or audio features. The value in P1,2 means the weight of 
the importance of the corresponding feature for the 
specific event concept.  
 
1) Initialization of P1,2 

 
Let each multimedia object have K features {f1, f2, …, 

fK} and C events {e1, e2, …, eC}. We define the initial 
value for each feature in an event concept to be 1/K, 
which means they carry the same weight importance.  

K
jiP 1),(2,1 = , where 1 ≤ i ≤ C, 1 ≤ j ≤ K.     (7) 

 
2) Update of P1,2 
 

Once a group of N video shots {s1, s2, …, sN} 
consisting of the same event concept ei (1 ≤ i ≤ C) are 
known, the standard deviations of the K features for all 
the N video shots can be calculated as {Stdi,1, Stdi,2, …, 
Stdi,K}, where Stdi,j represents the standard deviation of 
the ith event and jth feature (1 ≤ i ≤ C, 1 ≤ j ≤ K). 
Equations (8)-(10) can be employed to compute P1,2. As 
can be seen from Equation (10), the larger the P1,2 value 
is, the more important this feature is when calculating the 
similarity score with the specified event. 

 
jiStd
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1),(' = , where 1 ≤ i ≤ C, 1 ≤ j ≤ K   (8) 
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4.2.3.2. B1’: mean value of the features per event 
 

In matrix B1’, the row represents an event (concept), 
and the column denotes the visual and audio features. 
Assume that for the event ei (1 ≤ i ≤ C), a set of N video 
shots {s1, s2, …, sN} are identified ei. The mean value of 
the features fj (1 ≤ j ≤ K) for ei can be calculated as 
follows.  

N

jkB
jiB

N

k
∑

= =1
1

1

),(
),(' , where 1 ≤ i ≤ C, 1 ≤ j ≤ K.      (11) 

 
4.2.3.3. L1,2: link conditions matrix 
 

To facilitate the connections between the local MMM 
model and the integrated MMM model, the link 
conditions matrix L1,2 is designed. Let {v1, v2, …, vM}be 
the M videos and {s1, s2, …, sN} be the N video shots. If si 
belongs to vi, L1,2(i, j) = 1 (where 1 ≤ i ≤ M, 1 ≤ j ≤ N). 
Otherwise, L1,2(i, j) = 0. 
 
5. Temporal Pattern Retrieval Process 
 

Given a temporal pattern with C events 
} ..., , ,{ 21 CeeeR=  sorted by the temporal relationships 

such that 
Ceee TTT ≤≤≤ ...

11
, Figure 2 presents our 

proposed retrieval process. Here, we assume there are M 
videos {v1, …, vM} in the multimedia database archive, 
and there are total K non-zero features {f1, f2, …, fK} of 
the query sample. Here, 1 ≤ K ≤ 20 since 20 features are 
used. As shown in Figure 2, our proposed retrieval 
process includes the following steps. 
 
Step 1. Initialize the flag parameters as  i=1, j=1, and k=1. 
 
Step 2. The system checks matrix B2 and/or matrix A2 to 
search for video vi which contains event ej. This video 
should have a close affinity relationship with the previous 
video if it is available. 
 
Step 3. Checks the link condition matrix L1,2 and/or 
matrix A1 to find the specified video shot which is 
annotated as event ej or similar to event ej. This video 
shot should also have a strong connection to the previous 
video shot. 
 

 
Figure 2. Flowchart of the video shot retrieval process 

Step 4. Calculates the edge weight ),( jjj esw  using 
Equations (12) and (13), which is defined as the edge 
weight from the current state sj to the target event ej at the 
evaluation of the yth feature (fy) in the query, where 1 ≤ y 
≤ K and 1 ≤ j ≤ C. 

At 1=j , ),()(),( 1111111 essimsesw ×Π= .               (12) 

When Cj <≤1 , 

),(),(),(),( 1111111 ++++++ ××= jjjjjjjjjj essimssAeswesw .  (13) 
 
Equation (14) defines the similarity function to 

measure the similarity between sj and ej based on all of the 
non-zero features in } ..., , ,{ 21 Kfff . 
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where CjKySs j ≤≤≤≤∈ 1,1 ,1 .             (14) 
 
Figure 3 shows the traversal paths when querying the 

target temporal pattern. In each traversal, the system will 
choose the optimized path to access the next possible 
video shot states similar to the anticipated events. At the 

Inputs: 
1) A temporal pattern R={e1, …, eC} 
2) Affinity, feature, and probability matrices 
3) Video set { v1, …, vM }  

Search for the ith video vi  which contains 
event ej  

Search for the  jth video shot candidate sj 
which belongs to vi  and matches ej 

Calculate weight wj(sj, ej) 

j = j+1; 

i = 1; j = 1; k = 1;  

i > M ? 

j > C ? 

i = i+1; k = k+1; 

Y

N

Y

N

Calculate similarity score SS(R, Qk) for 
each candidate video shot sequence 

Rank the candidate video shot sequences 
according to their similarity scores 

Ouputs: 
1) Ranked video shot sequences 



end of one video, the next possible video candidate will 
be selected by checking the higher-level affinity and 
feature matrices.  

 
Figure 3. The lattice architecture for the temporal pattern 

retrieval process 

Step 5. j=j+1. If j > C, it means that all the events in this 
pattern have been traversed and therefore the similarity 
score of the whole candidate pattern should be computed 
as indicated in Step 6. Otherwise, the system goes to Step 
3 to continue checking the next video shot candidate 
which most closely matches the next event. Note that the 
traversal path should be recorded in the whole process.  
 
Step 6. Assume a candidate video shot sequence is 
defined as } ..., , ,{ 21 Ck sssQ = , the final similarity 
score can be calculated as:  

),(),( 1 jj
C
j jk eswQRSS ∑ == .                (15) 

 
Step 7. i = i+1; k = k+1. Check if i > M. If yes, it means 
that all the candidate video sets are checked and the 
system goes to Step 8. If no, the system goes to Step 2 
and checks matrices A2 and B2 to find the next video 
candidate.  
 
Step 8. There are k-1 candidate patterns. The system 
ranks the candidate video shot sequences according to the 
similarity scores.  
 
Step 9. Finally, a list of k-1 sorted video shot sequences 
are retrieved as the outputs. 
 

Here one query example is used to demonstrate the 
results of the retrieval mechanism. As illustrated in Figure 
4, each temporal query pattern can be represented as a 
Multimedia Augmented Transition Network (MATN) [5], 

which is originally designed to describe multimedia 
presentations. The key frames of a set of retrieved 
temporal event patterns are displayed below the MATN 
model to show an example of the results.  

 
Figure 4. MATN-based query model and the result of a 

temporal pattern query  

 
Figure 5. HMMM-based soccer video retrieval interface 

A soccer video retrieval system has been developed 
for the evaluation of the proposed approach. In the 
current approach, the proposed two-level HMMM 
mechanism is utilized to model the multimedia database, 
where 54 soccer videos are segmented into 11,567 video 
shots. Among these video shots, 506 of them are 
annotated as semantic events. Figure 5 shows the client-
side interface of the system, where the left-bottom part 
shows the interactive panels where a user can issue the 
queries. The right side panel demonstrates the resulting 
patterns sorted by their similarity scores. In this case, the 
target pattern is issued with a goal shot followed by a free 
kick, and therefore 8 patterns (including 16 shots) are 
displayed, where the magenta box marked the 3rd pattern. 
The left-upper panel displays the video shot which is 
chosen by the user. Finally, by using the drop down menu 
below the key frames, users are able to select their 
preferred video shots/patterns, and their feedbacks can be 
sent back to the server side for further improvement of 
the retrieval performance.   

 
 

T0: Video T1: Event 1 T2: Event 2 T3: Event 3 

…… 

…… 

Candidate video state 
Video shot state which matches the expected event 
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End state of the event pattern retrieval process in one video 

Transition which goes to search the next candidate video 
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6. Conclusions 
 

In this paper, we exemplify our efforts in the design of 
a generic mechanism for high-dimensional video database 
modeling and retrieval. A probabilistic-based approach 
called HMMM is proposed to integrate both low-level 
visual/audio features and high-level user perceptions 
along with the original multimedia data. Furthermore, the 
ranked temporal pattern query algorithm is proposed by 
considering the visual/audio features, temporal 
relationships, and user preferences. The retrieval 
procedure to search the specified temporal patterns 
becomes a stochastic process which always tries to 
traverse the most optimal path, thus guaranteeing the 
most efficient retrieval performance even in a large scale 
video database. Additionally, the overall system supports 
feedbacks and learning strategies since the user 
preferences can be proficiently analyzed and stored.   
 
7. Acknowledgements 

 
For Shu-Ching Chen, this research was supported in 

part by NSF EIA-0220562 and HRD-0317692. For Mei-
Ling Shyu, this research was supported in part by NSF 
ITR (Medium) IIS-0325260. 
 
8. References 
 
[1] A. Amir, S. Basu, G. Iyengar, C.-Y. Lin, M. Naphade, J. R. 
Smith, S. Srinivasan and B. L. Tseng, “A Multi-modal System 
for the Retrieval of Semantic Video Events,” Journal of 
Computer Vision and Image Understanding, vol. 96, no. 2, 
2004, pp. 216-236. 
 
[2] W. G. Aref, A. Catlin, J. Fan, A. K. Elmagarmid, M. A. 
Hammad, I. F. Ilyas, M. S. Marzouk and X. Zhu, “A Video 
Database Management System for Advancing Video Database 
Research,” in Proc. of the International Workshop on 
Multimedia Information Systems (MIS), Tempe, Arizona, USA, 
2002, pp. 8-17. 
 
[3] S.-F. Chang, W. Chen, H. Meng, H. Sundaram and D. 
Zhong, “A Fully Automated Content Based Video Search 
Engine Supporting Spatio-Temporal Queries,” IEEE Trans. on 
Circuits and Systems for Video Technology, vol. 8, no. 5, 1998, 
pp. 602-615. 
 
[4] L. Chen, M. T. Özsu and V. Oria, “Modeling Video Data for 
Content Based Queries: Extending the DISIMA Image Data 
Model,” in Proc. of the 9th International Conference on Multi-
Media Modeling (MMM), Taiwan, 2003, pp. 169-189. 
 
[5] S.-C. Chen, R. L. Kashyap and A. Ghafoor, Semantic 
Models for Multimedia Database Searching and Browsing, 
Springer, ISBN 0-7923-7888-1, September 2000. 
 

[6] S.-C. Chen, M.-L. Shyu, C. Zhang, L. Luo, and M. Chen, 
“Detection of Soccer Goal Shots Using Joint Multimedia 
Features and Classification Rules,” in Proc. of the Fourth 
International Workshop on Multimedia Data Mining 
(MDM/KDD), in conjunction with the ACM International 
Conference on Knowledge Discovery & Data Mining 
(SIGKDD), Washington, DC, USA, 2003, pp. 36-44. 
 
[7] S.-C. Chen, M.-L. Shyu, M. Chen and C. Zhang, “A 
Decision Tree-based Multimodal Data Mining Framework for 
Soccer Goal Detection,” in Proc. of the IEEE International 
Conference on Multimedia and Expo (ICME), Taipei, Taiwan, 
R.O.C., 2004, pp. 265-268. 
 
[8] S.-C. Chen, M.-L. Shyu and N. Zhao, “An Enhanced Query 
Model for Soccer Video Retrieval Using Temporal 
Relationships,” in Proc. of the 21st International Conference on 
Data Engineering (ICDE), Tokyo, Japan, 2005, pp. 1133-1134. 
  
[9] D. DeMenthon and D. Doermann, “Video Retrieval using 
Spatio-Temporal Descriptors,” in Proc. of the 11th ACM 
International Conference on Multimedia (ACM MM), Berkeley, 
CA, USA, 2003, pp. 508-517. 
 
[10] J. Fan , X. Zhu, A. K. Elmagarmid, W. G. Aref and L. Wu, 
“ClassView: Hierarchical Video Shot Classfication, Indexing, 
and Accessing,” IEEE Trans. on Multimedia, vol. 6, no. 1, 2004, 
pp. 70-86. 
 
[11] M. Guillemot, P. Wellner, D. Gatica-Perez and J.-M. 
Odobez, “A Hierarchical Keyframe User Interface for Browsing 
Video over the Internet,” in Proc. of the Ninth IFIP TC13 
International Conference on Human-Computer Interaction 
(Interact), Zurich, Switzerland, 2003. 
 
[12] IBM Marvel: MPEG-7 Multimedia Search Engine. 
http://www.research.ibm.com/marvel/ 
 
[13] IBM TRL’s MPEG-7 Authoring System. 
http://www.trl.ibm.com/projects/digest/authoring_e.htm 
 
[14] H. Kosch, L. Böszörményi, A. Bachlechner, B. Dörflinger, 
C. Hanin, C. Hofbauer, M. Lang, C. Riedler and R. Tusch, 
“SMOOTH - A Distributed Multimedia Database System,” in 
Proc. of the 27th International Conference on Very Large 
Database (VLDB), Rome, Italy, 2001, pp. 713-714.  
 
[15] M.-L. Shyu, S.-C. Chen, M. Chen and C. Zhang, “A 
Unified Framework for Image Database Clustering and Content-
based Retrieval,” in Proc. of the Second ACM International 
Workshop on Multimedia Databases (ACM MMDB), Arlington, 
VA, USA , 2004, pp. 19-27. 
  
[16] C.G.M. Snoek and M. Worring, “Multimedia Event based 
Video Indexing using Time Intervals,” IEEE Trans. on 
Multimedia, vol. 7, no. 4, 2005, pp. 638-647. 
 
[17] H. Yang, L. Chaisorn, Y. Zhao, S.-Y. Neo and T.-S. Chua, 
“VideoQA: Question Answering on News Video,” in Proc. of 
the 11th ACM International Conference on Multimedia (ACM 
MM), 2003, USA, pp. 632-641. 


