
FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

A GENERALIZED MULTIDIMENSIONAL INDEX STRUCTURE FOR

MULTIMEDIA DATA TO SUPPORT CONTENT-BASED SIMILARITY SEARCHES

IN A COLLABORATIVE SEARCH ENVIRONMENT

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Kasturi Chatterjee

2010

To: Dean Amir Mirmiran
College of Engineering and Computing

This dissertation, written by Kasturi Chatterjee, and entitled A Generalized
Multidimensional Index Structure for Multimedia Data to Support Content-Based
Similarity Searches in a Collaborative Search Environment, having been approved in
respect to style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Jainendra K. Navlakha

Xudong He

Keqi Zhang

Mei-Ling Shyu

Shu-Ching Chen, Major Professor

Date of Defense: March 31, 2010

The dissertation of Kasturi Chatterjee is approved.

Dean Amir Mirmiran
College of Engineering and Computing

Interim Dean Kevin O’Shea
University Graduate School

Florida International University, 2010

ii

c© Copyright 2010 by Kasturi Chatterjee

All rights reserved.

iii

DEDICATION

To Baba and Ma

iv

ACKNOWLEDGMENTS

I would like to extend my sincere gratitude and appreciation to my dissertation advisor

Professor Shu-Ching Chen for his guidance, support, suggestions and encouragement

while this dissertation was being conducted. I am also indebted to Professors Jainendra

K Navlakha, Xudong He of the School of Computing and Information Sciences, Professor

Keqi Zhang of Department of Environmental Studies and International Hurricane Center,

and Professor Mei-Ling Shyu of the Department of Electrical and Computer Engineering,

University of Miami, for accepting to be in my dissertation committee, as well as for their

suggestions and support.

The financial assistance I received from the School of Computing and Information

Sciences and the Dissertation Year Fellowship from University Graduate School are grate-

fully acknowledged.

I would like to thank all my friends and colleagues whom I have met and known while

attending Florida International University and all my group members. In particular, I

would like to thank Min Chen, Na Zhao and Fausto Fleites for their generous help. Fi-

nally, my utmost gratitude goes to my parents for their unconditional love and for always

believing in me; to my brother and sister-in-law for their support and encouragement;

to my little nephew for making me feel special without a reason; and to my husband for

just being there, always.

v

ABSTRACT OF THE DISSERTATION

A GENERALIZED MULTIDIMENSIONAL INDEX STRUCTURE FOR

MULTIMEDIA DATA TO SUPPORT CONTENT-BASED SIMILARITY SEARCHES

IN A COLLABORATIVE SEARCH ENVIRONMENT

by

Kasturi Chatterjee

Florida International University, 2010

Miami, Florida

Professor Shu-Ching Chen, Major Professor

Since multimedia data, such as images and videos, are way more expressive and infor-

mative than ordinary text-based data, people find it more attractive to communicate

and express with them. Additionally, with the rising popularity of social networking

tools such as Facebook and Twitter, multimedia information retrieval can no longer be

considered a solitary task. Rather, people constantly collaborate with one another while

searching and retrieving information. But the very cause of the popularity of multi-

media data, the huge and different types of information a single data object can carry,

makes their management a challenging task. Multimedia data is commonly represented

as multidimensional feature vectors and carry high-level semantic information. These two

characteristics make them very different from traditional alpha-numeric data. Thus, to

try to manage them with frameworks and rationales designed for primitive alpha-numeric

data, will be inefficient.

An index structure is the backbone of any database management system. It has been

seen that index structures present in existing relational database management frame-

works cannot handle multimedia data effectively. Thus, in this dissertation, a gener-

alized multidimensional index structure is proposed which accommodates the atypical

multidimensional representation and the semantic information carried by different mul-

timedia data seamlessly from within one single framework. Additionally, the dissertation

vi

investigates the evolving relationships among multimedia data in a collaborative envi-

ronment and how such information can help to customize the design of the proposed

index structure, when it is used to manage multimedia data in a shared environment.

Extensive experiments were conducted to present the usability and better performance

of the proposed framework over current state-of-art approaches.

vii

TABLE OF CONTENTS

CHAPTER PAGE

1 Introduction and Motivation 1
1.1 Challenges . 5
1.2 Contributions . 11
1.2.1 Generalized Multimedia Index Framework 11
1.2.2 Multimedia Similarity Queries . 12
1.2.3 Multimedia Query Refinement . 13
1.2.4 Visualizing and Analyzing Multimedia Data Relationships 14
1.3 Scope and Limitations . 15
1.4 Outline . 15

2 Background and Related Work 18
2.1 Multidimensional Index Structures . 19
2.2 Content-Based Image and Video Retrievals 23
2.3 Query Refinement . 28
2.4 Query Refinement in Multidimensional Index Structures 30
2.5 Graph Similarity . 32

3 Overview of the Framework 35
3.1 Multimedia Data Organization . 37
3.1.1 Multimedia Index Structure . 37
3.1.2 Multimedia Query Engine . 38
3.1.3 Intelligent Multimedia Index and Query Engine Optimizer 39
3.2 Multimedia Retrieval . 40
3.2.1 Image Retrieval . 40
3.2.2 Video Retrieval . 41
3.2.3 Mixed Multimedia Data Type Retrieval 42
3.3 Semantic Relationship . 43
3.3.1 Semantic Relationship Matrices . 43
3.3.2 Semantic Modeling . 44

4 GeM-Tree: A Generalized Multidimensional Index Structure Supporting Image
and Video Retrieval 45

4.1 GeM-Tree . 46
4.2 Earth Movers Distance . 47
4.2.1 Fixed-Length Multimedia Data Signatures 49
4.2.2 Variable-Length Multimedia Data Signatures 50
4.2.3 Node Structures of GeM-Tree . 52
4.2.4 Node Insertion . 53
4.3 Similarity Search . 53
4.3.1 High Level Semantic Relationship . 55
4.3.2 Incorporation of Affinity Values . 56
4.3.3 Affinity Promotion in GeM-Tree . 59

viii

4.3.4 k-NN Search . 60
4.4 Empirical Study . 63
4.5 Conclusion and Future Work . 67

5 Content-Based Image Retrieval Utilizing a Multidimensional Index Structure 69
5.1 Content-Based Image Retrieval in GeM-Tree 69
5.2 Similarity Queries . 69
5.2.1 Range Queries . 70
5.2.2 k-NN Queries . 72
5.3 Experimental Analysis . 74
5.4 Conclusion . 82

6 Content-Based Video Retrieval Utilizing a Multidimensional Index Structure 83
6.1 Video Modeling . 85
6.1.1 Hierarchical Unit-Based Modeling . 86
6.1.2 Feature-Based Modeling . 87
6.1.3 Video Semantics Modeling . 87
6.2 Similarity Search . 88
6.3 Experiments . 90
6.4 Conclusion . 91

7 Hybrid Query Refinement: A Strategy for a Distance Based Index Structure to
Refine Multimedia Queries 92

7.1 Hybrid Query Refinement in a Distance-Based Index Structure 94
7.1.1 The Refinement Model for Semantic Relationships 95
7.1.2 Refinement Model for the Feature Space 98
7.1.3 Similarity Search With Hybrid Query Refinement Model 102
7.2 Empirical Study and Evaluation Metric . 105
7.3 Conclusion and Future Work . 112

8 Generating Social Network Previews Using Graph Similarity 114
8.1 Introduction . 114
8.2 Generating Social Network Preview . 119
8.2.1 Selecting Nodes . 120
8.2.2 Determining Similarity . 123
8.2.3 Node Assignment . 130
8.2.4 Representative Graph Generation . 132
8.3 Evaluation Score . 134
8.4 Data Set . 137
8.5 Empirical Analysis . 139
8.6 Multimedia Data Network . 144
8.6.1 Analyzing Multimedia Data Network . 148
8.7 Conclusion . 154

ix

9 A Distributed Multimedia Data Management over the Grid 156
9.1 Introduction . 156
9.2 Related Work . 159
9.3 Overall Framework . 162
9.3.1 Replicated Multidimensional Index Structure 164
9.3.2 Distributed Query Processing . 167
9.3.3 Automatic Load Balancing . 172
9.4 Empirical Study . 175
9.5 Conclusion and Future Works . 179

10 Conclusion and Future Work 181
10.1 Future Work . 183

BIBLIOGRAPHY 188

APPENDICES 207

VITA 244

x

LIST OF TABLES

TABLE PAGE

4.1 Affinity promotion for GeM-Tree . 59

4.2 k-NN search algorithm for GeM-Tree . 61

4.3 Distance computations during querying the index trees for fixed-length fea-
ture distributions . 65

4.4 Accuracy for fixed-length feature distribution 65

4.5 Distance computations during index tree formations for variable-length fea-
ture distributions . 66

5.1 Implementation of range query in GeM-Tree 70

5.2 Implementation of space search for images in GeM-Tree 72

5.3 Implementation of metric search for images in GeM-Tree 73

5.4 Implementation of k-NN search for image retrieval in GeM-Tree 75

7.1 Refined k-NN search algorithm . 100

7.2 Affinity promotion for refined queries . 104

7.3 Experimental results . 113

8.1 Generating social network preview . 120

8.2 Node assignment algorithm maximizing similarity 127

8.3 Representative graph generation . 134

8.4 Data set characteristics . 135

8.5 Generated pre-determined representative graph characteristics 137

8.6 Generated random representative graph characteristics 141

8.7 Generated clustered graph characteristics 142

8.8 Generated random clustered graph characteristics 144

9.1 Implementation of distributed content-based k-NN similarity search 170

9.2 Load balancing in the distributed multimedia database management framework173

A.1 Degree centrality computation for the top 100 images of the multimedia data
network for COREL datset . 208

A.2 Closeness centrality computation for the top 100 images of the multimedia
data network for COREL datset . 212

xi

A.3 Betweenness centrality computation for the top 100 images of the multimedia
data network for COREL datset . 217

xii

LIST OF FIGURES

FIGURE PAGE

1.1 Database management architecture. 3

1.2 Different components of a multimedia database management framework. . . 4

1.3 (a) Graph plotting the feature-level similarity calculated by euclidean dis-
tance function for image id 446 with all other images in the database. (b)
Graph plotting the high-level relationships captured by MMM framework
for image id 446 with all other images in the database. 8

3.1 Overview of the proposed framework. 36

3.2 General video structure. 37

4.1 Clustering using gaussian mixture models with k=5. 51

4.2 Distances vs. numbers of clusters for variable-length feature distribution. . . 66

5.1 Distance computation and number of I/O during (a) Building the index trees
(b) Range queries (c) k-NN queries . 77

5.2 Query results without including the affinity value 78

5.3 Query results for 10-NN query in GeM-Tree 79

5.4 Query results for range search with radius and affinity relationship equal to
0.2 and 0.23, respectively . 79

5.5 Query results obtained giving equal importance to similarity measurement
and high-level image relationship . 80

5.6 Query resultds obtained giving more importance to high-level image relation-
ship . 81

6.1 Traditional concept of indexing in video databases from video classification
point of view . 84

6.2 Distance computation and number of I/O of GeM-Tree compared with se-
quential search . 90

7.1 (a) Accuracy compared over three iterations, (b) Computation time compared
over three iterations. 107

7.2 (a) F1 score compared over three iterations, (b) Number of distance compu-
tations compared over three iterations. 109

7.3 (a) Computation time score compared over three iterations, (b) Similarity
score compared over three iterations, (c) Average model score. 111

8.1 A graph with (a) Star configuration (b) Circle configuration 136

8.2 Characteristics of the original social network graphs 138

xiii

8.3 Comparison between original graph and representative graphs for (a) Degree
centrality, (b) Betweenness centrality, (c) Closeness centrality 143

8.4 Comparison of EC between original graph and representative graphs using
(a) Degree centrality, (b) Betweenness centrality, (c) Closeness centrality 145

8.5 Comparison of EC error between original graph and representative graphs
using (a) Degree centrality, (b) Betweenness centrality, (c) Closeness cen-
trality . 146

8.6 Sample data network for 100 images from COREL 152

8.7 Complete data network for 10000 images from COREL 153

9.1 Overview of the proposed framework. 164

9.2 Distributed query processing. 168

9.3 Relationship of the computation time with the number of distribution nodes
during tree generation. 176

9.4 Relationship of the computation time with the number of distribution nodes
during k-nn search for data set A. 177

9.5 Relationship of the computation time with the number of distribution nodes
during k-nn search for data set B. 177

9.6 Experimental results for load balancing for data set I. 178

9.7 Experimental results for load balancing for data set II. 180

9.8 Experimental results for load balancing for data set III. 180

A.1 Original graph for enrongraph 500 . 222

A.2 Pre-determined representative graph for enrongraph 500 223

A.3 Random representative graph for enrongraph 500 224

A.4 Clustered graph for enrongraph 500 . 224

A.5 Original graph for enrongraph 5000 . 225

A.6 Pre-determined representative graph for enrongraph 5000 226

A.7 Random representative graph for enrongraph 5000 227

A.8 Clustered graph for enrongraph 5000 . 227

A.9 Original graph for enrongraph 10000 . 228

A.10 Pre-determined representative graph for enrongraph 10000 229

A.11 Random representative graph for enrongraph 10000 229

xiv

A.12 Clustered graph for enrongraph 10000 . 230

A.13 Original graph for adjnoun . 231

A.14 Pre-determined representative graph for adjnoun 232

A.15 Random representative graph for adjnoun 233

A.16 Clustered graph for adjnoun . 233

A.17 Original graph for calegansneural . 234

A.18 Pre-determined representative graph for calegansneural 235

A.19 Random representative graph for calegansneural 236

A.20 Clustered graph for calegansneural . 237

A.21 Original graph for karate . 238

A.22 Pre-determined representative graph for karate 238

A.23 Random representative graph for karate . 239

A.24 Clustered graph for karate . 239

A.25 Original graph for lesmis . 240

A.26 Pre-determined representative graph for lesmis 241

A.27 Random representative graph for lesmis . 242

A.28 Clustered graph for lesmis . 243

xv

CHAPTER 1

INTRODUCTION AND MOTIVATION

Since multimedia data such as images and videos are way more expressive and infor-

mative than ordinary text-based data, people find it more attractive to communicate and

express with them. With the proliferation of Internet technology and popularity of appli-

cations such as facebook, myspace, and google image search, large volume of multimedia

data is being accessed and utilized by various communities over the web on a regular

basis both for entertainment as well as for work. In addition, multimedia data has other

fields of usability, for example in medical imaging for diagnosis purposes, developing in-

teractive distant learning tools, educating the general public about pressing topics, etc.

But the very cause for the popularity of multimedia data, the huge and different types

of information a single multimedia object carries, makes their efficient management a

challenging task.

The multimedia data is atypical in nature due the following two characteristics: the

multidimensional representation and the semantic gap. Unlike traditional data which

is represented in a single dimension, a multimedia data has a multidimensional repre-

sentation. Basically, a multimedia object such as an image or a video can be broadly

considered to be constituted of two different types of contents viz. the low-level con-

tent, that is the visual and the audio, and the high-level semantic content. The visual

contents of multimedia data are popularly represented with the help of features such

as color histograms [204], texture vectors [124], and shape descriptors [231] extracted

from them. Each multimedia object can be represented as a point projected in a multi-

dimensional feature space. The audio contents are typically represented with the help

of properties, such as volume, flux, spectral components, etc. as utilized in [144][215].

The semantic content is way more difficult to represent, as a single multimedia object

might be perceived differently by different users or even by the same user in different

iterations. Researches were conducted in an attempt to map the relation between the

1

low-level features with the semantic meaning by using an iterative feedback mechanism

called Relevance Feedback (RF) [186][187], whereby weights are attached to different

components of the feature vector to capture users’ information need. But in frequent oc-

casions, it has been seen that the correlation between feature components and semantic

interpretations do not follow any regular pattern and the RF method doesn’t produce

satisfactory results. This is called the Semantic Gap and is one of the major hurdles in

generating relevant query results.

The primary function of a database management system is to support efficient data

storage and retrieval techniques, typical to the data. As the storage and retrieval re-

quirements of a data change, the database management framework supporting it should

also change. It is clear from the discussions in the above paragraph that multimedia

data is more complicated and hugely different in composition and representation from

traditional text-based data. Thus, it will be inefficient to try to manage them with sim-

ilar frameworks and rationales as primitive alpha-numeric data. Thus, all/most of the

components that the traditional database management framework is made up of should

be modified, tuned and customized to accommodate the characteristics of multimedia

data and to achieve robust and flexible data storage and management.

A typical database management framework is depicted in Figure 1.1. The major com-

ponents are (i) Recovery Manager, (ii) Storage Manager, (iii) Access Structure Manager,

(iv) Lock Manager, (v) Query Processor, (vi) Query Optimizer, (vii) Plan Executor,

(viii) Catalog Manager, and (ix) SQL Compiler/Interpreter. Basically, the design of ev-

ery component is affected by the data type and applications that need to be supported.

For example, the Access Structure Manager houses the index structure/structures for

a database management framework and supports the different access mechanisms typ-

ical for the particular data type. For multimedia data, the index structure should be

multidimensional and should support retrieval mechanisms, such as Content-Based In-

formation retrieval (CBIR), meant to be their preferred access mechanism. Similarly,

2

Figure 1.1: Database management architecture.

the Query Processor should be able to process CBIR queries issued for multimedia data

objects; the Query Optimizer and Query Planner should utilize and consider new rules

and cost models to evaluate the queries utilizing the multidimensional index structures

and consider the spatial, temporal and semantic information about the data before de-

veloping optimized queries; Query Languages should be able to support interactive query

by example [234] methodology and should translate the information need of an user and

represent them as formal relations with the help of new or existing operators. A high-level

illustration of a Multimedia Database Management architecture is presented in Figure

1.2 where the database management has been clearly divided into two main tasks, viz.

the core database management systems (dbms) engine and the content-retrieval engine.

These two components communicate among themselves and provide query results to the

interface by searching the underlying storage system.

3

Till date, to the best of our knowledge there wasn’t much progress towards developing

a complete robust multimedia database management system supporting all these typical

characteristics. The existing relational or object relational database models are usually

used to accommodate the multimedia data by using BLOBs (Binary Large OBjects) to

store images, videos, etc., compressing a multidimensional feature representation of a

multimedia data into a single key using space filling Z-order curves [164] and then using

single dimensional index structures such as B+-Tree [15]. With multimedia data gaining

popularity everyday, such an ad-hoc management approach would fail to meet the quality

of service required by the user.

Figure 1.2: Different components of a multimedia database management framework.

The multimedia research community is moving towards attempting to lay down the

foundation of an efficient, robust, extensible, and transparent database management

framework dedicated for multimedia data. As noticed from the frameworks presented in

Figure 1.1 and Figure 1.2, an index structure is one of the pivotal components. This dis-

sertation proposes an indexing framework to index multimedia data and design similarity

search algorithms to support popular retrieval mechanisms considering both the contents

4

that a multimedia data is made up of viz. low-level feature contents and high-level se-

mantic contents. A graph-based social-network approach is also proposed to visualize the

high-level semantic relationships between the data objects and to develop a Multimedia

Data Network. It is also planned to use data mining and machine learning strategies

to make the index structure intelligent and flexible. Developing Query Optimizers or

Query Processors based on them should be the next research direction based on the pro-

posed index structure. Thus, this dissertation is an important step towards designing a

dedicated database management system for multimedia data with all the components of

the framework optimized for the particular characteristics of the data and its effective

retrievals.

The remainder of this chapter is organized as follows. In the next section, it briefly

discusses the important challenges faced while developing efficient index structures for

multimedia data which can support the atypical structures and retrieval strategies as-

sociated with them. The significance and major contributions of this dissertation are

presented in Section 1.2. In Section 1.3, the scopes and limitations of this framework are

discussed. Finally, section 1.4 gives the outline of this dissertation.

1.1 Challenges

The main challenges in developing an efficient index structure to organize multimedia

data and support all the popular retrieval strategies are as follows:

• Multidimensional Feature Set: A multimedia data is represented as a multidimen-

sional feature vector where each field of the vector corresponds to components such

as color, texture, shape descriptors, etc. Often the visual contents of a multimedia

object cannot be expressed satisfactorily with a fixed length feature vector and a

variable length feature representation is used [13]. In addition, though an image

can be represented completely by a fixed length or a variable length feature vector,

5

a video has a more complicated structure. Usually a video is represented with a

hierarchical containment structure whereby it is divided into different units such

as frames, shots, concepts, etc. A video is usually represented as a collection of

smaller units (for example, shots) and is expressed as a set of feature vectors, one

vector for each shot. For each shot, each feature vector usually stores the low-level

feature values combined over a number of frames (which can be defined as a group

of images having a temporal relationship among them). Furthermore, videos con-

tain additional characteristics such as audio feature, temporal information, motion

vectors, etc. along with the color, texture, shape features used in images. All these

characteristics of the low-level feature need to be accommodated and handled ef-

ficiently in the index structure. Obviously, a traditional single dimensional index

structure such as B-Tree [14] cannot be utilized for such data and a multidimen-

sional index structure such as R-Tree [98], KDB-Tree [179], Hybrid-Tree [35], etc.

should to be utilized. But the existing multidimensional index structures do not

support the typical retrieval approaches such as CBIR in their query structures

efficiently and have been seen to demonstrate unsatisfactory query results in terms

of relevance. Also, none of the existing index structures were found to handle differ-

ent types of multimedia data, such as images and videos, seamlessly from within a

single framework. Additionally, they do not support the hierarchical relationships

between the video units and the different unit-level retrievals (such as frame-level,

shot-level, video concept-level, etc.). Thus the index structures, to be developed

for a MultiMedia DataBase Management System (MMDBMS), should be able to

support the multidimensional feature representation, support different multimedia

data types from within a single framework, accommodate the different retrieval

strategies in their query structure and produce query results relevant to the users’

information need.

6

• Semantic Gap: Every multimedia object, whether an image or a video has high-level

semantic meaning attached to it. The relationship between the low-level feature

content and the high-level semantic concept of a multimedia object is rather fuzzy.

Most of the times it is quite difficult to capture and express the semantic information

need of an user about a multimedia data via feature-level weights and thus there

exists this semantic gap between them. Figure 1.3 explains it graphically where

Figure 1.3(a) plots the similarity between every pair of image in a database and

Figure 1.3(b) plots the number of times two images from the same database were

voted to be semantically close by a group of users. It can be seen that the low-level

similarity pattern does not match completely with the high-level similarity pattern

for the same set of images. A particular case is highlighted which demonstrates

this fact for a pair of images which has a low feature-level similarity, calculated

as the inverse of the Euclidean Distance between the feature vectors, but a high

semantic level closeness as has been pointed out by a large number of users. Thus

query models proposed in [36][37] fail to produce satisfactory query results for

datasets where there is no proper mapping between the features and the semantic

concepts. Video data is different from image data and bear additional hierarchical

semantic relationships among the different units, such as frames, shots, etc. The

existing query models meant to bridge the semantic gap do not possess techniques

to handle the typical characteristics of video data. Also, these query models for

multimedia data (specifically designed for images) cannot be utilized and embedded

into a distance based index structure as adjusting feature-level weights make the

distance functions arbitrary. Thus there are three major limitations of [36][37]

viz. (a) they cannot be used for distance-based index structures (b) they are not

designed to be used to bridge the semantic gap for video data and (c) they fail

to produce satisfactory query results if the low-level similarity does not follow the

same pattern as semantic closeness between two multimedia data objects. Thus,

7

Figure 1.3: (a) Graph plotting the feature-level similarity calculated by euclidean distance
function for image id 446 with all other images in the database. (b) Graph plotting the
high-level relationships captured by MMM framework for image id 446 with all other
images in the database.

8

the challenge is to develop generic query models to be embedded into the k-NN

similarity search methods of index structures which precisely address the above

three issues.

• Imprecise Query for Similarity Search: The perception subjectivity attached to a

multimedia object makes the queries imprecise in nature. By perception subjec-

tivity, it is meant that the semantic meaning attached to a multimedia object is

interpreted differently by different users or even by the same user at different points

of time. Thus the actual information need of an user issuing a query cannot be

captured precisely in one iteration. Multiple iterations, with user in the feedback

loop, capture the users’ perception with greater accuracy. Such retrieval techniques

are called CBIR with Relevance Feedback (RF), whereby the relevance of the query

results are marked by the user in the form of feedbacks which are utilized in the

next iteration by the query model to improve the query results. The process is

called query refinement whereby the issued query is refined at every step to reduce

the imprecise elements in it. Naturally, the index structure needs to accommodate

the query refinement within its k-NN similarity search methods without incurring

excess computational overhead. Though there are some query refinement tech-

niques introduced to a feature based index structure as presented in [38][170][172],

there were none developed for distance based index structures so far. Also, the RF

method completely relied on the query model [36][37] where the refinement is done

primarily on the feature-space while trying to express the semantic relationship with

the feature-level weights. This might not always yield good results as discussed in

the above paragraph. Thus a query refinement strategy is required, especially for

a distance based index structure, that considers and refines both the contents of a

multimedia objects, viz. the low-level feature content and the high-level semantic

content, independently.

9

There are several other challenges in developing an index structure for multimedia

databases such as indexing documents, which can be considered a different form of aggre-

gated multimedia data consisting images and videos along with texts grouped together;

indexing traditional alphanumeric data along with the multimedia data to be able to use

a single database management system for all types of popularly used data; embedding

the multidimensional index structure, with all its complex retrieval strategies, efficiently

into the database kernel; developing query optimization and query execution plans which

tune with the index structures, etc. But the above three challenges can be marked as the

most important ones that need to be considered while developing an index structure to

handle the common multimedia data robustly. In addition, there are some serious issues

that are frequently faced in research related to multimedia data. Though they might

not be directly related to the database management or indexing point of view, they are

crucial. They are as follows:

1. Extracting appropriate low-level features from complex multimedia objects is a diffi-

cult task and falls into the content processing category. But, without good features

and feature extraction techniques, the entire multimedia database management

framework along with the index structures and the retrieval models would fail to

produce satisfactory results. Thus, researchers dealing with multimedia database

management scenarios need to make sure that they have a good repository and

techniques to extract important features such as colors, textures, shapes, objects,

audio, etc. correctly.

2. Developing the semantic relationships among multimedia objects require a lot of

efficient preprocessing and training steps. These training and preprocessing of the

data sometimes involve intense data mining or pattern recognition knowledge which

a database researcher should master to be able to utilize them according to their

needs.

10

1.2 Contributions

This dissertation addresses the above challenges and proposes a general framework that

can index both images and videos and support content-based retrieval strategies for both

the data types. Additionally, the framework is capable of handling the imprecise nature

of such queries and the semantic gap issue. The main contributions of this dissertation

are the following:

1.2.1 Generalized Multimedia Index Framework

Since there are different types of multimedia data, each differing in representation and

retrieval requirements, it is necessary to device a generalized index structure capable of

accommodating the different data types seamlessly. This dissertation proposes such a

multidimensional index structure, called Generalized Multimedia Tree (GeM-Tree) [47],

which is a flexible and robust structure indexing images as well as videos. It is the first

of its kind to provide a single index structure for different media types. It is possible

to extend GeM-Tree to support other genres of multimedia data such as documents as

well with little modification to the basic framework. A novel data signature is used to

represent the multimedia data. This signature stores the features of the individual mul-

timedia data object, hierarchical relationships among the various units in case of videos,

and other information to identify every multimedia object uniquely. Also, the signa-

ture ensures to preserve the inter-relationships between multimedia objects, for example

among images and video units. A video unit, such as a shot, can be considered as a

set of images, temporally related and together carrying a high-level concept. Thus, it

is possible to determine the similarity between a shot and an image by comparing the

features of the images, that the shot is made up of, with the image object. This type

of cross-multimedia-object information retrieval is also possible in GeM-Tree. This is

useful during conceptual retrievals when users wish to see all types of multimedia objects

11

(both images and videos) related to a particular concept and similar to one another. The

proposed index structure supports almost all of the popular multimedia information re-

trieval strategies based on the contents including region-based information retrieval [121],

CBIR with feedback [187], conceptual multimedia retrieval, unit-based video retrievals,

etc. The similarity search algorithm of GeM-Tree implements a very flexible k-NN search

technique to accommodate different varieties of retrievals with the same efficiency. To

ensure the flexibility of the k-NN search method, the distance function used should be

also flexible. Thus, Earth Mover’s Distance is used which can accommodate variable

length feature vectors, metric and non-metric instances of the distance function, and

partial matching during similarity calculations.

1.2.2 Multimedia Similarity Queries

Basically, any index structure answers the similarity queries with either of the two ap-

proaches, the range search or the k-NN search. Due to the imprecise nature of multimedia

queries, it is difficult for the user to specify his/her exact requirements while issuing a

query. Hence, specifying a range/radius, required in a range search, is quite difficult. The

preferable option is to let the retrieval routine of the index structure search the database

for k closest objects (nearest neighbors) to the submitted query. Thus, it is crucial that

a successful index structure, developed for multimedia data, supports similarity searches

that are typical to multimedia data in its k-NN search routine. A unique query model for

GeM-Tree is developed that considers both the low-level feature similarity as well as the

high-level semantic similarity between multimedia objects independently. The semantic

content and relationships of multimedia data is captured with a stochastic probabilistic

network model whereby similarity between a pair of multimedia objects is determined

from users’ feedback over time. This semantic relationship is embedded into the sim-

ilarity search routine to provide a CBIR approach which considers both the low-level

feature similarity and the high-level semantic closeness individually. It is observed that

12

the relevance of the query results increases manifold with the proposed k-NN search of

GeM-Tree in comparison to other multidimensional tree-based index structures. A novel

algorithm to distribute the semantic relationship in the index tree structure is proposed

which ensures that it preserves the metric properties of the index tree.

1.2.3 Multimedia Query Refinement

The issue of the imprecise nature of multimedia query is addressed by proposing a hybrid

query refinement model for distance based index structures supporting multimedia data

management and retrieval. Since the information content of multimedia data can be di-

vided into the low-level and high-level categories, the query is refined from both aspects

without attempting to deduce relationships between them (which is a rather erroneous

process). A query expansion [37] approach is used to refine the feature space in each

iteration and shift the query space to a region that has the highest chance of satisfying

users’ feature level information need. The users’ feedback, in the form of query results

marked relevant by him/her, is gathered in each iteration to form a multi-point query and

similarity distance functions are redefined to accommodate such modified query struc-

ture. The high-level information need of the users are refined by dynamically updating

a stochastic probabilistic semantic network, which captures the closeness or affinity be-

tween a pair of multimedia objects by keeping track of the frequency with which users

have marked the pair similar in their feedback. The proposed query refinement model is

the first of its kind to be embedded in a distance based index structure capable of han-

dling multimedia data requirements. An evaluation technique is proposed to compare

and evaluate the collective effect of computational cost and relevance of query result on

the overall performance of a multimedia indexing and retrieval framework, mainly during

the query refinement process, where numerous iterations are executed for each query. It

has been seen that both the relevance of the query result as well as the computation cost

required to achieve a particular relevance level should be considered while developing

13

a multimedia retrieval framework. One can be increased at the cost of other i.e. they

are inversely proportional. Hence, the optimized performance is a balance between both

where satisfactory (not perfect) query results are achieved at an acceptable computation

cost. This evaluation score is called the Model Score which is a combination of F1-Score

and number of distance computations.

1.2.4 Visualizing and Analyzing Multimedia Data Relationships

As it has been pointed out throughout this chapter, semantic interpretation is the most

important factor that makes multimedia data stand out. Moreover, with the explosion

of the popularity of social networking applications and each one of them using multime-

dia data heavily, management policies for multimedia data should consider the evolving

relationships (which is derived from the user behaviors) between the multimedia data in

such a collaborative environment. Thus, a modeling technique of the multimedia data

relationship in a collaborative environment is proposed utilizing social network represen-

tation techniques. Many-a-times, such Multimedia Data Networks can be huge, which

make their subsequent analysis a difficult task. To overcome this issue, a social network

preview method using graph similarity is proposed which can be utilized to visualize

Multimedia Data Networks as well. Additionally, such Multimedia Data Networks can

be analyzed with analysis techniques used for Social Networks to understand the charac-

teristics and behavior of the individual data element with respect to the entire network.

Such holistic information about the individual data elements, with respect to the rest of

the network elements, can be used to improve and customize the underlying multimedia

database components. In this dissertation, we discuss the preliminary approaches by

which these data characteristics can be used in the different design techniques of the

proposed GeM-Tree. These concepts would be further investigated as future research as

they hold tremendous potential.

14

1.3 Scope and Limitations

This dissertation makes some assumptions and has few limitations as follows:

1. In the proposed multidimensional indexing framework for multimedia data that

supports different retrievals, there are several assumptions made. For example, it

is assumed that the feature extraction codes are providing us with features that

express the multimedia objects well.

2. Only soccer videos were used as the test bed for our indexing framework as the

domain specific features and the semantic relationship training set for them were

already available. Since the index structure can accommodate any set of low-level

features and any form of high-level semantic relationship among the multimedia

objects, the results produced by the index structure should be consistent for im-

ages or videos from any genres as long as the features extracted from them are

meaningful.

3. Though this dissertation is limited to the organization and management of only im-

ages and videos, documents are tagged popularly to be belonging to the multimedia

genre as well. A document has a different content than images or videos. Thus,

to be able to build a complete index framework for a multimedia database storing

all form of multimedia data, document indexing from within the same framework

need to be considered in the future.

4. To index any multimedia data with the proposed index structure, the data need to

be represented as a feature vector consisting of numerical values. Thus any nominal

or qualitative representation need to be converted to numerical form.

1.4 Outline

The organization of this dissertation is as follows: In Chapter 2, the literature reviews

are provided in the areas of multidimensional index structures, image and video feature

15

representations and extraction methodologies, content based image and video retrievals,

query refinement designed for index frameworks, and graph similarity approaches.

Chapter 3 describes the proposed multimedia indexing framework with its various

components where each component is briefly discussed.

In chapter 4, a detailed discussion of a flexible generalized indexing and retrieval

approach, which can handle both images and videos from within a single framework, is

presented. Extensive experimental results are provided which corroborates the goodness

of the proposed framework.

Chapter 5 discusses how the proposed generalized index structure manages image

retrieval in details.

In chapter 6, different video modeling approaches and how the proposed generalized

index structure accommodates them along with the retrieval strategies is discussed in

details.

In chapter 7, a query refinement technique for the proposed index structures is dis-

cussed which improves the query result relevance in multiple iterations without incurring

excessive computation overhead. It also discusses the proposed evaluation technique to

compare and evaluate the performance of different multimedia retrieval frameworks.

In chapter 8, a technique to visualize large social network graphs is proposed utilizing

fewer number of nodes and edges. This chapter also discusses how the proposed approach

of generating previews for social network graphs can be utilized to visualize dynamic rela-

tionships of multimedia data in a collaborative environment. It further investigates how

such visualization and analysis would help in the design decisions of different multimedia

database components.

Chapter 9 presents a distributed multimedia database management system over the

Grid. It discusses different techniques to handle distributed content-based information

retrieval across several nodes of a Grid architecture and further investigates the effects

of load balancing.

16

Chapter 10 presents the conclusion and the future direction of this research.

17

CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, a detailed survey is presented which encompasses across the existing

researches in fields that are related to the four important components of the proposed

frameworks discussed in the rest of the dissertation viz. the index structure, the retrieval

engine, the query refinement model and the multimedia data network (semantic model-

ing). They form the backbone of any successful database management system and hence

they were chosen as the primary components to be designed towards the larger goal of

a complete system. The multidimensional representation, the presence of semantic gap

and perception subjectivity and the typical retrievals based on the contents are some of

the important characteristics that make multimedia data different from traditional alpha-

numeric data. The index structures designed for such data should be multidimensional in

nature. Hence, in Section 2.1 the evolution of multidimensional index structures are dis-

cussed. Their performances and usability are compared and advantages and limitations

are briefly mentioned. Since the job of retrieving appropriate multimedia data is a rather

complex job and there are several retrieval approaches for images and videos, Section 2.2

is dedicated to discuss the different content-based image and video retrieval strategies.

Though such retrievals are considered to fall within the content-processing genre and are

not directly related to the database management framework, understanding them is very

crucial for the design of any successful component of the framework. Section 2.3 discusses

about the different existing query refinement strategies for multimedia data followed by

Section 2.4 that discusses the important topic of how the query refinement models are ef-

ficiently embedded into the multidimensional index structures. Section 2.5 discusses and

compares the different existing graph similarity techniques to further help choosing the

appropriate direction for generating previews for large Social Network graphs and utilize

the idea to generate Multimedia Data Networks for representing multimedia semantic

modeling.

18

2.1 Multidimensional Index Structures

Multidimensional indexing can be broadly categorized into feature based or distance

based techniques, each of which can be further classified as data-partitioned [19][60][98][229]

or space-partitioned [148][179] based algorithms. Later, the Hybrid Tree [35] made an

attempt to combine data-partitioned and space-partitioned index structures to overcome

the drawbacks of each. In the feature-based approach, the data or the space partitioning

is primarily done based on the values of the feature vectors along each dimension and

does not depend on the distance function used in the index structure. A feature based

indexing technique projects an image as a feature vector into a multidimensional feature

space and indexes it. The basic feature based index structures are KDB-tree [179], R-tree

[98], etc. In the distance-based approach, the partition of the data or space is done based

solely on the distances of one object from one more more selected pivot points. Thus, it

considers only the relative distance between image objects to organize and partition the

search space rather than considering their representation in the multidimensional feature

space. Some famous distance based index structures are M-Tree [60][229], vp-tree [227],

etc. Though the above mentioned multidimensional index structures can accommodate

the multidimensional structure of multimedia data, the semantic information attached

to these data cannot be properly handled by them. Though some works like [37] and

[36] tried to address the issue with a model that attempts to translate the high-level

semantic relationship among image objects to feature-level equivalence, such technique

is highly error prone as it is extremely difficult to map and interpret high-level semantic

characteristics of image objects in terms of feature-level weights. We proposed a multidi-

mensional index structure called GeM-Tree which is capable of embedding the high-level

image object relationship without translating it, into its framework. The outcome was an

increased relevance in query results without sacrificing excessive computational overhead.

The (dis)similarity between any two data objects, if computed based on a metric dis-

tance function, does not allow any correlation between feature values [78]. Now, when we

19

need to introduce some object level information in the index structure without intending

to transform it into multidimensional vector representations, it becomes quite difficult to

do so with feature-based index structures (which require all similarity computations be

done on a feature-level). Thus, distance based index structures gained popularity with

the introduction of the metric tree [211] which presented a more generalized approach to

the similarity search paradigm. It considers only the relative distance between the image

objects to organize and partition the search space rather than considering their repre-

sentation in the multidimensional feature space. Some famous distance based indexes

are M-Tree [60][229], vp-tree [227], etc. The vp-tree or the vantage point tree selects one

data point as the vantage point and partitions the remaining data points based on their

distance with it. The partition should be done as even as possible so that almost equal

number of data points reside in each partition. The partitions are spherical in nature.

Moreover, the data points are stored in a sorted manner which helps in answering near-

est neighbor queries with ease. However, the major disadvantage is that with increased

dimensionality of the data space, the number of branches of the tree that need to be

searched increases which decreases its computational ability [227]. M-Tree does not have

the above discussed vices and is can guarantee a balanced structure as it is built in a

bottom-up manner. Every object starts as a leaf object and is later promoted to being

routing objects. Each object can be promoted several times and moved up the tree by

partitioning or voting. Moreover, M-Tree is capable of handling dynamic data and do

not require frequent re-organization. In M-Tree, the objects are partitioned on the basis

of their relative distances, measured by specific distance functions (which are metric in

nature), and these objects are stored in fixed sized nodes [60][229]. The leaf nodes store

all the indexed objects represented by their keys or features; whereas the internal nodes

store the routing objects. Each routing object has an associated pointer which refers to

the root of the sub tree called the covering tree. All objects in the covering tree are within

a particular range from the routing object, called the covering radius. In addition, each

20

routing object is also associated with a distance to its parent object. The structures of

the leaf objects are similar to the routing objects with the difference that the leaf objects

do not have any covering radius and the pointer instead of storing the covering tree now

stores the actual object identifier. M-Tree is not necessarily I/O bound but can also be

CPU bound [229] which necessitates the requirement to lower the distance computation

whenever possible.

In a space-partitioned index structure, the multidimensional feature space is recur-

sively partitioned into disjoint subspaces represented as a hierarchical tree structure.

Where as in a data-partitioned index structure, bounding regions are arranged in spatial

hierarchy containing sub-region The bounding regions (also called Minimum Bounding

Regions or MBRs) may overlap with each other and their shapes vary from rectangles

in R-tree [98] to spheres in SS-tree [221]. In SS-tree, the MBRs can be represented by

only its center and radius, thus having the obvious advantage over the R-tree which need

to store the upper and lower values of the bounding rectangle for each dimension. But,

the major drawback of the SS-tree is that due to the increased volume of the spheres,

the overlap between the nodes increases. An example of feature based space-partitioned

index structure is KDB-tree and that of data-partitioned is R-tree. Similarly, an exam-

ple of a distance based space partitioned index structure is vp-tree and that of a data

partitioned structure is M-Tree. The major drawback of a data-partitioned structure is

that it splits a node based on all the dimensions making the fanout dependent on the

dimensionality. The fanout decreases drastically as the dimension of the feature space

increases making the index structure inefficient. On the other hand the main drawback of

the space-partitioned structure is that the split needs to form mutually disjoint subspaces

which deteriorates the node utilization. Later, the Hybrid Tree [35] made an attempt

to combine these two structures and overcome the drawbacks of each. It splits the node

based on a single dimension, making the fan-out independent of the dimensionality and

allows overlapping whenever a clean split makes the tree cascade down, thus solving the

21

utilization problem. The space partitioning in each index node of a Hybrid Tree follows

the same technique as KDB-tree but, to allow overlapping, the internal structure of the

index nodes of the Hybrid Tree needs to be modified. A second split position is added,

which represents the “left boundary of the right partition (rsp)” [35], to the already exist-

ing “right boundary of the left partition (lsp)”. If lsp > rsp, a overlap between partitions

is indicated. The Hybrid Tree is dynamic in nature and supports both bounding-box and

distance based queries. Another advantage of Hybrid Tree is its capability to support

arbitrary distance functions which makes it a popular choice for multimedia application

involving relevance feedback where the distance function can vary from query to query.

A brief categorical description of the structures of few important tree-based index

structures are presented below:

• K-DB-Tree [179]: In this tree structure, each of the internal node stores values to

identify a section of the multidimensional data space. A set of pointers refer to

their children. There is no overlap between the bounding regions of nodes and split

always occurs along a single dimension. The dimension along which the split is

to be done is chosen based on a round-robin fashion. The splitting is done with

the aim of having a minimum number of splits and to make the splits as even as

possible.

• R-Tree [98] and its variants: In these types of trees, each node contains a tuple

of the form (I, ptr), where I indicates the rectangular bounding region and ptr is

the address of the child node. There is a limitation on the number of tuples that

each node can hold and the split policies are determined accordingly. Moreover,

R-Tree is a balanced structure. There are few variants to R-Tree viz. the R+

[182] and the R*-tree. The difference between R-Tree and R+-Tree is that in

R+-Tree, the bounding regions are not allowed to overlap. This is possible by

letting the spatial data to split among different nodes. The absence of the overlap

reduces the computation cost during search techniques as only one path needs to

22

be considered but adds complexity while deleting. R*-tree [17] allows overlapping

but it determines the bounding regions differently from R-Tree. R*-Tree also uses

forced insert which prevents splits by deleting an object of a full node and then

re-inserting it.

• M-Tree [60]: It is a distance based index structure where only the distance between

objects is considered as the criteria for indexing. The distance function used should

be metric in nature i.e. it should follow the laws of positivity, symmetry and

triangular inequality. It is a balanced structure as it it built in a bottom-up fashion.

It supports both range query and k-NN search approaches. It has also exhibited

good performance while handling high-dimensional data. It is a flexible structure

and can support different feature representations.

• VP-Tree [227] and MVP-Tree [23]: VP-Tree is also a distance based metric tree,

but differs from M-Tree in its partitioning technique. It selects a particular data

point, called the vantage point, and partitions the rest of the data based on their

distance with it. Similar to M-Tree, bounding regions are spherical in shape. One

of usefulness of VP-Tree is its natural ability to answer nearest neighbor queries.

The major drawback arises when the data used is of high dimension. The partition

becomes thin and the number of branches to be searched increases. Hence, the

performance is not good for high-dimensional data and are not very suitable for

multimedia data in general. In order to overcome this drawback of VP-Tree, MVP-

Tree was proposed which was based on the concept of using multiple vantage points

instead of one. Thus, the fanout increases which reduces the search time.

2.2 Content-Based Image and Video Retrievals

There are mainly two approaches to study the retrieval strategies for multimedia objects,

one being text-based and the other visual content based. The traditional approach of

23

text-based retrieval first annotates the video or image before retrieving them. Popular

text-based retrievals are [43][44]. However, there exists two major limitations of such

approach. Firstly, the huge manual effort required to achieve the annotation of every

piece of multimedia object that is stored. Secondly, the perception subjectivity of the

rich content of multimedia data, which varies from user to user, makes such annotation

approach insufficient and erroneous. Thus, to overcome these issues, in the early 1990s,

retrievals based on the content instead of the attached text gained popularity.

Feature Representation

Efficient feature extraction is the first step towards any successful content-based retrievals

as the features basically represent the contents of an multimedia object formally. The

features related to multimedia data can be broadly categorized into three groups, visual

features, audio features and domain specific features. Where, visual and audio features

encompass around features like color, texture, volume, energy, the domain specific fea-

tures are application dependent and might include features like human faces and finger

prints.

The color feature is the most versatile and basic feature used in the feature vectors

of multimedia data. Color histograms [207] are the most commonly used color space

representation. Several metrics were proposed in [150][163] etc. to measure the similarity

between them. Besides color histograms, color moments [205] and color sets [193] are

used as other forms of color feature representations. Texture is another important visual

feature that assists in efficient multimedia retrievals. It refers to the visual patterns that

have properties of homogeneity which do not result from the presence of a single color

or intensity [194]. It carries information about the structural arrangement of surfaces

[99]. [99] proposed the co-occurrence matrix representation of texture features and laid

down the gray level spatial dependency of textures. To represent the psychological aspect

of human perception, [208] developed computational approximations to visual textures

24

such as coarseness, contrast, directionality, lifelikeness, regularity etc. The QBIC system

[71] and MARS system [112] further made improvements in this direction. In addition,

approaches like wavelet transform [192], Markov random field representation [62], etc.

are utilized to represent features depending upon the data set and the application at

hand. The audio features that are common for multimedia data like videos, mainly fall

into two categories: time domain and frequency domain [144]. The three main types of

volume features that help in retrieval processes are volume, energy and flux [206].

Image Retrieval

Once the features are extracted from an image, they are represented as multidimensional

feature vectors where each component of the vector specifies to what extent the particular

component is present in that particular image. Subsequently, in order to determine the

similarity between two different images, a distance function like Euclidean or Manhattan

is utilized to calculate the (dis)similarity between the two feature vectors of the two im-

ages. There are several commercial research prototypes that had been built to support

the Content-Based Image Retrieval (CBIR) like QBIC [71], RetrievalWare [65], Photo-

book [167], VisualSEEk [195], WebSEEk [197], Netra [151], MARS [112], etc. Among

them QBIC is the first commercial CBIR system. It supports queries based on example

images, user sketches, selected textures and colors etc. One of the unique features of

QBIC is its ability to take into account the indexing and multidimensional tree struc-

tures. It uses R*-Tree [17] in its system and can combine text-based and content-based

similarity search from within one single framework. RetrievalWare [65] applies neural

nets to image retrieval approaches whereas Photobook [167] is very useful for interac-

tive image retrieval where a human factor is introduced into the retrieval technique and

multi-modal features were used to represent the information need of the user. VisualSEEk

[195] and WebSEEK [197] uses visual feature and web-based search engines for images,

where the spatial relationships of the image regions are considered and the features are

25

extracted from compressed domains [219]. The main characteristics of Netra [151] are

the combined use of Gabor filter based texture analysis [6], neural net-based image the-

saurus [154] and edge flow-based region segmentation [152]. MARS [112] differ from the

aforementioned systems in both the research scope and the techniques utilized. It uses

concepts from computer vision, database management systems and information retrievals

and merge them together to use an approach where the main focus is not on finding a

single best feature representation but rather on how to combine different features which

can self-adjust with the changing application and user requirements.

Region-based approaches [54][121] are another technique for image retrievals where

each region roughly corresponds to an object and is represented by image features local

to it. The similarity calculations are applied based on individual regions or objects.

Blobworld [33] is an example of one of the first region-based applications that segments

the images in blobs and queries the blobs using multidimensional index structures. One

major drawback of this system is its inability to handle multi-region queries. SSIMPlicity

[216] uses an integrated region matching technique to overcome this problem and can

handle multiple regions in the similarity queries. WALRUS [160] is another popular

region based approach where regions are segmented using wavelets. The main usefulness

of region-based approaches are its ability to allow partial match and concentrate on a

particular area of an image rather than considering lots of useless information.

One of the major obstacles in successfully retrieving relevant multimedia objects based

on the content is the presence of semantic gap between the low-level contents and the

high-level semantic meaning carried by them. Thus, to bridge this gap, the user is in-

cluded into the feedback loop in the form of Relevance Feedback [187]. The main goal

of this approach is to adjust the query representation and the query interpretation with

the help of feedbacks. Though this technique is used popularly is several image retrieval

systems like MARS, WebSEEk, they have two major limitations. Firstly, it is assumed

that the features-level similarity will be completely able to identify the specific semantic

26

relationship that the user is looking for. This is not true in most of the cases as explained

with an example in Figure 1.3 and it negatively affects the query results manifold. Sec-

ondly, all the adjustments made to the feature level weights are for particular queries

and all the work put into it is lost as soon as the query is over. There is no long term

learning technique attached to it and a new query need to be started from the scratch.

Video Retrieval

With the popularity of video data, investigations were made to design ways in which

CBIR techniques can be adapted for video data as well [8]. The first step towards video

organization is to classify them into several units like scenes, shots, frames, etc. Each

shot is generally represented with a representative key-frame and the complete set of key-

frames for the video forms the storyboard which can then be either manually annotated

for further text-based retrievals or stored in a database for subsequent content-based

retrievals. There are several video retrieval systems that can accommodate content-

based video retrievals. Also, since the hierarchy of classification units as depicted in

Figure 3.2 for videos is an important piece of information, different levels of retrievals

are also a popular variant. Some important content-based video retrieval systems are as

follows:

1. VDBMS [9]: It was developed at Purdue University and it supports video content

processing, representing, indexing, storage and content-based retrievals. It supports

both search-by-content and search-by-streaming approaches and implements query

operators, query execution engines etc. However, the indexing technique mentioned

here is purely high-level and doesn’t address indexing from low-level feature and

storage point of view.

2. Goalgle [200]: It is a search engine specially for soccer videos. It implements an

web-based interface for search and querying of soccer videos and allows users to

27

retrieve video segments from a collection of existing soccer matches. Further, it

performs semantic event classification in multi-modal video contents.

3. IBM MARVEL [114]: It uses machine learning techniques to automatically label

multimedia contents and supports query by example in both low and high-level

model vector space. Multi-modal features like visual clue, sounds, speech tran-

scripts are employed for automatic annotation and has an internal multimedia

analysis and search engine for advance support.

4. CuVid [63]: It is a search platform for broadcast news videos and implements tech-

niques such as video story segmentation, semantic concept detection, multi-modal

retrieval, interactive browsing interface etc. In this system, the story segmentation

algorithm utilizes the information bottleneck principals and the duplicate scenes

across different news sources can be detected.

2.3 Query Refinement

Content-Based Image Retrieval (CBIR) is one of the most popular retrieval strategies for

multimedia data objects as discussed in Section 2.2. Unlike traditional database queries,

performance of multimedia data retrieval like Content-Based Image Retrieval (CBIR)

depends largely on the efficiency with which the users’ similarity concept is interpreted.

Thus, the most important aspect of such similarity queries is user subjectivity which

makes it difficult for the user to specify his/her exact requirements in a single iteration.

The main cause for this are the gap of the semantic interpretation of an image with its

feature-level representation and the starting examples incapable of capturing the com-

plete information needs of the user. The most widely used solution to tackle this problem

is query refinement in which the user provides multiple feedback to the system, which

the system analyzes and refines the query by attempting to interpret the users’ require-

ments via adjusting the query representation, feature weights etc. [170] pointed out two

28

major steps to refine a query viz. (1) query modification and (2) query re-weighting.

Query modification refines query representation to better suit the users’ information

need. Query re-weighting learns the users’ notion of similarity by adjusting the weights

of the features in an attempt to bridge the gap between the semantic interpretation of

an image with its feature-level values.

In [170], two query modification techniques were proposed viz. (1) Query Point

Movement and (2) Query Expansion. Query Point Movement (QPM) allows only a

single query object per feature space. When in each iteration of the Relevance Feedback

method, the user marks several objects as relevant, the weighted centroid of the relevant

image objects is used as the new query. The weights are associated depending upon the

relevance level (rank) as attached by the user. The weighted centroid C is defined as:

C[j] =

∑n
i=1 wiEi[j]∑n

i=1 wi

(2.1)

Where, Ei[j] is the feature vector of image i along the jth dimension and wi is the weight

associated with the image i.

The similarity distance functions are modified with the new query point represented

as the centroid of multiple relevant image points. The above QPM technique is utilized

in [165] and in [115]. Its goal is to choose a single point and re-weigh its dimension

such that the sum of its distance from the relevant points become minimum [115]. But,

the QPM method results in some information loss as the characteristics of each relevant

image is lost and their collective representation is treated as the refined query.

On the other hand in the query expansion approach, multiple objects marked rele-

vant in a particular iteration are all considered in the refined query. Such queries are

also called Multi-point Queries. In this method, clustering of the relevant points may

be done and the centroids of the clusters can be used as the representative query points.

The representative points are used to form the new query. The weights get added to the

multi-point query and the distance function of the multi-point query is the summation of

the weighted distances of each representative query from an image object in the feature

29

space. [172] performed extensive experiments over large image collections and concluded

that Query Expansion approach outperforms Query Point Movement approach in re-

trieval results based on precision and recall measures. Another important advantage of

the query point expansion technique pointed out in [170] is its enhanced general appli-

cability as compared to the query point movement approach. Query expansion is usable

even when the feature space is not defined but the metric space corresponding to the par-

ticular feature space is known. Later, [145] pointed out that the Query Point Movement

technique has some additional limitation like having local maximum traps which results

in poor improvement of query results for refinement iterations. Thus, [145] proposed

four target search techniques viz. Naive Random Scan, Local Neighboring Movement,

Neighboring Divide and Conquer Method and Global Divide and Conquer Method to

improve it.

2.4 Query Refinement in Multidimensional Index Structures

In [170], a feature-based multidimensional index structure, called Feature Index or F-

Index, was used to demonstrate the technique by which multi-point refined queries were

supported during retrievals. The similarity queries were executed using a k-nearest neigh-

bor algorithm which accesses nodes in an increasing order of their distances (similarity

measurement) from the query point. A priority queue is implemented for the ordered

traversal over the index structure. There are two approaches proposed by [170] and

[36] to implement similarity searches with the refined queries since there are two types

of query modification techniques. One approach of evaluating the refined queries is to

retrieve nearest neighbors of a single point C (the centroid as defined in equation 9.1)

and still guarantee that the set of answers S returned are the k-nearest neighbors of

M (multipoint query) i.e. D(M, Si) ≤ D(M, T) for any Si ∈ S, T /∈ S. An alternative

approach is to retrieve results based on the distance from all the points in the multi-point

30

query instead of the centroid only i.e use the query expansion methodology. The distance

between any intermediate node (N) and the multi-point refined query (M) was defined

as:

MINDIST (M, N) =
n∑

i=1

wiD(Pi, NP (Pi, N)) (2.2)

Where,

NP (Pi, N)[j] =

li if Pi[j] < lj

hj if Pi[j] > hj

Pi[j] otherwise

NP [j] denotes the position of NP along jth dimension of the feature space RF and Pi is

the ith point of the multi-point query.

The distance between a leaf node and the multi-point query can be defined in a

straightforward manner as depicted in [36]:

D(M, N) =
n∑

i=1

wiDF (Pi, N) (2.3)

To achieve the query re-weighting aspect of query refinement for F-Index in [170], one

need to capture visual features that best describes the users’ concept of high-level sim-

ilarity and attach/modify weights to these features to get refined query results close to

user perception. Extensive research was performed in this field to better capture users’

perception and translate the high-level semantic interpretation of multimedia data to a

feature-level model like in [110] and [186], where an interactive mechanism was devised to

include a human in the retrieval loop, in [64], where an interactive region segmentation

was employed etc. Later, [187] proposed another technique called Relevance Feedback

[RF] in which humans and computers interact to refine high level information to low-level

representations. It is the process to automatically adjust and modify an existing query

by using the feedback of the user about the relevance of the image objects retrieved in a

previous iteration. In the relevance feedback based approach, as in [188], the burden of

specifying the weights is removed from the user and the weights corresponding to the fea-

tures (inter feature or intra-feature) are dynamically updated to represent the high-level

31

concepts and perception subjectivity. Later, the RF method was improved and modified

by using Support Vector Machine (SVM) as in [28]. Several classification-based RFs were

also proposed [109] to overcome some of the problems of traditional RF like the heuristic

nature of it, not able to consider the negative feedbacks etc. Later [143] proposed a

modified SVM based RF technique to overcome the problem of SVM classifier’s unstable

behavior for small training sets and the problem of the kernel machine. All these re-

search proceeds towards improving and modifying the RF method and aims to enhance

the procedure of determining and attaching weights to low-level features to better capture

user’s similarity concepts. Any one of them, depending upon the available data and user

requirement, can be utilized as the query re-weighting approach in the query refinement

techniques. The major limitation of the above query re-weighting technique is that if

the semantic interpretation of an image cannot be represented completely in terms of

feature-level weights, the above discussed technique cannot generate satisfactory results.

Also, the above query-re-weighting techniques cannot be used for distance-based index

structures as the intra-feature weighting strategies make the distance functions arbitrary.

2.5 Graph Similarity

In this section, related works on the topics of Graph Similarity and Matching are dis-

cussed. There are several approaches to determine the similarity between a pair of

graphical structures. The first law of thermodynamics and heat kernel is used in [128]

by transforming the problem to finding the difference in the thermal energy between two

graph structures. The technique utilizes a normalized graph Laplace and relates it to

the edge-weights. Thus for un-weighted graphs, this approach cannot be used. Using the

concept of maximum subgraph is another technique to compute the similarity between

a graph pair. It is derived from the concept of graph isomorphism and is largely used

in chemical and biological fields. The maximum common subgraph can be classified as

32

connected or disconnected [177]. Usually, the process of determining a maximum com-

mon subgraph between a graph pair is a NP-complete problem [123]. Thus, attempts

have been made to work around this problem of NP-completeness by designing algorithms

which would result in approximation of the final maximum common subgraph rather than

attempting to find an exact subgraph. The exact matching algorithms (NP-complete)

can be further categorized as maximum clique-based algorithms [34][140], backtracking al-

gorithms [155][12] and dynamic programming [4]. Similarly, the approximate algorithms

(with a lower computation cost) can be categorized as genetic algorithms [212][91], com-

binatorial optimization [11], etc. The main disadvantage of this genre of graph similarity

calculation is that the exact guaranteed match is NP-complete and the approximate

matching approaches do not guarantee that the approximated subgraph will be close in

size or structure to the optimum representation. A spectral method of Graph Matching

is proposed by [180] where the graph adjacency matrix represents the transition proba-

bility of a Markov Chain. The main challenge in using this method is that it depends

solely on the structural information of a graph and there is no way to incorporate se-

mantic information in the form of node/edge labels. A graph similarity determination

technique is proposed in [180] using maximum common edge subgraphs. In this method

too, edges or vertices need to be labeled and thus cannot be utilized for un-labeled or un-

weighted graphs. In [233], an approach of conceptual graph matching is presented which

searches a conceptual graph by considering the similarity between concepts and relations

in them. It uses a distance function and assigns a value (milestone) to every node in

a conceptual hierarchy. Such approaches alone will not be beneficial in graph similarity

calculations as they do not consider the graph structures. But, if combined with efficient

structural similarity computation methods can yield desired results in identifying the

overall similarity between graphs with both structural as well as semantic (conceptual)

information in them. [61] presents an Ontology Similarity Measure for conceptual graphs

while considering structural information as well. It takes into consideration both the re-

33

lation adjacency in the bipartite graphs as well as the relation hierarchy. The proposed

method is yet to be utilized in practice and might prove to be useful for future graph

similarity determinations. However, for the above two discussed methods, an explicit

conceptual hierarchy graph, developed from the semantic information, need to be deter-

mined. Such clear definition of conceptual relations may not be available for most graph

structures and hence using these methods might be a challenge. Thus considering all

the different methods for computing similarity between a pair of graph, the node-edge

coupled method [228] combined with the proposed semantic similarity generation matrix

was found to be most appropriate for social network graphs while considering both the

quality of the generated results as well as the computation. The main drawbacks of other

existing approaches can be summarized as: (1) a large family of the existing methods

are NP-complete and hence were not appropriate for our purpose where graph sizes are

generally very large, and (2) many of them were not generic enough and needed compul-

sory additional data such as edge/vertices weights and labels. The approach proposed in

[228] was found flexible enough and computationally more economic than most of these

approaches and hence was chosen for the similarity computation of social network graphs.

34

CHAPTER 3

OVERVIEW OF THE FRAMEWORK

A traditional database management system can be considered to be composed of two

major parts: a data organization component and a data retrieval component. Other

components such as a query engine or a query interface eventually assists either the

data organization or the data retrieval component. Multimedia data has an additional

property, the semantic information attached to them, which is absent in the traditional

alpha numeric data. Hence, a third component, the semantic relationship component,

should be included into the multimedia database management framework as well to

generate semantically relevant retrieval results. An index structure is the backbone and

the first step towards the satisfactory development of any database management system

as it acts as a bridge between the data organization and the retrieval component. This

dissertation is dedicated towards developing the indexing framework that would aid in

better organization and retrieval of different types of multimedia data. The complete

framework is depicted in Figure 3.1 which lays down the overview of the ultimate goal

and motivation of this research which is developing a dataspace management system that

can organize and retrieve different genres of data, from recent multimedia to traditional

alpha numeric, with the same ease from within the same platform while providing a

transparent interface to the user. The components and sub-components only related

to multimedia data indexing and retrievals are covered in this dissertation while other

design aspects included in the framework are to be addressed in the future.

As presented in Figure 3.1, the three major components of the multimedia database

management framework are: (i) Multimedia Data Organization Component, (ii) Mul-

timedia Data Retrieval Component and (iii) Semantic Relationship Component. The

multimedia data is divided into three categories viz. images, videos and documents.

Each data type has a specific composition and representation. Thus, each of the above

specified components should support all these three types of multimedia data seamlessly.

35

Figure 3.1: Overview of the proposed framework.

36

This dissertation covers images and videos and leaves the document handling part as a

future research agenda.

3.1 Multimedia Data Organization

The multimedia data organization component has three sub-parts viz. an index structure,

a query engine and an intelligent index and query engine optimizer.

3.1.1 Multimedia Index Structure

Multimedia data such as images and videos are represented as multidimensional feature

vectors where each feature component represents the multimedia data object in terms of

color, texture, shape descriptors, audio features, etc. Videos are further classified into

a hierarchical containment relationship as depicted in Figure 3.2 where each video is

represented as a collection of shots. Further each shot is expressed in terms of feature

values of consecutive frames, which are combined (their average, maximum, minimum

etc. are considered).

Figure 3.2: General video structure.

In this research, shot is used as the smallest unit of video representation and shot

detection algorithms like [52] is utilized to represent a video as a collection of shots.

37

Traditional index structures meant for alpha numeric data like B-Tree [14] cannot ac-

commodate such data type and multidimensional index structures are utilized to handle

them. But the existing multidimensional index structures like [35][179] are not sufficient

to be used in a multimedia database management system because they are not designed

to support the hierarchical structure of video data, they do not embed the high-level

semantic relationship in the similarity searches efficiently and none of them can be used

to index both images and videos together from within one single framework. The third

factor is particularly crucial as having separate index structures for different data types

inside one single database management framework is inefficient and error-prone. There

are several other components which are linked to the index structure and are optimized

and tuned based on it. Thus, if there are more than one index structure, there might be

conflicting issues while trying to tune and optimize the related components with respect

to each of the index structures utilized. In order to overcome these existing issues, a

generalized index structure, the GeM-Tree (Generalized Multimedia Tree) [47] is pro-

posed in this dissertation, that can handle both images and videos efficiently and as

per our preliminary investigation has great potential to index documents as well. The

framework also links the index structure to another important component of the multi-

media database management framework, the Semantic Relationship component, during

similarity searches to generate query results close to the human perception of similarity.

3.1.2 Multimedia Query Engine

The multimedia query engine is an integral part of the multimedia data organization

component. When an user issues a query to the multimedia data management interface,

it is submitted to the query engine which formulates it, processes it, optimizes it, and

submits it to the index structure. Once, the index structure searches the data repository

with the help of the retrieval engine using the query, it produces the results to the user

to collect the feedback regarding the relevance of the results. The feedback thus collected

38

is further utilized by the multimedia query refinement component to refine and improve

the query representation with the help of the query modeling and the query update

processes. This dissertation investigates the Multimedia Query Refinement process and

leaves the development of a Multimedia Query Optimizer and a Query Processor for

future investigation.

As discussed in Chapter 1, multimedia queries are imprecise in nature. Thus the

proposed Multimedia Query Refinement method helps to capture the users’ information

need from multiple feedback by modifying the queries and updating the matrices that

capture the semantic relationships between the multimedia objects, thus attempting to

capture the users’ information need precisely. This approach comprises of two major

methods viz. the Query Modeling method and the Query Update method. The proposed

query refinement model is mainly designed to be embedded into a distance-based index

structure as there are few models [36][37] for feature based index structures, but none has

been developed for distance based index structures so far. It can be safely argued that

distance-based index structures are equally important as feature-based index structures.

Thus the lack of query refinement methodologies for distance-based index structures

limits their utilization for practical purposes. Apart from serving as a query refinement

component for GeM-Tree, this query refinement methodology can be also used for other

distance-based index structures as well.

3.1.3 Intelligent Multimedia Index and Query Engine Opti-

mizer

In order to make the index structure and query engine able to optimize and adjust

themselves according to the changing data types and access patterns, it is planned to

introduce a novel sub-component, the intelligent multimedia index and query engine

optimizer. It has three major parts viz. a knowledge base, a data analysis tool and a

39

repository of decision rules. The relevant historic information about the access patterns

and user feedbacks will be stored in the knowledge base and it will use a collection of

data mining tools like association rule mining, classification techniques and clustering

methodologies to analyze these historic data. These data will serve as the training data

and once there are association and classification rules, they will be used to tune the index

structure and the query engine.

3.2 Multimedia Retrieval

The Multimedia Retrieval Engine takes care of all the data access needs of the user.

Since, the multimedia data can be of multiple types, each having different characteristics

and retrieval requirements, the retrieval engine should accommodate multiple retrieval

approaches, with equal efficiency. The Multimedia Retrieval Engine is intrinsically re-

lated to the Multimedia Organization module and the index structure must support all

the different retrieval approaches in its search methods. This dissertation focuses on

mainly three different retrieval approaches viz. content-based image retrieval; content

based video retrieval that further has sub-categories of unit-level retrievals like frame-

level video retrieval, shot-level video retrieval and video-concept level retrieval; and mixed

multimedia data type retrieval. Another retrieval genre, the content based document re-

trieval, is planned to be pursued in the future.

3.2.1 Image Retrieval

A content based retrieval approach, that considers the similarity between both the low-

level features as well as the high-level semantic contents of images, is implemented in

this framework. The GeM-Tree [47] embeds this content-based image retrieval technique

in its k-NN and range search routines. To capture the high-level semantic relationships

between the submitted query image and the stored images, a stochastic construct called

40

Markov Model Mediator [191] is utilized during the retrievals. The k-NN search algo-

rithm, implementing the content based image retrieval, recursively searches the index

tree from the root, via the intermediate nodes till the leaf nodes. It maintains a priority

queue to store the candidate nodes that might contain the result images. It traverses the

index tree and checks each intermediate node in terms of both low-level feature distance

and the high-level semantic closeness with the query object. If the kth node in the priority

queue already has an object with a distance lesser and a semantic closeness higher than

the node under examination, it is discarded or else it replaces the kth node in the priority

queue. The priority queue is re-organized so that the nodes in it are arranged in an order

with the node of lowest overall similarity score placed as the kth element. The candidate

nodes in the priority queue are examined in subsequent rounds. The same approach is

taken for leaf nodes with the only difference of directly adding the examined leaf node in

the result set (also a priority queue) if it satisfies the required similarity conditions. The

approach of separately considering both the high-level and low-level similarity measures

without violating the metric property of the search space ensures high relevance of query

results with acceptable computation cost.

3.2.2 Video Retrieval

A similar k-NN based retrieval algorithm is proposed for video data as well, which is

supported by GeM-Tree. The main principle remains the same i.e. searching video ob-

jects similar both in terms of low-level features as well as high-level semantic content

to the submitted query. But, since a video object can be classified into different units

like frames, shots and video concepts, thus the retrieval algorithms should accommo-

date different unit retrievals. Hence, there are three sub-categories of video retrievals

i.e. frame-level retrieval, shot-level retrieval and video concept-level or entire video-level

retrieval. Additionally, since a hierarchical semantic relationship metric is maintained

in the semantic relationship module, cross-unit similarity can be evaluated as well. For

41

example, if the submitted query is a video shot but one wishes to retrieve complete videos

similar to the concept/feature represented in the submitted query video shot, it can be

achieved by traversing up the hierarchical semantic model and finding similar videos cor-

responding to the video that the shot belongs to. Similarly, other inter unit similarity

can be calculated indirectly. In GeM-Tree, such logical hierarchy is maintained with the

help of the unique data signature and a single tree structure is enough to accommodate

and retrieve all the units efficiently.

3.2.3 Mixed Multimedia Data Type Retrieval

This approach of multimedia retrieval is mainly utilized during conceptual queries where

the user wishes to extract multimedia objects, irrespective of data types, that are similar

to a submitted query. For example, an user might submit a query that comprises of a

shot of a soccer scene. If he/she wishes to retrieve all types of multimedia objects (both

images and videos) that are related to soccer or depicts some scenes related to soccer,

this type of query needs to be initiated. Such queries can turn out to be very useful for

search engine type applications and for scenarios when the user doesn’t have a clear idea

of what media-type he/she wants but starts off with some random query and refines it in

subsequent iterations. Such mixed multimedia data type retrievals can be implemented

in the k-NN search routines of GeM-Tree with the help of the multimedia data signature

used. Essentially, this dissertation deals with images and videos only where each video

unit is represented as a collection of two feature sub-sets. The first subsets represents

the characteristics of the video unit with respect to features that are common to both

images and videos such as color, texture, etc. The second part comprises of features

related to videos only such as temporal relationship, audio features, etc. For images, this

second part is absent as they do not have any temporal or audio information attached

to them. Thus, while calculating the inter multimedia object similarity, the parts of the

multimedia object feature set that have the same feature types are compared. A separate

42

concept level semantic relationship metric is used to determine the high-level similarity

between two different types of multimedia objects.

3.3 Semantic Relationship

In this dissertation, a stochastic model is chosen to capture the semantic relationships

between all types of multimedia objects, called the Markov Model Mediator (MMM)

[191]. The model collects the user access patterns during the feedback steps over time and

generates a similarity matrix that basically provides how frequently two images/videos

are marked similar to one another in the past. This value along with the relative access

frequencies of other pairs are utilized as the primary semantic relationship determining

factor in this research.

3.3.1 Semantic Relationship Matrices

As discussed above, the MMM approach is used to generate the semantic relationship

matrices which are called affinity relationships. They are usually square matrices where

each cell represents a score depicting how similar the pair of multimedia objects, identified

by the corresponding row and column of the cell, are to each other. The process follows

a continuous learning approach. After each query result is presented to the user, the

feedback from the user is utilized to update the affinity relationship matrix dynamically.

Thus, the matrix is never biased on any single users’ feedback. For videos, a hierarchical

version of the above concept called the Hierarchical Markov Model Mediator (HMMM)

[191] is used which preserves the hierarchical relationship between the different units that

the video is made up of. These semantic relationships are used in the similarity search

methods of the proposed index structure and they help to increase the relevance of query

results in all the above discussed types of retrievals.

43

3.3.2 Semantic Modeling

In order to better visualize and analyze the semantic relationships between multimedia

objects, a graph based social network representation approach is utilized. This would

help the database designer to get a clear relationship map and identify pivotal data ob-

jects in the network. Also, it would help to refine and improve the index structure and

the query refinement modules immensely as it would assist in understanding how the

different functionalities of these components, apparently affecting few immediate multi-

media objects, can have indirect but important effects on the entire network. Further,

graph similarity methods [228] can be applied on these semantic similarity networks to

determine the relationships between two semantic models of two different multimedia

databases. Determination of such relationships or similarity would help to design or

optimize the various components of one multimedia database based on the successful

design decisions taken in a related one. Another important aspect of developing such

semantic modeling based on the user behavior is its ability to represent the data rela-

tionships in a collaborative environment where multiple users are handling the same data

corpus. Such understanding would in turn help to design multimedia database manage-

ment frameworks for applications using collaborative approaches. Practically, all social

network frameworks can be considered as collaborative applications. Thus such semantic

modeling can be utilized in developing the database components for such applications,

where multimedia data is a common medium of communication.

44

CHAPTER 4

GEM-TREE: A GENERALIZED MULTIDIMENSIONAL INDEX

STRUCTURE SUPPORTING IMAGE AND VIDEO RETRIEVAL

As it is said, “a picture speaks a thousand words”, the expressiveness of multimedia

data and the varied information that it can carry has increased its popularity manifold

in the recent years. With the increased use of search technology, paradigms involving

multimedia search based on their content instead of the attached annotations are emerg-

ing as the future research direction. Thus, retrieval approaches such as Content-Based

Information Retrieval (CBIR) have gained importance. Efficient management of mul-

timedia data and supporting the different retrieval strategies seamlessly are crucial for

the success of the above research direction and usability of the multimedia data in a

commercial scale. As pointed out in Section 1.1, there are several issues with designing

and implementing a robust multimedia data management framework and laying down a

suitable index structure is one of the pivotal and crucial parts.

In this chapter, a generalized multidimensional index structure, called GeM-Tree

(Generalized Multimedia Tree) is discussed to manage multimedia data such as images

and videos seamlessly from within one single framework. It is necessary to have a gener-

alized index structure which can accommodate different types of multimedia data along

with their different retrieval strategies because having separate index structures for dif-

ferent types of multimedia data poses two major problems. First, integrating an index

structure into a database kernel needs the modification of the Query Optimizer, Query

Processor, SQL Compiler/Interpreter and other database components as illustrated in

Figure 1.1. to tune the performance of these components with the corresponding index

structure to be embedded. The process itself is complicated, tricky and time consuming

[103][175]. Thus, modifying the database kernel components to support multiple different

index structures and access methods is not a welcoming idea and might have conflict is-

sues regarding performance (for example, modifying a Query Optimizer for one particular

45

index type for a certain multimedia object might have a degrading effect on the perfor-

mance of another index structure for a different multimedia data object). Second, for

some applications (like multimedia concept search) where the similarity between videos

and images needs to be determined to answer queries, having separate index structures is

inconvenient and inefficient. The next two chapters are extensions of the current chapter

where retrievals of images and videos, as handled by the proposed index structure, are

discussed in details.

GeM-Tree uses Earth Movers Distance (EMD) [185] as the distance function to calcu-

late the (dis)similarity among the multimedia data objects in a metric space. To capture

and utilize the high-level semantic relationships among the multimedia data objects and

to introduce the relationships between the different levels of video units, a probabilis-

tic mathematical construct called the Hierarchical Markov Model Mediator [51] is used.

Further, a flexible k-NN based similarity search algorithm is introduced that can sup-

port different approaches of content-based image and video retrievals while considering

both the high-level semantic relationships and the low-level feature similarity with equal

efficiency. Though EMD was used as a distance function in VP-tree [224] to develop

VP-EMD tree [225], VP-EMD tree does not have the capability to index videos. It was

meant to serve as an index structure supporting only content-based image retrieval for

feature sets with variable lengths. Also, VP-Tree is not a balanced structure as it is built

in a top-down fashion. GeM-Tree, on the other hand, is a balanced structure as it is built

from the bottom following an approach similar to M-Tree [60].

4.1 GeM-Tree

As discussed, EMD is used as the distance function to build GeM-Tree by utilizing

the (dis)similarity between the multimedia data objects in a Rq metric space, where

q is the number of features used to represent a multimedia object (an image or any

video unit). Euclidean Distance function (L2) is chosen as the ground distance to

46

keep EMD metric. The main benefits of utilizing EMD as a distance function are its

capability of calculating the (dis)similarity between variable sized distributions [185]

allowing for partial matches, and its ability to better match perceptual (dis)similarity

[185] by providing the flexibility to use different approaches of content based retrieval

such as region-based [13] methods. The EMD has been used to measure image similarity

with respect to color and texture [13][185], but to the best of our knowledge, EMD was

not previously utilized to calculate video similarities or to determine the relationship

between two different types of multimedia objects.

4.2 Earth Movers Distance

The Earth Movers Distance (EMD) [185] is a general and flexible distance function to

compute the similarity between two distributions and is based on derivation of the mini-

mum cost that is incurred to transform one distribution to another. It was derived from

the transportation problem viz. the Monge-Kantorovich Problem [174] which determines

the minimum cost of transporting goods from a set of m sources or suppliers to a set of

n destinations or demander. To use a EMD function, a multimedia object is represented

as a signature or a finite distribution x as follows:

x = (x1, w1), (x2, w2),, (xn, wm) ≡ (X, w)εDK,m (4.1)

Where,

X = [x1, x2,, xm]εRk×m (4.2)

and m is the number of points.

Given two distributions x = (X,w) ε DK,m and y = (Y ,u) ε DK,n , a flow between x and

y is a matrix defined as:

F = (fij)εR
m×n. (4.3)

47

The main approach is to find a flow between x and y that minimizes the overall cost of

the work done in order to displace values between x and y as presented in Equation 4.4.

Work(x, y, F) =
m∑

i=1

n∑
j=1

dijfij (4.4)

Four conditions need to be satisfied by the f in Equation 4.4 as presented in Equation

4.5 to 4.8.

fij ≥ 0 (4.5)

n∑
j=1

fij ≤ wx (4.6)

m∑
i=1

fij ≤ wy (4.7)

m∑
i=1

n∑
j=1

fij = min(
m∑

i=1

wx,
n∑

j=1

wy) (4.8)

Where, wx and wy are the weights of the distributions of x and y, respectively, 1 ≤ i ≤

m and 1 ≤ j ≤ n. An optimal flow F is calculated using the solution technique of the

transportation problem [174] and EMD is defined as:

EMD(x, y) =
(
∑m

i=1

∑n
j=1 dijfij)

(
∑m

i=1

∑n
j=1 fij)

(4.9)

Where, di,j is the ground distance expressed as:

dij = d(xi, yi) (4.10)

EMD is a metric i.e., it follows the laws of symmetry, positivity, and triangular inequality

when the total weights of the distributions are equal i.e.
∑m

i=1 wi =
∑n

j=1 wj and the

ground distance dij is a metric [185].

48

4.2.1 Fixed-Length Multimedia Data Signatures

For traditional content-based retrieval, where the entire multimedia object (an image

or a video frame) is treated as a single class/region, the fixed length multimedia data

signature is used for representation. Both visual and audio features are used in the feature

distributions. Techniques described in [52] are applied for shot boundary detection and

grouping a bunch of consecutive video frames as a shot. It is worth pointing out here that

any feature set (visual or audio) can be represented collectively with FA, FB and FC (as

presented in Equation 4.11, 4.12, and 4.13) without any loss of generality. It completely

depends upon the application, data types and the user preference. For example, while

representing videos, if the retrieval application addresses frames as the lowest level of

video units, FA stores the low-level features of individual frames. However, if the retrieval

applications do not require frame-level information, FA can have all ‘zero’ values. In this

paper, we use ‘frame’ as the lowest level of video unit. For the rest of this section, we

discuss the signature parameters particularly with respect to the retrieval application

and dataset used in our system.

For the sake of clarity, the feature distributions for each multimedia data object are

divided into three sub-distributions as follows.

FA = {x1, x2,, xi}. (4.11)

FB = {y1, y2,, yj}. (4.12)

FC = {objectid, vid, sid}. (4.13)

The feature vector representing the distribution of each multimedia data object is a union

of the three sub-distributions and is represented as given in Equation 4.14.

F = {(FA ∪ FB ∪ FC), Fwt}, (4.14)

Where FA is the color and texture features for each image and each frame in a video

shot, xi is the value of the color/texture feature normalized in a 0-1 scale, and FB has

the visual and audio features for a video shot.

49

Examples of the visual features for video shots are the average percentage of the

changed pixels between consecutive frames in a shot, the mean value of the frame-to-

frame histogram difference in a shot, etc. [52]. For audio features, a sampling frequency

of 16, 000 Hz is used and the audio track is divided into clips. Each audio feature is

calculated at the frame-level and synchronized with the visual features. Audio features

used in this framework are divided into three basic types: volume, energy, and spectrum

flux. FC captures two important information about the multimedia data: the unique

identification number and the hierarchical relationship (if any). The hierarchical rela-

tionship is only meant for video data where it exists between the different video units.

vid stores the objectid of the video data object of which a particular frame or a shot is a

part, and sid stores the objectid of the shot of which a frame is a part. For images and

entire video objects, both the fields are set to ‘zero’. For video shots, vid is set to the

objectid of the video object to which the video shot belongs; whereas the sid field is set

to ‘zero’. Similarly, for video frames, vid is set to the objectid of the video object, and sid

is set to the objectid of the video shot to which the particular video frame belongs. Fwt is

a set of cardinality 1 as only one feature/distribution class is utilized in the fixed-length

representation, and the value is set to 1 for all the Data Signatures.

4.2.2 Variable-Length Multimedia Data Signatures

For variable-length Multimedia Data Signatures, each image/video frame is modeled as

a Gaussian Mixture distribution in the feature space. Each image/video frame is divided

into homogeneous regions, and regions are represented by Gaussian Mixtures [168]. In

our proposed framework, the RGB color space is used, but any color feature space can be

utilized without any loss of generality. Moreover, feature spaces other than colors, such

as textures, can be utilized as well. The Expectation Maximization (EM) algorithm [18]

is used to determine the maximum likelihood parameters of a mixture of k Gaussian in a

3-D feature space (RGB). EM algorithm is generally used when there is a missing data.

50

In this case, the missing data is the region where each pixel in the image/video frame

belongs. To choose k (i.e., the number of clusters/regions in each image/video cluster), a

goodness of fit measure is considered. There are three popular goodness of fit measures:

(i) The Akaike Information Criterion [3], (ii) The Bayes Information Criterion [190], and

(iii) Minimum Description Length (MDL) [178]. Here, the Akaike Information Criterion

is adopted to get the k value that will divide the image/video frames into an optimum

number of regions.

To set the weight Fwt for each region, the fraction of image pixels that belong to the

particular cluster/region is determined. Thus, the summation of Fwt for each image/video

shot is always equal to one. The mean of each cluster/region is used to represent the

feature vector for that particular region of the image/video frame. For the dataset we

used, k ranges from 2 to 5. Thus, each region of an image/video frame is represented as

FAcluster2
=(0.35,0.45,0.39), FAcluster3

=(0.54,0.62,0.23), etc. The feature distribution is thus

FA=∪5
i=2(FAclusteri

). For videos, the hierarchical relations and the weights are represented

as FB={0,0,....0}, FC={5,0,0}, and Fwt={0.23,0.37,0.25,0.16}, respectively. Figure 4.1

represents the different stages of the clustering method using Gaussian Mixture Models

with Expectation Maximization Algorithm. This example uses k=5 (i.e., the number of

Original Image Cluster Colors

Cluster Image Cluster Index

Figure 4.1: Clustering using gaussian mixture models with k=5.

51

clusters/regions is 5). The top-leftmost is the original picture. The top-right figure shows

the dominant colors or the cluster colors. The bottom-left figure represents the clustered

image and the bottom-right depicts the cluster index. Thus, the image is represented

into five clusters and the mean color values of the pixels present in each cluster forms

the feature distributions of the image. It should be noted that videos are collections of

frames which can be treated as images and clustered in the same way to generate the

variable-length distributions for each video frame.

4.2.3 Node Structures of GeM-Tree

GeM-Tree has two main node types, the leaf nodes storing the actual indexed mul-

timedia data objects and the intermediate nodes which maintain the sub-tree struc-

ture within a tree. Further, depending upon the signature of the particular multimedia

data object that the intermediate or the leaf nodes are storing, they can be subdivided

into image intermediate and image leaf nodes, frame intermediate and frame leaf nodes,

shot intermediate and shot leaf nodes, and video intermediate and video leaf nodes re-

spectively. Each intermediate node contains the pointer to the sub-tree it points to; a

covering radius, which is the distance between the root of the sub-tree under considera-

tion and its farthest child and four place holders for the promoted high-level similarity.

These four place holders for the high-level semantic relationship value hold the values

for the four possible types of multimedia data object viz. an image, a frame, a shot or

a video. These values change with each query issued but the covering radius and the

pointer to the sub-tree remains the same after the GeM-Tree is built until the structure

of the tree is modified via an insertion or deletion operation. Each leaf node contains

the objectid of the indexed database object along with the storage information of the

particular object.

52

4.2.4 Node Insertion

To insert a node into a GeM-Tree, the tree is recursively traversed until a candidate leaf

node is identified. A particular sub-tree leading to the leaf node is chosen by selecting

an intermediate node for which there is no (as in Equation 4.15) or minimum increase

(as in Equation 4.16) in the covering radius.

d(Or, On) ≤ r(Or) (4.15)

d(Or, On)− r(Or) (4.16)

is minimum.

In case of a tie, the sub-tree, whose object type matches with the object to be inserted is

chosen i.e., Ocandidate = Or for which Or → object type = On → object type. Essentially,

a new object is inserted at the leaf node, and if it is full, a split is required followed by

a rearrangement of the tree. Thus, it can be seen that GeM-Tree grows in a bottom-up

manner and hence maintains the balanced structure.

4.3 Similarity Search

GeM-Tree uses a metric distance function, Euclidean Distance (L2) as the ground distance

of the EMD to determine the (dis)similarity between multimedia data objects. The

number of features used to represent each multimedia data object in GeM-Tree is the

same, only that some features may be absent in case of some particular type of data

object and have zero values. In this case, the images do not have the features relevant

to videos only and have zero values for all the 19 values for FB. The applied signature

representation for multimedia data objects makes sure that the similarity between two

multimedia data objects is correctly translated and projected into the metric space, thus

creating an effective index structure where similar data objects can be retrieved with

minimum computation overhead and false dismissals.

53

For example, the signature of an image and a video shot can be represented as Fimage

and Fshot as follows:

Fimage = {{x1, x2,, xi}︸ ︷︷ ︸
FA

, {0, 0,, 0}︸ ︷︷ ︸
FB

, {1, 0, 0}︸ ︷︷ ︸
FC

, 1︸︷︷︸
weight

} (4.17)

Fshot = {{z1, z2,, zi}︸ ︷︷ ︸
FA

, {y1, y2,, yj}︸ ︷︷ ︸
FB

, {1, 1, 0}︸ ︷︷ ︸
FC

, 1︸︷︷︸
weight

} (4.18)

The similarity between an image (image1) and a shot (shot1) can be related to the

similarity between two shots (shot1 and shot2 respectively) as follows: if,

d(Fimage1, Fshot1) ≤ d(Fshot1, Fshot2) (4.19)

We can conclude,

d(FA image1, FA shot1) ≤ d(FA shot1, FB shot2) (4.20)

and

d(FB image1, FB shot1) ≥ d(FB shot1, FB shot2) (4.21)

From Equations 4.19, 4.20, and 4.21, it is clear that in terms of similarity measure, if

the Euclidean Distance measurement indicates that the similarity between an image and

a video shot is more than that between two video shots, it is correct to organize the

image and the video shot together rather than the two video shots (even if they belong

to different categories of multimedia data). As can be seen from Equation 4.21, the

similarity between the video parts of the signature (FB) between image1 and shot1 is

always less than that of shot1 and shot2. This is because the FB part of an image has

all zero values, thus the Euclidean Distance between it and the FB of any video shot

having non-zero values will be always more than the Euclidean Distance between that

shot and any other shot (which always has a non-zero FB values). Also, this dissimilarity

could not override the similarity between the image part (FA) of image1 with shot1 as

depicted in Equation 4.20. Thus, it can be concluded that shot1 is more related to

image1 in terms of FA than it is with shot2 in terms of FB. Also, in this case, a signature

54

consisting of only one distribution is used, the EMD will be directly proportional to the

ground distance when the weights are equal since there will be only one possible flow

between two signatures [185]. For scenarios when multimedia data objects might need

to be represented with a variable length feature distribution, the weight assignment is

a crucial step and should be carefully handled so that the ground distance translates to

meaningful relationships when the entire EMD between two multimedia data objects is

calculated.

4.3.1 High Level Semantic Relationship

The high level image relationship used in GeM-Tree is captured using a stochastic con-

struct called the Markov Model Mediator (MMM), that maps the low level features and

high level concepts in CBIR [191] by capturing the image relationships as perceived by

the user. MMM is a probabilistic mechanism that adopts the Markov model framework

and the mediator [191]. The MMM mechanism is represented as a 5-tuple λ = (S, F , A,

B, π), where S is the set of images, A is the state transition probability distribution, B

is the feature vector and π is the initial state probability distribution. From this tuple,

our point of interest is the state transition matrix denoted by A, where each entry (i, j)

corresponds to the relationship between image i and j captured by a training processes.

The MMM mechanism builds an index vector for each image in the database and consid-

ers the relationship between the query image and the target image. The main idea is the

more frequent two images are accessed together, the more related they are. The relative

affinity measurement (affm,n) between two images m and n is defined as follows:

affm,n =

q∑
k=1

usem,k × usen,k × accessk (4.22)

Here, usem,k denotes the usage pattern of image m with respect to query qk per time

period, and accessk denotes the access frequency of query qk per time period. The state

transition probability matrix is built by having am,n as the element in the (m, n)th position

55

of A. The am,n value is defined as

am,n =
affm,n∑
nεd affm,n

(4.23)

In a similar fashion, the semantic relationship among videos considering the different

units is captured using an extension of the above explained MMM model called HMMM

(Hierarchical Markov Model Mediator [53]). It is represented by an 8-tuple, where each

element of the tuple is discussed in details in [53]. The element n represents the number

of levels in an HMMM and the purpose and representation of the other elements varies

with the level under consideration. In this approach, n is set as 2 and we are mainly

concerned with the following three elements of the tuple viz. B, A and F during the

similarity searches. B represents the set of distinct features in level 0 and semantic

concepts in level 1, A represents affinity matrix which denotes the similarity measurement

between video units as perceived by the users and collected over time and F represents

the low-level feature information for each frame at level 0 and concept matrices at level

1. The matrices are constantly updated for each iteration through a learning process by

utilizing users’ feedback.

It is worth mentioning here that HMMM is an extension of MMM into different

levels where the tuples carry different information depending upon the level. Thus, the

semantic relationships of images can be easily integrated into HMMM at the level that

stores information about the video frames (as video frames and images are essentially

similar units with video frames having additional video specific features such as audio and

temporal information). Any high level image/video relationship capturing mechanism

can be used in the proposed index structure without loss of generality.

4.3.2 Incorporation of Affinity Values

GeM-Tree embeds the high level image relationship in the metric space of the index

structure. A metric tree indexes a metric space formed by points which are related to

56

each other by a metric distance function. A distance function is called metric if it obeys

the laws of symmetry, positivity and triangular inequality as discussed below:

Let Ox, Oy and Oz be three indexed objects. They are considered to belong to a

metric space if the following conditions are satisfied:

d(Ox, Oy) = d(Oy, Ox) (4.24)

0 < d(Ox, Oy) <∞, Ox 6= Oy, d(Ox, Ox) = 0 (4.25)

d(Ox, Oy) ≤ d(Ox, Oz) + d(Oz, Oy) (4.26)

In the proposed GeM-Tree, the affinity relationship (the high-level multimedia data re-

lationships) could not be incorporated within the distance function without violating its

metric characteristics. If the affinity relationships between the data points are used as

a factor to scale the distance between them (higher the affinity value, lower is the com-

puted distance), the triangular inequality of the distance function demands the factor to

be the same. The affinity value is a high level concept depicting the similarity between

each pair of images as perceived by the user and hence cannot be equal to each other. If

the affinity, or in other words the user concept of similarity, could have been projected in

the feature space, the distance function could have been scaled using them by attaching

different weights to the feature values as discussed in [36]. However, it will then make the

distance function arbitrary. Moreover, our goal is to embed the semantic relationship as

it is in the index structure. Hence, the affinity relationship is incorporated after the index

structure is formed during each query for pruning the tree by a method called affinity

promotion. The detailed derivation of the above claim is described in Lemma 4.3.1.

Lemma 4.3.1 The affinity relationship cannot be involved while constructing the GeM-

tree as it no longer keeps the search space metric.

57

Proof. Let O1, O2 and O3 be three objects in a metric space. Let D13, D12, and D23 be

the original distances computed before the introduction of the affinity values. Let K13,

K12 and K23 be the affinity factors used to scale down the distance and β13, β12 and β23

be the newly computed distance functions. Therefore,

β13 =
D13

K13

, β23 =
D23

K23

, β12 =
D12

K12

(4.27)

Thus,

D13 = K13β13, D23 = K23β23, D12 = K12β12 (4.28)

According to triangular inequality,

D13 ≤ D12 + D23, D12 ≤ D13 + D23, D23 ≤ D12 + D13 (4.29)

Thus,

β13 ≤ (
K12

K13

)β12 + (
K23

K13

)β23 (4.30)

β12 ≤ (
K13

K12

)β13 + (
K23

K12

)β23 (4.31)

β23 ≤ (
K12

K23

)β12 + (
K13

K23

)β13 (4.32)

Hence, to maintain the triangular inequality of the weighted distance function, From

equations (4.30, 4.31 and 4.32),

K12

K13

= 1,
K23

K13

= 1 (4.33)

The above proves that the affinity factor should be the same to maintain the triangular

inequality.

58

4.3.3 Affinity Promotion in GeM-Tree

As discussed in the above section, the affinity relationships cannot be introduced into any

distance based index structure during building it in order to satisfy the metric condition

of triangular inequality of the metric search space.

Table 4.1: Affinity promotion for GeM-Tree
Promote Affinity (Q) {

object type = Find Object Type(Q);
//Determine object type of the query.
Traverse to leaf();
maxAffinity = 0;
A = Load Affinity Matrix(object type); //Load affinity matrix.
∀ N do: {
∀ Or in N do: {
if (object type 6= N → object type) {
Traverse the HMMM Model to get the affinity value
between cross-multimedia data types;
}
temp affinity = A(Or, Q);
if (temp affinity ≥ maxAffinity) {
maxAffinity = temp affinity;
} }

N → parent → affinity = maxAffinity;
Goto Level(N → parent → level);
} }

They need to be promoted from the leaves to the intermediate nodes before each query.

The main idea behind the affinity promotion is to ascertain that there is no false dismissal

and no unnecessary sub-tree traversal as discussed in Definition 4.3.2.

Definition 4.3.2 Let Na and Nb be the leaf nodes of GeM-Tree containing the indexed

objects Oa and Ob respectively represented by their keys or features, and Nr be the parent

of Na and Nb. Let affa,q and affb,q be the precomputed affinity values between the query

object and the objects at the leaf level. Hence, the affinity value of the parent of Na and

Nb (i.e., Nr) with respect to the query Oq is equal to max(affa,q, affb,q).

59

When a query is submitted, at first the object type of the query is determined to find

out if the submitted query is an image, a shot or a video. Then the appropriate affinity

matrix is loaded and the leaf nodes are examined to obtain the affinity relationship

between the each one of them and the query object. If the examined leaf node holds

an object that is of the same type as the type of the query object, the corresponding

affinity value from the affinity matrix is stored. If the object type of the examined leaf is

different from the object type of the query, the corresponding affinity is set to zero. Once

all the leaf nodes have a particular affinity value with respect to the query object, the

maximum of the affinity values among the sibling leaf nodes is determined. This becomes

the affinity of the parent node to which the set of leaves belong. The affinity is stored in

the appropriate place holder according to the object type of the submitted query. This

process continues till the root of the GeM-Tree is reached and it ensures that if there is

at least one object belonging to the object type of the submitted query and possessing

an affinity value greater than or equal to the required affinity, which is the child of a

particular node, this fact gets reflected in the affinity value stored at the parent. Thus,

false dismissals will be avoided during the similarity search. Additionally, it also ensures

that if there is no object satisfying both the object type and the affinity matching, the

parent node can be confidently pruned without any further consideration, thus saving

huge computation overhead during the similarity searches. If cross multimedia data type

need to be extracted, more than one affinity matrices are considered simultaneously and

multiple affinity place holders need to be filled before the similarity search.

4.3.4 k-NN Search

The k-NN algorithm for GeM-Tree supports both content-based image and video retrieval

considering the high-level semantic relationships between the multimedia data objects.

In addition, GeM-tree is capable of answering queries that involve both images and videos

60

together. The pseudo-code for the k-NN search of GeM-Tree is presented in Table 4.2.

In this routine, first the affinity promotion is done as discussed in Section 4.3.3.

Table 4.2: k-NN search algorithm for GeM-Tree
k-NN GeneralSearch (Q, N , k), {

Promote Affinity(Q); //affinity promotion for
// image affinity, shot affinity and video affinity

if (N 6= leaf) {
∀ Or in N do: {
if (| d(Or, Q) r(Or) | ≤ dk) {
if (Or → object type = Q → object type) {
if (aff(Or, Q) ≥ affk) {
Update(dk);
Update(affk);
k-NN GeneralSearch (Q, T(Or), k);
//T(Or) points the root of the subtree of Or.
} }

elseif (Q is a video) {
if (Or is a shot) {
if ((aff(Or → v id, Q → object id) ≥ affk)) {
Update(dk);
Update(affk);
k-NN GeneralSearch (Q, T(Or), k);
} } }

else if (Q is a shot) {
if (Or is a video) {
if ((aff(Or → object id, Q → v id) ≥ affk)) {
Update(dk);
Update(affk);
k-NN GeneralSearch (Q, T(Or), k);
} } }

Update(dk);
k-NN GeneralSearch (Q, T(Or), k);
} } }

// For the leaf node, perform all the checks as the intermediate
// nodes and if it qualifies but instead of recursion,
// add the node pointer to the result set and update dk.
}

For each intermediate node in the GeM-Tree, the feature similarity and the affinity

value (if similar object types) with respect to the query object is checked. If both

61

the similarities of the candidate node is greater than the nodes examined so far, it is

stored in a priority queue of possible nodes for future recursion. The priority queue

is updated and so are the dynamic threshold distance and the threshold affinity value.

The process continues in an recursive manner. Now, if the object type of the candidate

node does not match with the query object type, the hierarchy relationship is traversed

upwards/downwards to find an affinity value between the two data objects. For example,

if the query is a video object type and the node examined is a shot, the indirect high-level

similarity between them (if any) is determined by checking the affinity between the video

to which this shot belongs to and the video object of the submitted query. Similarly,

other hierarchical relationships are utilized to gather the indirect affinity relationships.

If there is no available hierarchical relationship between the query object type and the

object type of candidate intermediate node and thus no available affinity relationship,

the search procedure is continued depending on the feature-level similarity only. For the

leaf nodes, the same steps are undertaken with the difference of adding the candidate

objects to the result set without further recursion if they satisfy both the low-level and

high level similarity requirements. Thus the k-NN algorithm of GeM-Tree is flexible and

can accommodate different kinds of video unit classifications. For this application, a

shot is used as the lowest unit of a video and the algorithm is adjusted to reflect it.

The next two chapters discusses the content-based image retrieval and different types of

content-based video retrieval algorithms respectively.

Another flexibility of the GeM-Tree is that it allows for only video or only image

searches as well. For example, if one wishes to search only videos, the distance function

can be modified to compare the feature similarity of only the video part, i.e., FB of the

multimedia object signature, and the k-NN search algorithm will automatically pick up

the k nearest videos or shots to a submitted query. For dedicated content based image

retrieval, the above technique is slightly modified and though FA of the signature is used

in the distance function, the result might contain both shots as well as images. In this

62

case, a second stage of refinement is performed, where for each shot in the result set, the

frames, of which the shot is made up, are checked for similarity with the query image,

and the k nearest images/frames are picked up from the multimedia database as the

result set.

4.4 Empirical Study

In this section, the detailed of the implementation of the GeM-Tree and analysis of the

experimental results is provided. The H-Tree and M-Tree packages [41][171] were used

as a framework upon which the GeM-Tree application was built using C++ in an Linux

environment. A node size of 4 Kbytes was used. The image database used has 10,000

color images from the Corel dataset of 72 semantic categories. The feature matrix is

developed by obtaining the color information for each image from its HSV color space.

Twelve color features viz. ‘black’, ‘white’, ‘red’, ‘red-yellow’, ‘yellow’, ‘yellow-green’,

‘green’, ‘green-blue’, ‘blue’, ‘blue-purple’, ‘purple’ and ‘purple-red’ are considered which

makes the feature matrix 12-dimensional. If the number of pixels of a particular color

is less than 5% of the total number of pixels, the corresponding color has a value 0 in

the feature vector. An affinity relationship matrix of dimension 10, 000 X 10, 000 is used

which is precomputed from a training set capturing the user perception.

An extensive study of the computation cost in terms of distance calculations and the

relevance of query results in terms of accuracy is performed for Gem-Tree for different

multimedia data types, viz. images and videos. Three different types of queries are

executed, namely queries involving only images, queries involving only videos, and queries

involving both images and videos. The results obtained from GeM-Tree are compared

with a distance-based index structure for only images [45] (labeled as I in Tables 4.3

to 4.5), a distance-based index structure for only videos [48] (labeled as II in Tables

4.3 to 4.5), and with a sequential search approach (labeled as III in Tables 4.3 to 4.5).

63

Essentially, I and II have the same framework as GeM-Tree. The only difference is that

in this experimental setup, while GeM-Tree indexes a data corpus having both images

and videos, I and II indexes a data corpus having only images and videos respectively.

Since the sequential search method essentially computes the distances between every

pair of multimedia data objects present in the system, it has the highest accuracy and is

used as a bench mark to determine the relevance of the query results obtained from the

frameworks with index structures. Its distance computation is also presented to show

that the high accuracy comes at the cost of a high computation overhead. Also, no matter

what object is being searched, the sequential search goes through the entire dataset to

generate the results. Thus, the number of distance computations is always the same for

method III. The performance of the proposed index structure is compared with other

distance-based multidimensional index structures (here, M-Tree) in Chapter 5 for images

and with other video retrieval systems in Chapter 6.

We performed the experiments on two different Data Signature types. Table 4.3

and Table 4.4 use a fixed-length feature distribution where each image/video frame is

considered as a single class/region. Nineteen color and texture features are extracted

from them and the FA part of the Signature is formed. FB is formed from the nineteen

video related features, and FC captures the hierarchical relationships among the video

shots. The results for 10 queries of each category are averaged. The first query type

consists of querying the database, consisting of mixed type multimedia objects, for only

images. The second type consists of querying the same database for only videos, and the

third type comprises of cross-queries, where any multimedia object (images and videos)

similar to a submitted query needs to be retrieved. To indicate that a particular index

structure is incapable of handling a particular query type, the corresponding location

in the table is marked with an ‘X’. It can be seen that the computation cost for GeM-

Tree in all the three types of queries is slightly higher than those of index structures

for only images (I) and only videos (II). This is because GeM-Tree indexes more types

64

of multimedia data objects as the underlying database consists of both images as well

as videos. The accuracy of GeM-Tree was slightly lower than those of method I and

method II because of the same reason. Since the underlying database has both media

types, while retrieving only one type of media, the search parameters are made stringent

and only nodes satisfying the object type of the query are considered. These nodes might

have object types, matching the query object, as their children. This is possible as it has

been pointed out before that similarity of the low-level feature content is given a higher

priority over object types while organizing the multimedia data objects in GeM-Tree.

Thus, there can be some false dismissal which might affect the overall accuracy to a little

extent. Such a problem can be easily overcome by making the query parameters more

loose whereby a node having a different object type than the query object should be

considered if it has at least one child with the same object type as the query. However,

this might result in a slight increase of the computation cost.

However, it should be noted that though GeM-Tree has slightly lower performance

in comparison to dedicated image-only and video-only index structures, it has the added

capability to answer concept-based queries involving both images and videos.

Table 4.3: Distance computations during querying the index trees for fixed-length feature
distributions

Query Distance Computations
GeM I II III

Only Image 98 80 X 1000
Only Video 63 X 50 1000
Cross Query 80 X X 1000

Table 4.4: Accuracy for fixed-length feature distribution
Query Accuracy

GeM I II III
Only Image 90% 93% X 98%
Only Video 90% X 91% 95%
Cross Query 80% X X 90%

65

2 3 4 5
50

60

70

80

90

100

110

120

130

140

150

Number of Clusters

Di
st

an
ce

 C
om

pu
ta

tio
ns

Figure 4.2: Distances vs. numbers of clusters for variable-length feature distribution.

Table 4.5: Distance computations during index tree formations for variable-length feature
distributions

Data Distance Computations
GeM I II

Images 145 X X
Only Video 240 X X

Both 960 X X

The second set of experiments were performed on a variable-length feature distribu-

tion. As discussed in Section 4.2.2, each image/video frame is represented as clustered

regions using Gaussian Mixture Models and Expectation Maximization techniques. We

conducted a preliminary test on the HSI and the RGB color spaces and used various

cluster sizes ranging from 2 to 5. Using the Akaike Information Criterion to determine

the goodness of fit, we found that the optimum cluster size for most of the image/video

frames was 4. Figure 4.2 presents the relationship between the distance computations

and the number of clusters during constructing the GeM-Tree. It can be seen that the

computation overhead increases with the increase of the number of clusters, which is

obvious as with the increase of the clusters, the number of instances of each feature

corresponding to each multimedia data object also increases. Thus, the total number

of feature distributions representing the entire data object increases and the number of

distance computations, necessary during the tree formation, increases as well. Hence, a

66

careful choice of the number of clusters should be made. If the number of clusters is large,

though the subsequent similarity measurements will be more precise, it is at the cost of

an increased computational overhead. Similarly, if in order to reduce the computation

overhead, too few clusters are chosen, the data object will not be represented properly.

This will further lead to poor relevance of query results.

Table 4.5 presents the comparison of the computation cost for variable-length data

signatures between the different index structures. It uses about 500 multimedia objects

consisting of images and videos. Among them, about 200 are images and 300 are video

frames. It can be observed that both index types I and II are incapable of handling

variable length feature distributions (indicated by ‘X’) as they do not use EMD as the

distance function. Thus, compiling observations from Table 4.3, 4.4 and 4.5, it can

be concluded that GeM-Tree has added capabilities over dedicated multimedia index

structures with a comparable computation cost. It should be also pointed out that Table

4.5 represents the performance of GeM-Tree during the tree formation stage and thus

the results presented should not be compared with Table 4.3 and 4.4, which represent

the performance during the query stage and uses different datasets and representations.

4.5 Conclusion and Future Work

In this chapter, a common platform for indexing multimedia data objects with the help

of a distance based multidimensional index structure called the GeM-Tree is discussed.

GeM-Tree is a flexible structure and can accommodate different techniques of content-

based retrievals by utilizing a variable length multimedia feature distribution and using

EMD as the underlying distance function. To the best of our knowledge, GeM-Tree is

the first attempt to organize two different types of multimedia objects with a single index

structure and support queries that involve both. It is a very promising framework in the

multimedia index genre and has ample potential to be improved and utilized for different

67

applications. As a future work, it is planned to use Gem-Tree to index documents as

well. Documents can be considered as the third genre of multimedia data apart from

images and videos. Thus, to be able to develop one seamless framework for indexing and

retrieving all the different multimedia data, as per the main motivation of this research,

supporting document indexing should be the next step.

68

CHAPTER 5

CONTENT-BASED IMAGE RETRIEVAL UTILIZING A

MULTIDIMENSIONAL INDEX STRUCTURE

5.1 Content-Based Image Retrieval in GeM-Tree

In this chapter, the way by which GeM-Tree handles images and their retrieval strategies

are discussed in details. Content-Based Image Retrieval (CBIR) is by far the most

popular retrieval and search technique for images. Index structures have two major

query types: range query and k-NN query. The main criteria for an index structure to be

considered fit to organize images is its ability to support content-based image retrieval

via the range and the k-NN query, both in terms of low-level contents and high-level

contents. This chapter is dedicated to investigate the detailed procedure by which GeM-

Tree is able to answer queries for content-based image retrieval. It should be pointed out

here that though while discussing GeM-Tree, in general it has been mainly presented as

a metric tree, but there is a space-based filtering technique that can be utilized before

the metric-space is indexed. Thus all the discussions in the previous chapter is made

assuming that the metric space is already developed after filtering via the space-based

indexing. However, in this chapter, the space-based indexing is considered during the

query phases as well.

5.2 Similarity Queries

The proposed GeM-Tree supports both the popular queries supported by index structures

viz. the range queries and the k-NN queries. Before going into the detailed algorithms,

the tree traversal and the node information processing are discussed in each case. A

query is represented as a collection of features Q(F), where F is the same set of feature

vectors as that of the stored images and are extracted in the same manner. Once the

69

feature vector of the query image is obtained, the GeM-Tree is traversed from its root

to the subspaces of the feature space containing data points related to the query object.

The metric trees corresponding to subspaces having the maximum number of data points

are merged and the affinity relationships of all the nodes in the metric tree are computed

by affinity promotion technique. By computing the distance and the affinity between

the query object and the tree objects of the metric tree, the query result is obtained. A

detailed pseudo-code of the range and k-NN queries for the GeM-Tree-Tree is presented

in the following subsections.

Table 5.1: Implementation of range query in GeM-Tree
GeM Range Query(R(Q):query region, r(Q):search radius, Q:query object,

aff:affinity value, N:node) {
if (N is Null) {terminate;}
else
{

Let page=root page;
RNF =BR corresponding to N;
Space Search Images(R(Q), N, RNF); //space search sub-routine.

} //end of space search.
Set Nchild=Root Metric;
Metric Search Images(Q, Nchild, r(Q), aff); //metric search.
}//end of GeM Range Search.

5.2.1 Range Queries

A range query (Q, r(Q)) traverses through the GeM-Tree and selects all the appropriate

database objects (Oi) which satisfy the following condition:

∀ Oi, d(Oi, Q) < r(Q). (5.1)

The GeM Range Query as discussed in Table 5.1 for the GeM-Tree is developed to im-

plement the range query in the feature space as well as in the metric space. Since the

space-based indexing technique requires a search range and a metric-based indexing tech-

nique requires a search radius to implement the range search, both the values are provided

70

while initializing the range search algorithm for the GeM-Tree. The algorithm for the

range query is described in details in Table 5.1, 5.2 and 5.3. The GeM Range Query

first performs range search on the feature space to get the feature sub-spaces within the

supplied range of the query using the function Space Search Images(R(Q), N, RNF) as

discussed in Table 5.2. Once the feature subspaces are obtained, in order to increase the

metric search space, neighboring feature subspaces are combined in a step-wise manner,

depending upon the users’ feedback, starting with just the original result obtained from

the space search. The metric search method includes the introduction of the affinity con-

cept. For the router objects i.e. the intermediate objects, the similarity distance is first

evaluated against the search radius. If satisfied, the affinity of the routing object with the

query object is checked against the required supplied affinity value. Upon satisfying both

the conditions, the metric search is iterated for the subtree of the routing object. The

metric search is implemented in the function Metric Search Images(Q, Nchild, r(Q), aff)

discussed in Table 5.3. For data objects residing at the leaf nodes, similar evaluation is

performed except that the image objects are added to the result set (also a priority queue)

directly when evaluation is successful instead of initiating an iterative metric search. For

image objects without affinity values (possible if a new image object is introduced whose

affinity value is not yet available), simple metric search is performed depending upon the

classical similarity evaluation.

In many cases, providing an appropriate search radius with the query is rather difficult

for the user and might not result in satisfactory query output. Moreover, at times, the

similarity distance computation techniques fail to capture the users’ similarity perception

when it do not follow any feature-level similarity pattern or the query image is of a ‘hard-

to-interpret’ kind. Such a scenario is taken care by maintaining a second parallel result

set, which is populated depending upon only the affinity requirement even when the

similarity measurement criteria fails. This result set is used if the user is not satisfied with

the earlier result set and it gives the high level image relationship a greater importance

71

Table 5.2: Implementation of space search for images in GeM-Tree
Space Search Images(R(Q), N, RNF){ //Space Search.

if (N 6= Space Data Node)
{
I = RNF∩ R(Q);
if (I 6= �)
{
∀ child nodes in N {

Compute Rchild from RNF ;
Set RNF =Rchild;
Space Search Images(R(Q), Nchild, RNF);
}
}
}
} //end of Space Search Subroutine.

in determining the query result under such circumstances. Moreover, in this query result

improvement technique, no additional computational overhead is incurred. An image

object in the GeM-Tree qualifies for the original result set if it satisfies both the similarity

and affinity criteria. If the similarity measurement fails, the object, instead of being

discarded, is still checked against the affinity value. If it satisfies the affinity check, it is

pushed into the parallel result set instead of the original one. Thus, it is clear that there

is no need of additional computation to achieve the above described process except for

operations on a priority queue.

5.2.2 k-NN Queries

The GeM k-NN Image Search algorithm as discussed in Table 5.4 retrieves k nearest

neighbors from the GeM-Tree for a query object Q. The GeM-Tree uses a branch-

and-bound technique similar to the one designed for the R-Tree [98]. The algorithm

proposed here to implement the k-NN query on the GeM-Tree first determines the

k-nearest subspaces to a given query point. Then it merges the metric trees corre-

sponding to each space, ultimately performing k-NN search on the combined metric tree

72

Table 5.3: Implementation of metric search for images in GeM-Tree
Metric Search Images(Q, Nchild, r(Q), aff) { //Metric Search.
Affinity Promotion(); //promotion of affinity value.
if (aff(Or, Q)6= 0) { //affinity value available.

if (Or is a routing object){
∀ Or in Nchild do: {
if (| d(OM , Q) - d(Or, OM)| ≤ r(Q)+r(Or)) {

Compute d(Or, Q) and aff(Or, Q);
if ((d(Or, Q) ≤ r(Q)+r(Or)) && (aff(Or, Q) ≥ aff)) {
Metric Search Images(ptr(T(Or)), Q, aff);

//T(Or): pointer to the subtree.
}
elseif (aff(Or, Q) ≥ aff){ //giving affinity relationship

//greater priority over similarity measurement.
Metric Search Images(ptr(T(Or)), Q, aff);

//T(Or): pointer to the subtree.
}
}//end of search for Or satisfying metric condition.
}//end of search for all Or in Nchild.
}//end of internal node search of the metric tree.
elseif (Or is a leaf object){
If the object qualifies the distance function and the affinity,
add to the result set;
}
} //end of search for query object with affinity.
else {
Metric Search Images with the absence of the affinity comparison;
} //end of search for query object without affinity.

} //end of Metric Search Subroutine.

thus formed, to get the k nearest neighbor of the submitted query. The search algo-

rithm implements an ordered depth-first-search on its feature space using the function

Space Nearest Search Images(N, nearest, Q) in Table 5.4. During traversal, at each non-

leaf node, the metric bounds are calculated between the query point and all its Minimum

Bounding Regions (MBRs) and stored in an ordered list. The list is pruned depending

on the similarity measure and the search iterates upon this list until it is empty. In each

iteration, the next sub-tree belonging to the particular MBR is selected. On reaching

the data nodes of the feature based index structure, the value of the nearest distance is

73

updated and the iteration continues until k feature subspaces are obtained. The met-

ric tree corresponding to each feature subspace thus obtained is then combined. The

affinity values of the combined metric tree is promoted from the leaf levels. A priority

queue is maintained which points to the active sub-trees of the metric tree. The function

Metric Nearest Search Images(N, k, Q) in Table 5.4 implements the metric search in the

metric space. The search radius and the affinity value now become dynamic in nature

and are defined in Definitions 5.2.1 and 5.2.2, respectively.

As in range search, k-NN query method of GeM-Tree attaches greater importance

to high-level image relationship over the similarity distance computation when initial

iterations of the similarity search fails to produce satisfactory query results. A parallel

result set is maintained containing images which passes only the high-level image rela-

tionship condition even if the distance criteria is not met. As in range-search, such a

technique is found to be particularly helpful when the user’s concept of similarity does

not depict enough feature level similarity among the images or the query image is of a

‘hard-to-interpret’ kind.

Definition 5.2.1 The search radius is defined as the distance between the query point

and the current k-th nearest neighbor.

Definition 5.2.2 The affinity value is defined as the affinity between the query point and

the current k-th nearest neighbor.

The pseudo-code is described in Table 5.4.

5.3 Experimental Analysis

Extensive experiments are performed to evaluate the performance of the GeM-Tree dur-

ing its construction and during queries involving content-based image retrieval. The

implemented GeM-Tree is compared with the performance of M-Tree for both the query

74

Table 5.4: Implementation of k-NN search for image retrieval in GeM-Tree
GeM k-NN Image Search(N:node, nearest:distance, Q:query point,

k:number of nearest neighbors){
if (N is Null) {terminate;}
else
{

Space Nearest Search Images(N, nearest, Q);
//Returns k nearest space, searching the Space Indexing Tree
//by generating Available Node List and Sorting them
//based on the similarity measure iteratively.

//Combine the metric trees corresponding to k Spaces.

//Search on the corresponding metric tree.
Affinity Promotion();//promotion of the affinity value.
//Perform the metric search as explained in range search with the
//difference of making the search radius dynamic by making
//it the distance between Q and the current kth nearest neighbor
//and storing all the non leaf nodes with the required similarity
//measurement in a priority queue.
Metric Nearest Search Images(N, k, Q);

}
}//end of k-NN search.

types. The GeM-Tree structure is not compared with the Hybrid Tree or any other Spa-

tial Access Mechanism (SAM) as it has already been discussed that the high-level image

relationship introduced in the GeM-Tree cannot be utilized in any Space-based indexing

technique without translating it to its low level equivalence. Also, the main purpose

of introducing the feature-based index structure was for filtering the underlying metric

space. The distance-based index structure performs the major search related work. Thus,

introducing semantic relationships between the images in the metric space should be suf-

ficient to provide satisfactory results. However, if desired, existing approaches like [37]

can be used to introduce the user perception in the feature space during search methods

without disturbing the proposed similarity search techniques. It should be noted that

the choice of the number of feature dimensions and their types should not have any

75

drastic effect on the observed results. This is because, with the increase of the feature

space or by using more sophisticated methods of representation, though the quality and

relevance of the result set might improve, it will have the same degree of improvement

in both the proposed GeM-Tree and the compared index structure i.e. M-Tree. Thus,

the relative performance of GeM-Tree with respect to other frameworks, with which it is

being compared to, would remain the same.

The experimental results imply that GeM-Tree is capable of reducing the computation

costs by combining the space-based and distance-based indexing structure. Figure 5.1(a)

depicts the distance computation and number of I/O vs. number of objects for M-Tree

and GeM-Tree. It clearly indicates that by using the space based indexing structure to

filter the feature space prior to building the M-Tree for each subspace, there has been a

noticeable reduction in computation overheads. Experiments are carried to implement

both range as well as k-NN queries using 10 query images each for both GeM-Tree and

M-Tree with k = 10. The distance computations and number of I/O averaged over

10 queries of the range and k-NN query is plotted in Figure 5.1(b) and Figure 5.1(c).

The results also demonstrate that GeM-Tree performs far better as far as overhead is

concerned. The labels of the graphs indicate AH-Tree to refer to the tree structure of

GeM-Tree when only images are indexed.

Since one of the major contributions of the proposed approach is the introduction of

the high level image relationship in the index structure to facilitate getting semantically

related query results without translating them into their low-level equivalence, hence

the query results obtained from GeM-Tree as well as those obtained from M-Tree are

checked for accuracy against images annotated manually. The accuracy is defined as

the percentage of the retrieved images that are semantically related to the query image

as marked by the user. It is noted that the results obtained from the M-Tree do not

exhibit any regular pattern of semantic relationships and have accuracy as low as 10%

on an average as depicted in Figure 5.2. GeM-Tree on the other hand has an average

76

0
5
10
15
20
25
30
35
40
45
50

D
is
ta
nc
e
C
o
m
p
ut
at
io
n

Number of Image Objects

M-Tree

AH-Tree

0

5

10

15

20

25

IO
s

Number of Image Objects

M-Tree

AH-Tree

0

10

20

30

40

50

60

70

D
is
ta
nc
e
C
o
m
p
ut
at
io
n

Number of Image Objects

M-Tree

AH-Tree

0

200

400

600

800

1000

1200

IO
s

Number of Image Objects

M-Tree

AH-Tree

0
2000
4000
6000
8000
10000
12000
14000
16000
18000

D
is
ta
nc
e
C
o
m
p
ut
at
io
n

Number of Image Objects

M-Tree

AH-Tree

0

20

40

60

80

100

120

IO
s

Number of Image Ob jects

M-Tree

AH-Tree

(a)

(b)

(c)

Figure 5.1: Distance computation and number of I/O during (a) Building the index trees
(b) Range queries (c) k-NN queries

77

accuracy over 80% which is depicted in Figure 5.3 for an example 10-NN query where

the query image is at the top left-most corner highlighted in red. It can be seen that

Figure 5.2: Query results without including the affinity value

about 8 among the 10 retrieved images have a close semantic relationship (animals in

natural surroundings) and hence possess an accuracy of 80% for this example. The

result is ranked in an order of decreasing similarity from left to right and top to bottom.

Such stark improvement in the accuracy of obtained query results is clearly due to the

introduction of high level image relationship.

In general, satisfactory result is obtained for range queries too as illustrated in Fig-

ure 5.4. Here, a query radius of 0.2 and an affinity of 0.23 is used. It is seen that the result

relevance is in general better in case of nearest neighbor queries than in range queries

since in the later the user need to supply the range radius, which at times is difficult to

determine. Thus, if the range radius is small, it limits the search space in contrast to

the nearest neighbor query where the entire search space is considered to get the top-k

78

Figure 5.3: Query results for 10-NN query in GeM-Tree

Figure 5.4: Query results for range search with radius and affinity relationship equal to
0.2 and 0.23, respectively

79

match. On the other hand, if the radius is too large, too many results are returned along

with several false positives which reduce the result accuracy.

Figure 5.5: Query results obtained giving equal importance to similarity measurement
and high-level image relationship

As pointed out in this chapter, both during range and k-NN queries of the GeM-

Tree, a parallel result set is maintained giving the high-level image relationship greater

importance over similarity criteria. Experiments are performed to corroborate the claim

that indeed at times the users’ perception of similarity is not represented by the feature-

level closeness of the image objects. Better results are obtained while attaching greater

importance to high-level image relationship. Figure 5.5 shows a nearest-neighbor query

result while attaching equal importance to distance criteria and affinity relationship. It

can be seen that for this particular query object (at the top leftmost corner highlighted

in red), the results obtained has a low accuracy of 40% (3 out of 8 retrieved images are

relevant which are the first three images of the result). But if the parallel result set is

used instead (giving priority to affinity relationship), a query result is obtained with a

80

Figure 5.6: Query resultds obtained giving more importance to high-level image relation-
ship

higher accuracy of 67% as depicted in Figure 5.6 (query image is at the top leftmost

corner highlighted in red and the relevant images are the first six of the result). It should

be noted that in this example, a particular ‘hard-to-interpret’ image example is chosen

to explain the typical scenario which is the cause of the low overall accuracy level. A

‘hard-to-interpret’ image, as discussed in earlier sections, are images whose feature vector

representation is incapable of distinguishing it properly and the semantic concept is not

related closely with its low-level feature representation.

The above analysis of the experimental results help us to conclude that the proposed

GeM-Tree indeed performs better both in terms of computation overhead and relevance of

the query results. Moreover it has some additional features like maintenance of a parallel

result set, which produces better query result with no major additional computational

overhead. Thus, it achieves the two essential goals of any multimedia indexing structures.

81

First, it reduces the computation time in retrieving multimedia objects and second, it

makes the retrieved result as close to human perception as possible.

5.4 Conclusion

In this chapter, the technique of managing images and accommodating CBIR into the

GeM-Tree is discussed in details. Detailed search algorithms viz. range search and nearest

neighbor query is presented which are capable of taking care of the complex hybrid nature

of the framework. Moreover, a parallel result set maintenance mechanism is proposed

to improve the query result without incurring additional computational overhead. The

experimental results demonstrate that the proposed GeM-Tree is a promising indexing

mechanism to bridge the gap between the low level features and the high level image

relationship, and has potentials for future research and development. As a part of future

work, it is planned to introduce data mining approaches to analyze the access patterns

of users and use the analysis to modify the tree structure by utilizing the knowledge in

determining the split policies. Thus, a factor of intelligence will be introduced to the tree

structure and it will be able to self adjust its structure to improve the query results in

future iterations.

82

CHAPTER 6

CONTENT-BASED VIDEO RETRIEVAL UTILIZING A

MULTIDIMENSIONAL INDEX STRUCTURE

Videos are considered more complex than images as they carry more information.

As a consequence, the retrieval strategies need to consider additional aspects to cover

all these additional information stored in videos. Thus, content-based video retrievals

supported by the range and k-NN queries of an index structure require a dedicated

discussion. The generalized retrieval algorithm is presented in Chapter 4. The retrieval

algorithms presented here can be achieved by extending those presented in Chapter 4,

without any loss of generality. The main focus of this chapter is to discuss the different

modeling techniques of videos and how they affect the retrieval strategies. It should

be also pointed out here that all the algorithms presented here assumes that the index

structure is handling only videos. Basically, algorithms presented in this chapter along

with those presented in Chapter 5 should be considered together while developing the

general query handling as discussed in Chapter 4, Section 4.3.4.

Traditionally, the term video indexing translates to the process of classifying the

video contents and assigning content-based labels to them for the ease and precision of

retrieval processes as depicted schematically in 6.1 [169]. Thus, it usually dealt with

issues of inserting new videos into existing repositories, segmenting the video data into

smaller pieces, extracting the features from the video units and analyzing the contents.

So, indexing was synonymous with classifying video units and using them during the

retrieval phase for relevant results.

As pointed out in [201], three main issues arise while classifying the video content

viz. granularity, modality and type. There are different video indexing techniques like

[5][57][97] etc. from the traditional video classification point of view. For example, [57]

tends to index videos based on single modality whereas [5][10][69] uses a more advanced

multi-modal approach to index the videos. [97] proposes another content-based video

83

Figure 6.1: Traditional concept of indexing in video databases from video classification
point of view

indexing/classification system which achieves the purpose of automatic management of

video data by syntactic and semantic features. Other similar video techniques were pro-

posed in [95][166] where concepts such as virtual image and Dublin core meta data [166]

were used and statistical frameworks [95] were engaged for modeling and segmenting video

content into coherent space-time segments. But none of the above techniques attempted

to address the issue of indexing the video data from the true database or storage point of

view. They classify the video data into units and design a way to identify useful informa-

tion from them, but internally they need to perform exhaustive sequential search of the

entire database to locate the video objects of interest. This increases the computation

overhead and has increasing negative effects on the overall retrieval performance, espe-

cially for large video retrieval systems. Thus due to the absence of any storage-level index

structure, the computations costs, number of I/Os and other database management re-

lated components’ (for example query engine, retrieval engine, etc.) performances would

be severely affected in those frameworks.

84

As will be discussed in details in Section 6.1, video data is modeled in three differ-

ent ways viz. (i) Hierarchical Unit-Based Modeling, (ii) Feature-Based Modeling and

(iii) Video Semantics Modeling. To develop a robust multimedia database management

system, designing an index structure just as efficient and useful as index structures like

kDB-Tree [179], R-Tree [98], is crucial which would accommodate all the above three

categories of modeling to capture the different characteristics of video data. A set-based

nearest neighbor approach applied on a multidimensional index structure, to index and

retrieve videos based on their feature information, was proposed in [125]. Though [125]

attempts to enable index structures like SR-Tree [126] to support video indexing, i.e. it

indexes the video data from the database storage point of view, it has major drawbacks as

it does not consider the first and third modeling approaches of video data. Thus it neither

supports the different units of retrievals for video data nor does it consider the high-level

semantic interpretation of multimedia objects in the similarity searches. The absence of

both the characteristics limits the usability and performance of the index structure man-

ifold. GeM-Tree supports the different aspects of video modeling along with the various

levels of video-unit similarity searches (namely frame-level similarity search, shot-level

similarity search and entire video-level similarity search) efficiently. and retrievals . To

define and accommodate the high-level similarity among different units of video objects

and bridge the gap between the feature and semantic information, a framework called

HMMM [53] is embedded seamlessly within the k-NN similarity search.

6.1 Video Modeling

Understanding the different categories of video representation and video modeling is im-

perative for successfully designing a robust index structure and an efficient database

management framework for video data. There are three major approaches of video mod-

eling viz. Hierarchical Unit-Based Modeling, Fine-Grained Feature-Based Modeling and

Video Semantics Modeling. The novelty of GeM-Tree is that it combines these three

85

approaches seamlessly in its index framework, and implements similarity searches that

considers all the three approaches of video modeling in its k-NN methods.

6.1.1 Hierarchical Unit-Based Modeling

Early video modeling techniques [184] involved time-line that gave explicit, static, tem-

poral relations between video elements on the time axis. They organized video units in

chronological sequences and the inter- and intra-modality synchronizations are defined by

the time-line binding. But the approach complicates and limits the editing process and

does not support structures like high-level abstractions of basic video elements which

groups videos into semantically related units. Thus, hierarchical approaches of video

model representations were used [226], where complex video units were created by recur-

sively combining smaller simpler units. A simple way to compose a hierarchy of video

units is to utilize nesting [218] as the nested relationships between the nodes allow the

user to explore the context in which it appears.

Temporal segmentation of a video sequence into meaningful units is called video unit

classification. There are various levels of video units that have been proposed viz. shot

level, frame level, scene level and clip level as presented in Figure 3.2. Among them shots

are the most self-contained and well defined units. A shot-based approach categorizes a

video sequence into a collection of frames where each collection represents a continuous

camera action in time and space while sharing a close high-level semantic as well as low-

level feature similarity. This dissertation uses video-shots as the lowest conceptual unit of

videos. The video shot detection is mainly performed by adopting the three-level filtering

architecture viz. pixel-histogram comparison, segmentation map comparison and object

tracking as discussed in [52]. Each video shot consists of a number of temporally related

video frames, one of which called the key frame, serves as a representative of the shot.

For the purpose of ease, in this work, the first frame of each shot is identified as the

key frame but other techniques can be used as well like selecting the frame which best

86

describes the overall concept of the shot. The combination of the low-level features of all

the frames comprising a shot is used to represent each shot’s feature vector.

A hierarchical structure is also utilized by video retrieval approaches that extract

objects and events appearing in a video [142]. They segment and classify a video based

on the common objects in it. They usually associate an object or group of objects with

a set of frame sequences. Such a video modeling can be embedded into the video index

structure without altering the basic framework.

6.1.2 Feature-Based Modeling

Early approaches of video retrieval borrowed ideas from image retrieval techniques and

only added functionality for key-frame extractions. Then they applied similarity mea-

surements on them based on the low-level features like color, texture, etc. But, such

approaches were not satisfactory as video is temporal in nature and the sequential rela-

tionships among the frames comprising a logical unit, should be preserved. In addition,

another feature mode, the audio features, are considered as the important source of infor-

mation carried by videos which were absent for image data. So, static features comprising

of single modality, as used in images, are insufficient for representing videos completely.

Thus, this dissertation considers the multi-modal features on each frame and combine

them to get the feature representation of the video shots. The multi-modal features (vi-

sual and audio) are extracted as proposed in [50] for each shot. Some important shot-level

visual feature descriptors utilized in this work to represent the feature vector for each

video shot are pixel change, histogram change, average volume, average energy, flux, etc.

6.1.3 Video Semantics Modeling

To model the semantic content of a video is far more difficult than the above two ap-

proaches of modeling. At the physical level, a video is a temporal sequence of pixel regions

87

without any obvious direct relation to its semantic content. In addition, if one considers

multiple semantic meanings like metaphorical, associative, hidden etc, the problem be-

comes even more complex. The simplest way is to use text-based annotations. But such

approaches have limitations like using only one annotation of the original video data,

error in annotation techniques, not being able to handle the perception subjectivity ef-

ficiently, etc. Other methods like utilizing spatio-temporal approaches [120], using key

words or key events [142], etc. limits the usability of the approaches as firstly they are

complex and error prone and secondly using cues reduces the flexibility of the framework.

Thus, in this research, in order to capture and utilize the high-level relationship among

the different video units and bridge the gap between the low-level features and high-

level semantic concepts attached to each video unit, a mathematical construct, called

Hierarchical Markov Model Mediator [53] is used.

6.2 Similarity Search

Similarity searches for video datasets are mainly based on two different similarity criteria

viz. low-level feature similarity and high-level semantic or conceptual similarity. When

a query in the form of a video shot or a complete video is submitted, the k-NN search

algorithm traverses the Gem-Tree and produces k most similar video objects to the user.

During querying the GeM-Tree, the proposed k-NN search algorithm considers both

the distance or (dis)similarity between the indexed nodes (video node, key shot node)

and the query object (also represented as feature vectors with the same data structure

as the index tree nodes), as well as the high-level semantic relationships among them.

A threshold value (affinity), specifying the minimum high-level similarity expected in

the query result, is supplied with the query. This value is utilized to further prune

the candidate nodes which have passed the distance criteria or the low-level similarity

condition. It should be mentioned here that the k-NN search algorithm for GeM-Tree can

88

handle different video units as queries. For example, GeM-Tree can be queried frame-

level, shot-level or entire video-level. It completely depends on the video units chosen by

the users to classify the videos. Frame-level query may be issued to find frames similar

to the submitted frame from within the same video or across multiple videos. Searching

within the same video is useful when a video is large in size and users may be interested

to find similar frames from within the video itself. Similarly, shot-level and video-level

queries can be issued with the same efficiency.

The k-NN algorithm, supporting CBVR, starts with extracting features from the

key shots representing the videos and the frames constituting a shot of the submitted

query object, and represents them as multidimensional feature vectors. They may be

of fixed length or variable length representation, depending upon the feature extraction

technique. Then, depending upon the video unit of the submitted query, it proceeds to

the corresponding portion of the retrieval algorithm as presented in Table 4.2. If an entire

video is submitted and the routing object of the GeM-Tree being examined matches with

the object type, the corresponding affinity value is checked from the appropriate matrix

of the appropriate level of the HMMM (specifically obtained from the A matrix for level

1 of HMMM). The dynamic distance value is updated which stores the radius of the

current kth nearest neighbor. If the currently examined object do not match the object

type of the query object, i.e. if it is a shot of a video, the affinity is computed in a

roundabout manner where the affinity of the video to which this shot belongs is checked

against the candidate affinity value (since the query is a video). The HMMM model

enables to identify the indirect affinity relationships between cross-video-unit types. The

algorithm have to just ensure that it points to the correct level of the HMMM framework

and identifies the appropriate matrix relating the video unit of the routing object to the

query object. Any video-unit can be handled seamlessly by this retrieval algorithm as

long as it is included into the HMMM framework and represented explicitly in the feature

signatures.

89

6.3 Experiments

In our experiments, 10 soccer videos were collected from different sources. They have

total time duration of almost 2 hours. For each video, shot boundary detection was

performed utilizing the concepts presented in [52]. For each shot, the key frame is set as

the first frame and 20 multi-modal features (as discussed in Section 4.2.1) are extracted.

Ten queries are executed comprising of video-level and shot-level queries. Since, to the

0

50

100

150

200

250

1 2 3 4 5

Iterations

o
f
D
is
ta
n
ce

 C
o
m
p
u
ta
ti
o
n
s

HAH-Tree

Sequential
Search

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5

Iterat ions

I/O

HAH-Tree

Sequential

Figure 6.2: Distance computation and number of I/O of GeM-Tree compared with se-
quential search

best of our knowledge, there is no comparable video indexing framework like GeM-Tree

that combines all the three characteristics of a video model into a multidimensional

index structure, the performance could not be compared with any other tree-based video

indexing strategy. However, this system is compared with the traditional exhaustive

video retrieval strategy which does not have any underlying index structure from the

storage point of view and depends only on the video classification techniques to provide

90

search result. Essentially, the exhaustive search traverses the entire video sequentially

to provide the query results. The results presented in and Figure 6.2 demonstrates

tremendous improvement in computation time and # of I/O for GeM-Tree over the

traditional indexing concept method. The accuracy, a very subjective indicator for video

retrievals, of GeM-Tree was satisfactory with an average value of 70%− 80%. This value

is lower than the exhaustive sequential search framework where it is achieved at the

cost of very high computation overhead. The label of the graph in Figure 6.2 indicates

HAH-Tree to refer to the tree structure of GeM-Tree when only videos are indexed.

6.4 Conclusion

In this chapter, the way GeM-Tree handles video data is discussed is details. The different

video modeling techniques are presented with a detailed discussion of how the index

structure seamlessly accommodates all the modeling requirements. The k-NN search

algorithm for GeM-Tree is presented which supports CBVR by amalgamating low-level

feature similarity and high-level semantic closeness among videos. The experimental

results demonstrate encouraging outcome in terms of low computation overhead and

a satisfactory accuracy of query results. As a part of future work, it is planned to

include temporal relationships and event information in the index structure to improve

its performance and broaden its domain.

91

CHAPTER 7

HYBRID QUERY REFINEMENT: A STRATEGY FOR A DISTANCE

BASED INDEX STRUCTURE TO REFINE MULTIMEDIA QUERIES

An index structure is one of the major components of a database management system

as it assists in efficiently organizing the data and enables quick and accurate retrieval. As

discussed earlier, there are multidimensional index structures like [19][35][60][98][179][76][94]

which can accommodate the atypical multidimensional representation of multimedia data

but enabling them to efficiently support the popular retrieval strategies like content-based

image and video retrievals is still a challenge due to the semantic information carried by

such data types. The semantic interpretation of a multimedia data is very subjective

and varies from user to user or even from iteration to iteration for an individual user.

This makes the similarity queries issued to multimedia data imprecise in nature and a

single iteration or a fixed query representation is not enough to capture the users’ re-

quirements during the retrieval process. Thus, attempts to capture the users’ interest

pattern are made with a strategy called query refinement which adjusts a query over

multiple feedbacks from the user to better capture the users’ information need. It has

two major components viz. query modification and query re-weighting [170]. In query

modification, the query representation is modified in each iteration to represent a region

in the feature space which best describes the feature components of the users’ query. In

query re-weighting, the semantic interpretations of a query is modified, in each iteration,

to better reflect the users’ high-level perception. Thus, the index structures, in order to

be able to handle the imprecise nature of the similarity queries of multimedia data, need

to support query refinement with both its components efficiently.

As was discussed in details in the related work in Chapter 2, multidimensional index

structures can be broadly divided into two categories viz. feature-based and distance-

based. Both categories are useful depending on the dataset in hand and the applications

that need to be supported. Hence, both categories of index structures need to have a

92

query refinement strategy to answer imprecise multimedia similarity queries more accu-

rately. Though query refinement strategies has been designed for feature-based index

structures like [36] and [170], to the best of our knowledge there are no query refinement

strategies for distance-based index structures like [60]. Another major drawback of the

existing approach is that if the semantic information of a multimedia object such as an

image cannot be interpreted completely in terms of the inter and intra feature weights,

refinement strategies like [170] fail to produce satisfactory results. This has been illus-

trated in Figure 1.3 for an image database where the feature-level similarity (calculated

with a distance function) failed to capture users’ high-level semantic perception.

In this chapter, a hybrid query refinement strategy is discussed for distance based in-

dex structures which organizes and manages mainly images [49]. It should be noted that

the basic query refinement model used here can be utilized for indexing other multimedia

objects like videos as well as long as the underlying distance-based index structures can

accommodate the particular data type. The proposed query refinement strategy is called

hybrid because it refines and adjusts both the low-level feature space as well as the high-

level semantic interpretations individually and independent of each other during refining

the queries in each iteration. It should be pointed out that in existing approaches like

[170] basically only the feature space is refined, since the query is attempted to be refined

by adjusting solely the feature attributes. But, in this proposed approach, specifically

two separate refining methods, combined into one seamless approach is used. To refine

the semantic interpretation of a query with each iteration, the proposed approach uses

a dynamic parameter adjusting technique of a stochastic construct called Markov Model

Mediator [191] while it adopts a query expansion approach to refine the feature space.

This hybrid query refinement ensemble is introduced in a distance-based index structure

and the similarity searches are designed to utilize it by adjusting the distance functions

to be able to use the refined query structure. A new evaluation score determination tech-

nique is also proposed, called the Model Score, that can compare the overall performance

93

of the framework in terms of both computation time and F1 Score (relevance). Both

the response time and the relevance of a query result is important in case of similarity

queries based on contents for multimedia data. Thus, while evaluating and comparing

the performance of an index structure for multimedia data supporting query refinement,

one should be able to view the combined effect of both these criteria on the retrieval

process and how each affect the performance of the other. The Affinity Hybrid Tree

[45][46] (AH-Tree) was chosen as the distance-based index structure where the proposed

hybrid query refinement strategy is introduced. The main cause for choosing Affinity

Hybrid Tree is because it can handle the two different similarity concepts applicable

to multimedia data, viz. low-level feature similarity and high-level semantic similarity,

independently without trying to express one in terms of the other, as practiced by the

existing approaches like [39][170]. Thus we found it as the right candidate to demonstrate

the successful implementation of the proposed query refinement to a distance based in-

dex structure as both the approaches share the same basic philosophy of separating the

low-level feature components of a query from the high-level semantic information that it

carries.

7.1 Hybrid Query Refinement in a Distance-Based Index Struc-

ture

The hybrid query refinement technique is applied to the AH-Tree structure in two steps

as there are two types of index structures embedded in it. Since, by intuition, it can

be assumed that every user at every iteration will not change his/her information needs

drastically, the proposed query refinement technique is literally applied for each iteration

only to the metric space. This metric space is obtained for the starting query by filtering

and combining feature spaces as explained in [46]. If it is seen that the metric space at

hand does not contain the user’s preferred points (deduced if the number of query results

labeled relevant by the user falls below a certain threshold), the feature space is searched

94

with multiple query points and the feature spaces obtained for each query point are

combined to build up the metric space. In this way, computation overhead in querying

the entire database for each iteration is saved and a much smaller filtered metric space

needs to be searched for subsequent iterations. Also, the purpose of demonstrating the

performance of the proposed hybrid query refinement in a distance-based index structure

is served.

7.1.1 The Refinement Model for Semantic Relationships

Experience shows that on several occasions, feature-wise similar objects do not share

close semantic relationships. Thus the ideal query refinement techniques should explore

methods to refine the high-level similarity concepts, independently from the feature-level

similarity. This is implemented in the proposed hybrid query refinement technique where

the high-level semantic relationship is dynamically refined and adjusted along with the

feature space based on users’ feedback in each iteration. The MMM framework [191] is

utilized to introduce the high-level semantic relationships between the multimedia data

objects in the index structure.Thus its constructs need to be manipulated to refine the

users’ information need and reflect the access pattern of the user with each completed

iteration. In the next sub-section, the MMM framework is briefly introduced followed by

a discussion on the dynamic manipulation of the semantic constructs.

Markov Model Mediator

Markov Model Mediator (MMM) [191] is a stochastic framework which provides an al-

ternative retrieval mechanism for CBIR process. This method captures the high-level

image relationship, called the affinity relationship, among image objects and use it dur-

ing searching the image database and providing query results. It is an effort to bridge

the gap between low-level features and high-level concepts. It is an alternative to Rel-

evance Feedback method of refining queries to better capture users’ perception during

95

CBIR. In [191], the method builds an index vector for each image within the database

and based on the relationship between the query image and candidate images, produce

results. But, unlike popular methods like RF, the users’ perception is captured with the

help of training data such as access patterns and access frequencies of the images in the

database. The MMM mechanism is represented as a 5-tuple λ = (S, F , A, B, π), where

S is the set of images, A is the state transition probability distribution, B is the feature

vector and π is the initial state probability distribution. From this tuple, the point of

interest for the query refinement is the affinity matrix denoted by A, where each entry

(i, j) corresponds to the relationship between image i and j captured in the training

process. It is used during the similarity search routines of the AH-Tree along with the

distance measurement to produce semantically close results.

The MMM mechanism can assist in retrieving very accurate results and is robust in

the sense that it doesn’t solely rely on feature-level similarity to provide query results.

Thus, it can be used as a retrieval mechanism even when features cannot capture users’

perception of semantic relation. Also, since it doesn’t attempt to adjust feature weights,

it do not make distance functions arbitrary during similarity computations and can be

used in distance-based index structures easily to embed and refine the high-level semantic

relationships.

Dynamic Refinement of Affinity Values

This is achieved by dynamically manipulating the affm,n value (as explained in Equation

4.22) for each iteration. In each iteration, when a number of images from the result set

for a query k are marked relevant by an user, the access frequency accessk is increased

by 1 while usem,k and usen,k are set to 1 for a pair of images m and n in the result set

which are marked relevant. Thus, if the access frequency between two images at (t− 1)th

iteration be accesst−1, the affinity value at tth iteration is refined as:

affm,nt
= 1× 1× (accesst−1 + 1) (7.1)

96

Also, if the query image itself belongs to the database, the row of the affinity matrix

corresponding to it is selected and all the entries in that row are refined according to

Equation 7.1, where m is set as k and n ε p1, p2,, px, where px is the image id marked

relevant by the user and x ε ids of relevant images in each iteration. A normalization of

each row, affected in the feedback process, of the affinity matrix is performed after each

iteration as Equation 4.23 and the modified affinity relationship score is utilized during

the similarity search in the next iteration. The original affinity value before normalization

is stored to get the actual access value for refinement in subsequent iterations. With

Equation 7.1, the affinity relationship scores between the relevant images are refined

(increased) dynamically whereas the scores between all other pairs remain the same.

Hence, those relevant images will have a greater probability of retrieval than the rest

of the images during subsequent retrieval iterations and also for similar query types

issued by different users later. Thus, the query is refined independently in terms of

the high-level semantic relationship by manipulating the probabilistic measure of access

frequencies without relying on the relationship between the semantics and the feature

space.

The refinements or modifications of the affinity values that occur in a particular row

of the affinity matrix for a particular feedback from the user, is distributed through out

the affinity matrix. The distribution takes place to pairs of affinity relationships that

are directly or indirectly related to the modified/refined pairs of the affected row. For

example, let, the (i, j)th pair of the affinity matrix be refined in iteration n. To distribute

and reflect the update in the similarity perception throughout the affinity matrix, the

affinity relationships for those elements in row i and j are refined with Equation 7.1,

which have been marked relevant in the feedback in iteration n. The process is repeated

for each pair marked relevant in a particular iteration. Thus with a single user feedback,

quite a few number of semantic relationships are refined in a single go.

97

In addition, a separate data structure known as profile affinity relationshipx is main-

tained, which copies the original Affinity Relationship matrix into a local profile specific to

the xth user and updates it according to the users’ perception and preference. Normaliza-

tion is done for each updated row after each iteration. Such profile affinity relationship

structures for different users are evaluated after a certain interval and the universal

affinity relationship matrix is updated accordingly. In this way, high-level similarity is

not biased by any one user’s preference and each user need not take the heavy bur-

den of correctness of his/her response. Since the universal affinity relationship matrix

update takes place off-line, after a considerable amount of data is accumulated in the

profile affinity relationship all the rows and every image pair that are affected by the

feedback can be updated without causing considerable delays in query processing.

7.1.2 Refinement Model for the Feature Space

The hybrid query refinement model, for refining the feature space, uses a multiple point

query representation as it has been pointed out in the literature [170] that multiple

point query representations (query expansions) better capture users’ perception than

aggregated single point query representation (query point movement). Such a query is

represented by the following tuple: Q = (n, P , W), where n represents the number of

image points present in the refined query, P stands for set of the feature vectors for each

points and W the weights attached by the user with each refined query point to rank them

in order of their relevance with the original submitted query. Thus, with each submitted

feedback, the query representation is modified. The above method of representing the

refined query modifies the requirement of the user in terms of the target feature space.

For example, for traditional queries when a k-NN query is submitted with a single image

object, it meant “search the database and give me k images which are nearest to the

query in terms of features”. With the refined query, the requirement changes to “search

the database and give me k images which are nearest to all the query images in terms

98

of features”. Thus, the above query representation expands the feature search space and

adjusts it with each iteration.

To utilize the the above representation of a refined query in a distance-based index

structure to answer similarity searches, the distance function need to be modified. The

distance function aids to calculate the (dis)similarity of an indexed object in the database

with the query point. Since traditional metric distance functions, such as Euclidean

Distance, were proposed with a single query point in mind, hence they need to be modified

and the correctness need to be proved for multi-point queries. A distance function is

correctly defined if after searching the metric space (containing the indexed data objects),

based on the similarity score produced by the distance function, the top k results are

indeed the k most nearest objects to the query point in the entire database. There are

two basic search paradigms implemented by any index structures viz. range search and

k-NN search. For the imprecise nature of multimedia query, k-NN search is preferred

over range search since determining the range of an imprecise query is rather error-prone

while simulating CBIR in the search routines for an index structure indexing multimedia

data.

The k-NN search of AH-Tree follows the classical branch and bound technique [181]

and needs to determine (i) the distance between the query object and the image object in

the leaf nodes and (ii) the distance between the query object and the intermediate index

nodes. Since the metric space of our index structure is Euclidean, hence each intermediate

node which serves as a bounding region for the child nodes is represented by a sphere

with a centroid C (an image object with a routing role) and a radius r (covering radius).

Each data node (at the leaf level) is represented by a centroid with covering radius equal

to zero. The distance function, DIST, is used to calculate the (dis)similarity between the

query object and the index tree nodes (both intermediate and leaf nodes). Generalizing

the definition of MINDIST in [181], the DIST(O,P) in AH-Tree of an object O from

99

Table 7.1: Refined k-NN search algorithm

Refined k-NN-Search(Q, Nchild, r(Q), aff) { //Metric Search.
Affinity Promotion RefinedQueries(); //promotion of affinity value.
if (((aff(Or, Q1) 6= 0)‖‖((aff(Or, Q2) 6= 0)‖‖ . . . ‖‖ ((aff(Or, Qn) 6= 0)))
{ //affinity value available for at least one of the query points.
if (Or is a routing object){
∀ Or in Nchild do: {

if ((
∑n

i=1 Wi|C - Fi|2 - r) ≤ r(Q)+r(Or)) && . . .
((aff(Or, Q1) ≥ aff)‖‖(aff(Or, Q2) ≥ aff)‖‖
‖‖(aff(Or, Qn) ≥ aff))) {

//update and reshuffle the k least distance values by inserting
//(
∑n

i=1 Wi|C - Fi|2 - r) in the correct position.
aff = maxn

i=1 (aff(Or, Qi));
Refined k-NN-Search(ptr(T(Or)), Q, aff);
//T(Or): pointer to the subtree.
}

}//end of search for Or

//satisfying metric condition.
}//end of search for all Or in Nchild.
}//end of internal node search of the
//metric tree.

elseif (Or is a leaf object){
if ((

∑n
i=1 Wi|C - Fi|2) ≤ r(Q)+r(Or)) &&

((aff(Or, Q1) ≥ aff)&&(aff(Or, Q2) ≥ aff)&& . . . &&(aff(Or, Qn) ≥ aff))) {
//add to the result set.
//update and re-shuffle the k least distance values by inserting
//(
∑n

i=1 Wi|C - Fi|2) in the correct position.
aff = maxn

i=1 (aff(Or, Qi));
}
} //end of search for query object with affinity.

else {
Refined k-NN-Search with the absence of the affinity
comparison;
} //end of search for query object without affinity.
} //end of Metric Search Subroutine.

100

query object P is defined as:

DIST (O, P) = |C − P |2 − r. (7.2)

If, the object is a leaf node, the covering radius is zero and Equation 7.2 is reduced to:

DIST (O,P) = |C − P |2 (7.3)

The above technique can be extended to query expansion for metric space with a multiple

point refined query as follows: The DISTMULTI between an intermediate object O and

an expanded query Q is defined as:

DISTMULTI(Q,O) =
n∑

i=1

Wi|C − Fi|2 − r, (7.4)

Where F is a feature vector consisting of features of each image object the user has

marked to be a potential query object or relevant to a submitted query, n denotes the

number of marked query objects and W corresponds to a set of weights attached to each

returned additional query point.

As mentioned above, the correctness of the modified distance function or DISTMULTI

with the multiple query points should be proved. It is correct if indeed it provides the

k closest results in response to a similarity query, in each iteration. Thus, to ensure

that there will be no false dismissal, it should be proved that DISTMULTI(O, Q) lower

bounds D(T , Q), where T is any node of the subtree of O.

Lemma 7.1.1 DISTMULTI for a multi-point query is correct iff DISTMULTI(O, Q) ≤

D(T , Q) for any node T in the subtree of O.

Proof. Let, O be an intermediate node of the metric tree. Since, T is any object under

O, it belongs to the subtree/covering tree of O. Since all nodes of the covering tree are

within its bounding radius, we have:

D(Pi, T)− r(OT) ≥ D(Pi, O)− r(Oo) (7.5)

101

Where Pi is the ith query point and r(OT) and r(Oo) are the covering radii of the subtree

T and O respectively. Which implies,

D(Pi, O)− r(Oo) ≤ D(Pi, T)− r(OT) (7.6)

Which implies,

n∑
i=1

WiD(Pi, O)− r(Oo) ≤
n∑

i=1

WiD(Pi, T)− r(OT) (7.7)

Thus,

DISTMULTI(O,Q) ≤ D(T,Q) (7.8)

The summation of the distances over n refined query points ensures that the pruning

is performed based upon the collective impact of each of the refined query points. The

effect of each of the refined queries on the collective MINDIST function is determined by

the weights assigned by the relevance attached by the user in each iteration.

7.1.3 Similarity Search With Hybrid Query Refinement Model

The above discussed technique of hybrid query refinement is embedded in the metric

space (distance-based index structure) of AH-Tree during similarity search as discussed

in Refined k-NN-Search algorithm in Table 7.1. The Refined k-NN-Search explores the

image database with a refined query Q, consisting of multiple image points marked as

relevant by the user, and a refined affinity matrix to return k image points most similar

in both feature-level similarity (computed by DISTMULTI) and high-level relationship

(computed from the promoted affinity values). A priority queue of the sub-trees (for

which at least one qualifying object has been found) is maintained and elements (inter-

mediate nodes which are the roots of the subtrees) are popped from its top and checked

for similarity criteria (both in terms of low-level features and high-level semantic rela-

tionship) until the priority queue consists of leaf nodes which are the k nearest neighbors

102

of the multi-point query Q. During a k-NN search of the metric space, for each non-leaf

node, the DISTMULTI is calculated between the node and each of the query points using

Equation 7.4. If the DISTMULTI of the node is greater than the distance of the current

kth neighbor and does not have an affinity with any of the query point greater than or

equal to the required affinity, the node is pruned. Otherwise the examined node is added

to the priority queue and the entire queue is sorted based on the DISTMULTI function.

Similarly, for each leaf-node, DISTMULTI is calculated using Equation 7.4 with r set to

0 since for leaf nodes there is no bounding region and the covering radius is 0 [45]. Here,

the affinity condition is an AND (Equation 7.9) rather than an OR (Equation 7.10) as

used in the intermediate node evaluation.

((aff(Oleaf , Q1) ≥ aff)&&(aff(Oleaf , Q2) ≥ aff)&& . . . &&(aff(Oleaf , Qn) ≥ aff))

(7.9)

((aff(Orouter, Q1) ≥ aff)‖‖(aff(Orouter, Q2) ≥ aff)‖‖ . . . ‖‖(aff(Orouter, Qn) ≥ aff))

(7.10)

Where aff(Oleaf ,Qn) and aff(Orouter,Qn) are the affinity between the leaf node and the

intermediate node with the nth query point respectively. Q is the multi-point query and

aff is the required affinity value.

This condition is utilized to push all the intermediate nodes into the priority queue

with even a slight possibility to match the high-level similarity with at least a part of the

multi-point query (at least with one of them). Thus, an optimistic guess is done to avoid

any false dismissal. But for the leaf nodes, the final result set is determined based on

the distance and the affinity criteria. Hence, the conditions are made more stringent and

only those image points from the database are chosen which have the required high-level

closeness with every query point. If there are not k image points satisfying the criteria,

the refined query is re-executed with a more flexible OR condition for the leaf nodes

and the intermediate nodes. Furthermore, it should be noted that based on the weights

103

attached to each query point by the user, DISTMULTI is actually a weighted summation

of the corresponding distances (bounding region or point). These weights (in the range of

0-3 as discussed in Section 7.2 are attached to each query point during the user feedback

process.

Table 7.2: Affinity promotion for refined queries
Affinity Promotion RefinedQueries();
Start from the leaf nodes of the distance-based index structure of the AH-Tree.
For each leaf node Ol:{
Set aff(Ol, Q) = maxn

i=1 (aff(Ol, Pi));
// Where, aff(Ol, Q) is the affinity of the leaf node with respect
// to the multi-point query Q and aff(Ol, Pi) is the affinity of
// the leaf node with respect to each query point Pi in Q.

}
Traverse the tree bottom-up.
For each intermediate node Or:{
aff(Or, Q) = maxn

i=1(max(aff(ta, qi), aff(tb, qi), . . . , aff(tz, qi),
max(aff(ta, qi−1), aff(tb, qi−1), , aff(tz, qi−1))) ;

// Where, aff(Or, Q) is the affinity of the intermediate node
// with respect to the multi-point query Q consisting of qi, aff(ta, qi)
// is the affinity of each children ta with each query point qi and
// z is the number of children of Or.

}

The high level semantic relationships among the images in the form of affinity values

cannot be embedded in the metric space as it makes the distance functions arbitrary [45].

Instead the affinity relationship is introduced in the metric structure prior to issuing a

query, through a novel affinity promotion technique. In the affinity promotion routine,

the affinity values are promoted from the leaf level to the intermediate nodes up to the

root and thus distribute it through out the tree structure so that each node has an affinity

value with respect to the query. Since the query representation is modified, the affinity

promotion technique should also be changed from to support multiple points in a query.

For a query space consisting of n query points qn
i=1, the affinity relationship of an

intermediate node p with child nodes a and b is set as:

maxn
i=1(max(affinitya,qi

, affinityb,qi
), max(affinitya,qi−1

, affinityb,qi−1
)),

104

Where affinitya,qi
represents the affinity value of child node a with the query point qi.

The above representation sets up a routine whereby the maximum of the affinity values

among the values between all the child nodes with all the query points is promoted as

the affinity value of the parent node p with respect to the multi-point query q. It is done

by an iterative process whereby in the ith iteration the maximum of the affinity between

all the children with the ith query point is compared with the maximum of the affinity

between all the children with the (i−1)th query point. The maximum of these two values

is set as the affinity value at the ith iteration and the process continues. Also, it should be

mentioned here that for simplicity of representation, the above formula is presented for

an intermediate node with only two children. But for implementation purposes, it could

be extended for n number of child nodes without any loss of generality. This formula

ensures that if there is any candidate node in the subtree which has an affinity value

with each of the query points greater than or equal to the required affinity, the parent

node is traversed and there is no false dismissal. It also ensures that if none of the child

nodes has the required affinity, the parent node can be pruned altogether without any

further investigation. The method executes bottom-up i.e. in the AH-Tree, first, for each

leaf node, the affinity value between it and each of the query points are calculated and

the maximum among them is determined. This maximum affinity value is assigned to

each leaf node and then the index tree is traversed one level up to promote these affinity

values to the intermediate nodes till the root is reached, using the above formula. The

algorithm employed for the multi-point query promotion technique is presented in Table

7.2.

7.2 Empirical Study and Evaluation Metric

In the experiments, the image database used consists of 10, 000 color images from Corel

dataset belonging to 72 semantic categories. The system allows the user to rank query

105

results as 0 (Not Relevant), 1 (Very Close), 2(Perfect), and 3(Set as new query). These

weights are utilized in formation of the refined queries. Extensive experiments are per-

formed with 3 rounds of iteration for 10 query images randomly picked from the database.

Four systems viz. AH-Tree Refinement Model, Feature-Based Refinement Model, AH-

Tree Without Refinement Model and a Sequential Search Model(one which doesn’t have

any index structure but searches through the entire image database in terms of both

low-level feature-wise similarity and high-level affinity relationships), are compared with

one another. The comparison is performed in terms of 4 criteria viz. Accuracy, Compu-

tation Time, F1 Score and Number of Distance Computations (required to determine the

feature-level similarity). The accuracy is measured as the percentage of retrieved results

that were marked relevant by the user, computation time is the time taken to execute

the query, F1 Score can be considered as the weighted average of the precision and recall

and is expressed in Equation 7.11 and number of distance computation measures the

computation overhead contributed by each model during the similarity calculation using

distance functions (like Euclidean Distance Function).

F1 Score =
2× p× r

p + r
(7.11)

Where, p is the precision and r is the recall.

The experimental results for 3 iterations averaged over 10 random queries are summa-

rized in Table 7.3 and their graphical representations are presented in Figure 7.1, Figure

7.2 and Figure 7.3. It can be seen from the results that the Naive system, having no index

structure at all, performs the best in terms of Accuracy and F1 Score (since it searches

through the entire database to provide the result) and thus obviously performs worst in

terms of computation time and number of distance computations. On the other hand

the feature-based index structure using a RF-based refinement model produces the best

results in terms of computation time but the worst in terms of F1 Score (the feature-level

weights failing to capture the users’ similarity concept in this case where it has been seen

that the query images are rather hard to distinguish in terms of low-level features alone).

106

Figure 7.1: (a) Accuracy compared over three iterations, (b) Computation time compared
over three iterations.

107

AH-Tree Refinement Model has a computation time far less than the Naive Model but the

computation time is greater that the Feature-Based Index Structures Refinement Model

(since an additional similarity factor, the affinity relationship need to be considered).

The AH-Tree without any refinement model obviously has a fixed value for each of the

criteria for all the three iterations due to the lack of any refinement model. From all the

different criteria, it becomes rather difficult and confusing to determine which is the best

model. Hence, an aggregate model score is proposed in terms of computation time (the

main reason to introduce an index structure) and the F1 Score (the main reason for the

requirement of an efficient refinement model). The main purpose behind proposing an

efficient multidimensional index structure supporting multimedia retrieval strategies is

twofold. First, to reduce the computation overhead and second, to produce query results

as close to human perception as possible.

Thus to compare different retrieval models (with and without index structures and

refinement strategies) and justifying the need of an efficient index structure as well as

a good refinement model, a metric should be formulated that will compare the models

in terms of both the specified factors and thus help the users choose the appropriate

method depending upon his/her need. A cost metric is proposed, called the Model Score

(expressed in Equation 7.12 in terms of computation time and F1 Score), to be utilized

in comparing the different systems as discussed in the next subsection.

Evaluation Metric

This metric is determined with the consideration that the best model will be the one

with minimum computation time and maximum F1 Score. Thus, the model score of a

particular system is devised as the product of the inverse of its deviation from the max-

imum F1 Score (among all the models) and minimum computation time (among all the

models). Thus, T−Tmin

3×
√

(
Pn

i=1(Ti−Tmin)2)/n
determines the deviation of the computation time

of a model from the best computation time (minimum) and produces a normalized error

108

Figure 7.2: (a) F1 score compared over three iterations, (b) Number of distance compu-
tations compared over three iterations.

109

value. The greater the error value, farther is the computation time from the best possible

computation time and lesser should be the computation time score. Thus, the value is

subtracted from 1 and inversion is achieved. The same approach follows for determining

the second part of the product, F−Fmax

3×
√

(
Pn

i=1(Fi−Fmax)2)/n
, with the only difference being the

fact that now the best possible F1 Score is the maximum of all the available F1 Scores.

Hence, the normalized error of the F1 Score with the best possible value for a particular

model is determined and is subtracted from 1 to get the actual score. The value 3 is used

as a factor during determining the normalized error following Gaussian Normalization

method, where using a factor of 3 increases the percentage of the probability of a value

to lie in the range −1 and 1. Thus, greater the model score, better is its usefulness as

multimedia retrieval framework. The current score is developed giving equal weights to

the computation time and the F1 Score. But, depending upon users’ prerogative, weights

can be adjusted between them to modify the score.

Model Score =

(
1− T − Tmin

3×
√

(
∑n

i=1(Ti − Tmin)2)/n

)
×

(
1−| F − Fmax

3×
√

(
∑n

i=1(Fi − Fmax)2)/n
|

)
(7.12)

Where, T is the computation time of the particular model, Tmin is the minimum compu-

tation time among all the models considered, F is the F1 Score of the particular model,

Fmax is the maximum F1 Score among all the models considered, and n is the total

number of models.

The Model Score is computed for four different frameworks as presented in the last two

columns of Table 7.3 and graphically in Figure 7.3(c). From them, it can be concluded

that the proposed query refinement approach on a distance based index structure has

distinctively better performance than a framework without any refinement method and

the sequential search framework. It has comparable and slightly better performance than

the framework with query refinement approach on a feature based index structure. Thus,

the proposed approach successfully achieved the two important goals of this research viz.

(i) to develop a query refinement model for distance based index structure comparable

110

Figure 7.3: (a) Computation time score compared over three iterations, (b) Similarity
score compared over three iterations, (c) Average model score.

111

in computation cost to the existing approaches for feature based index structures (ii)

improve the relevance of query results for scenarios where the low-level feature similarity

do not follow the same pattern as the high-level semantic similarity (this is demonstrated

by the higher F1 score for our proposed approach as compared to the query refinement

approaches like [37]). It can be concluded from the experimental data analysis that the

proposed method has potential of future extension and can be utilized in other genres of

multimedia retrievals like content-based video retrieval.

7.3 Conclusion and Future Work

In this chapter, a technique to embed query refinement methodology into the metric

space of a multidimensional distance based index structure is proposed. The refinement

technique is mainly developed to enable a distance based index structure support CBIR

with user feedback efficiently and improve query results at each iteration. The refinement

model utilizes the query expansion approach and proposes ways to introduce multi-point

queries into a metric space. It proposes techniques to not only refine the low-level feature

space but also to refine the high-level image similarity based on user feedback and use

them seamlessly in the index structure during similarity search routines. Additionally, a

cost metric called the Model Score, is proposed to determine the overall performance of

a multimedia data retrieval framework in terms of computation time and F1 Score. As

future work, it is planned to introduce this query refinement model to the generalized

index structure, GeM-Tree [47] to refine queries and support content based information

retrievals with relevance feedback for both images as well as videos.

112

T
ab

le
7.

3:
E

x
p
er

im
en

ta
l
re

su
lt

s

It
er

at
io

n
s

A
cc

u
ra

cy
C

om
p
u
ta

ti
on

F
1

#
of

M
o
d
el

A
ve

ra
ge

(i
n

%
)

T
im

e
S
co

re
D

is
ta

n
ce

S
co

re
M

o
d
el

(i
n

se
c)

C
om

p
u
ta

ti
on

s
S
co

re

A
H

-T
re

e
R

efi
n
e

1st
70

0.
08

6
0.

21
5

33
11

0.
52

9
0.

56
4

2n
d

88
0.

06
4

0.
25

63
61

0.
58

4
3r

d
95

0.
06

8
0.

25
3

89
66

0.
58

0

F
ea

tu
re

T
re

e
R

efi
n
e

1st
30

0.
01

1
0.

09
2

14
40

0.
54

8
0.

55
2

2n
d

44
0.

01
7

0.
12

5
34

75
0.

56
5

3r
d

50
0.

03
5

0.
12

7
67

69
0.

54
3

A
H

-T
re

e
N

o
R

efi
n
e

1st
70

0.
08

6
0.

21
5

33
11

0.
52

9
0.

52
9

2n
d

70
0.

08
6

0.
21

5
33

11
0.

52
9

3r
d

70
0.

08
6

0.
21

5
33

11
0.

52
9

N
ai

ve
1st

80
0.

13
0.

5
10

00
0

0.
61

7
0.

37
7

2n
d

90
0.

26
0.

6
10

00
0

0.
39

2
3r

d
99

0.
39

0.
7

10
00

0
0.

12
2

113

CHAPTER 8

GENERATING SOCIAL NETWORK PREVIEWS USING GRAPH

SIMILARITY

8.1 Introduction

With the increased popularity of social networking applications such as Facebook [73],

Twitter [210] and Linkedin [141], there is an explosion in the number of users interacting

with each other using these tools. This huge amount of dynamic information is a desirable

platform for social analysis to understand the nature of social ties, the characteristics of

a social network, and the behavior of its members. Such studies promise deep insight into

the social behavior of the users; such as their preferences, their interaction patterns, and

the types of users a particular social network attracts. Gaining such insights in turn help

to better design these applications, to cater to the users’ requirements. Not only does

social network application designs benefit from it, but other areas such as organizational

strategy making and marketing policies are also helped by such knowledge.

Additionally, in the course of this research, it was identified that multimedia data

management frameworks can benefit largely from the intelligent utilization of social

network representations and analysis. With the rising use of social networking tools,

information retrieval can no longer be considered a solitary task. Rather, people con-

stantly collaborate with one another while searching and retrieving information. Since,

multimedia data (such as images and videos) carry more information than text-based

based data; it is fast becoming a preferred medium of communication. For example, peo-

ple are increasingly sharing videos from Youtube in their social networks on Facebook.

The number of users is exploding and so is the use of multimedia data. Thus, there

is a pressing need to manage and organize these data efficiently based on their behav-

ior and mutual relationships while considering different aspects such as their low-level

representations, their semantic interpretation as well as the social network relationships

114

determined from their sharing and usage patterns. Such organization approach will in

turn help in improving the quality of the retrieval results. For example, currently if a

user needs to search a video of interest from Youtube, the search is mainly performed

based on the keywords that have been attached to the videos. Thus, the quality of the

search result depends largely on the consistency and reliability of the keywords despite

of the fact that the characteristics of the data itself or the behavior pattern of the user

(to be obtained from his social network) can provide useful information to improve the

quality and expedite the search and retrieval process. The evolving relationships among

multimedia data in a collaborative environment can be modeled using a social network

graph representation where the multimedia data themselves behave as actors forming

their own social networks depending upon the behavior pattern of the users. Analyzing

these social networks formed by the data, or more specifically the Data Networks, provide

valuable insights into the data characteristics. This in turn would aid in designing the

management and retrieval frameworks of these data. But, the major challenge to analyze

these information is its sheer size. An important aspect of any social network analysis is

visualizing the information and analyzing the relations from the structures. An overall

structural view of a social network provides immense while easily derived knowledge,

that an user process with his/her cognitive intuition. As pointed out by Burt in [29], the

holistic structural analysis of a social network is better than an atomistic analysis as the

former explicitly considers the social context within which actors make evaluations. It is

well accepted that individual behavior and opinions are rooted in the structures to which

people belong [104]. But, if a social network structure is too big, its overall structural

characteristics is no longer easily discernible. The cognitive load imposed on the users

analyzing it, is also increased. Thus, a much desirable option is to obtain a snapshot or

preview of the original social network structure which would contain a fewer number of

involved actors and ties but would carry and preserve the overall characteristics of the

original structure.

115

As pointed out in [129], reducing the number of visual elements improves the clarity as

well as the performance of the layout and rendering of a graph structure. The approach

used most frequently to reduce the number of network elements is clustering [183] and

using clustered graph. A clustered graph C = (G, T) consists of an undirected graph

G = (V, E) and a rooted tree T such that the leaves of T are exactly the vertices of G

[74]. As per the traditional definition, Clustering is the process of discovering groupings

or classes in data based on chosen semantics [104]. For graph structures, clustering is

concerned with grouping structurally similar components together, which is also called

natural clustering [183]. Using semantic data associated with the graph members (actors

of the social networks) for grouping purposes lead to content-based clustering [158]. Once

disjoint clusters are identified, the number of elements to be displayed are reduced by

representing a group of elements with a single element (specifically, the cluster center).

This approach provides an overview of the entire dataset while retaining a contextual

similarity. Most algorithms, such as [7][66] look for a balance between the total number

of representative clusters and the number of nodes within each cluster. A definition of

how edges between the clustered nodes should be induced is presented in [111]. Once

cluster nodes are connected via edges, the clustered graphs are visualized as: (i) ghosting,

(ii) hiding and (iii) grouping [129].

There are several challenges associated with representing a large social network struc-

ture with clustered graphs. Firstly, as with any clustering approach, determining the

optimum number of clusters to represent a dataset perfectly, is a challenge. Secondly,

picking up the cluster centers is a difficult task. An ample amount of domain knowl-

edge is necessary to isolate the nodes, to be used as initial cluster seeds, from a large

data-pool. Finally, there is no clearly described technique by which the natural structure

of the original graph is preserved in the representative clustered graph. Thus, to rep-

resent an information-rich social network with a clustered graph, one needs to analyze

the domain and the dataset closely to find out the specific characteristics of the dataset.

116

Once the typical properties of the original graph is identified, the different steps involved

in generation of clustered-graphs (such as determining the node metrics, specifying the

node connectivity criteria, picking up the cluster centers) should be optimized based on

those information. Hence clearly, it is difficult to have a generic and precise approach of

developing clustered graphs representing large social network structures with fewer nodes

and edges while preserving the overall network characteristics of the original graph.

In this chapter, we propose a social network preview technique utilizing graph simi-

larity. The proposed technique represents a large social network graph with fewer nodes

while preserving the structural characteristics of the original graph. It employs a coupled

edge-node score along with a semantic score to determine the similarity between a repre-

sentative node and the nodes of the original graph. An assignment algorithm (Extended

Munkres Algorithm) is then utilized to assign each of the m candidate nodes to one of

n original nodes. The assignment ensures to maximize the total similarity score between

the n nodes of the original social network graph with the m nodes of the representative

graph, where m � n. An edge connectivity criteria is proposed for the representative

graph to preserve the edge connectivity pattern of the original graph. The proposed

social network preview technique is different from the existing clustered graph approach

in the following ways:

1. The main step of the clustering method is to group similar actors (or actors with

similar behavior) together. Defining a precise similarity criteria for a particular so-

cial network is often challenging without detailed pre-analysis of the dataset. The

definition of similarity between the actors depends on the characteristics of the par-

ticular social network. For example, in case of a social network developed on e-mail

communications, similarity between the actors might be based on the frequency

of communication among members with similar rank or might be defined based

on the inter-rank communication pattern. Clustering can be performed based on

either of these criteria but the resulting clustered graphs will have very different

117

structures and characteristics. Thus the precise similarity criteria need to be deter-

mined from the original graph, before performing clustering, to retain the original

characteristics in the representatives. The proposed approach does not need such

pre-meditated information as it uses a generic similarity score that only considers

the overall structure of the given social network.

2. Structural similarity maximization between the original and the representative

graph is an important step of the proposed approach. Thus, an overall structural

resemblance between the original and the representative graphs are guaranteed to

some extent. No such guarantee can be expected from the clustered approach un-

less a definite, pre-meditated clustering and edge connectivity approach is defined

based on domain-knowledge of the dataset.

Since Centrality [88][89][90] has been regarded as an useful measure of the overall struc-

ture of a social network graph [223][70], we use an evaluation score based on it to find

how close the representative graph is to the original graph. From an extensive experi-

mental analysis, it has been seen that the proposed approach generates representative

graph structures closer to the original graphs than the clustered approach.

The rest of the chapter is organized as follows: Section 8.2 presents the proposed social

network preview technique with a detailed description of each step. This is followed

by Section 8.3, which presents the Evaluation Score utilized to analyze the generated

representative structures. Section 8.4 describes the Data Set used in the experiments

for verifying the proposed methods. An extensive experimental results and analysis is

presented in Section 8.5. Section 8.6 discusses briefly how Multimedia Data Networks

can be generated and analyzed followed by a brief conclusion and discussions of future

research direction in Section 8.7.

118

8.2 Generating Social Network Preview

A social network is popularly represented with a graph structure where each actor cor-

responds to a node and each connection/relation between its actors corresponds to an

edge in the graph. For the rest of the chapter, the term graph and social network is used

interchangeably. To generate a social network preview, four main steps are followed. The

process starts with an initial node sampling technique whereby m nodes are selected to

represent the original social network having n nodes (m� n). The sampling process can

be random or pre-meditated. The second step is to have a similarity score between the

nodes of the original social network graph structure and the selected representative nodes.

The similarity score determination further involves two steps. First, structural metrics

are assigned to each node based on the position of the particular node in the entire net-

work and its relationship with its neighbors. Second, semantic similarities between the

nodes of the original graph structure and the selected nodes are calculated. We use an

aggregate of the coupled edge-node similarity calculation technique [228] (for determining

structural similarity) along with an Euclidean Distance measurement (for determining

semantic similarity) to obtain the final score between a pair of nodes. The similarity

is represented as a nXm matrix. The third step is to optimally assign each of the the

m picked nodes to one of the n original nodes so as to maximize the overall similarity

between the nodes of the original and the representative graphs. We use an extended

version [30] of a combinatorial optimization algorithm called Hungarian or Munkres al-

gorithm [137][138][159] to solve the assignment problem. The final step is to generate

the representative preview graph from the representative nodes. In this step we need

to determine whether two nodes should be connected via an edge depending upon the

relation of the corresponding nodes in the original graph. We decide whether to connect

two nodes based on a shortest path length approach. The different steps of the algorithm

to generate a social network preview, as discussed above, is summarized in Table 8.1.

The input to the algorithm is the original social network structure with n nodes and the

119

output is the representative social network structure with m nodes. The two methods

used in the algorithm, namely Node Assignment() and Preview Graph Generation() is

detailed in Table 8.2 and 8.3 respectively.

Table 8.1: Generating social network preview

Social Network Preview Generation(SN) {
//SN is the original social network graph with n nodes.
Select m nodes from SN based on centrality distribution;
for k iterations {
For each node pair (n, m) {
Set Struct Sim[n, m] = edge-node coupled similarity between n and m;
//Struct Sim[n,m] stores the similarity between nodes n and m computed
//iteratively by considering behavior of neighboring nodes and edges.
}}

For each node pair (n, m) {
Set Sem Sim[n,m] = semantic similarity between n and m;
//Sem Sim[n, m] stores the semantic similarity between nodes n and m computed
//utilizing Euclidean Distance on the semantic vectors.
}
Set C = Wi Struct Sim + WjSem Sim;
//C is the combined similarity, Wi is the weight attached to Struct Sim
//and Wj is the weight attached to Sem Sim.
Set A = Node Assignment(C);
Set Gdisp = Preview Graph Generation(A);

//Gdisp is the representative preview graph.
output: Gdisp;
}

8.2.1 Selecting Nodes

There are several approaches towards sampling Social Networks. All of them have a

basic goal: to preserve the characteristics of the original social network structure in the

sampled network. There are different sampling schemes, namely simple random, strat-

ified, probability proportional to size, systematic, cluster and multistage [87]. Broadly,

sampling methodologies can be categorized as (1) Random and (2) Pre-Meditated. Ran-

120

dom sampling is equivalent to selection approaches that are dictated by probability laws.

As pointed out in [86], random samples consist of observations from a probability dis-

tribution belonging to some specific parametric family of distributions. Pre-Meditated

approach, as the name suggests, picks up specific samples from a given population and

there is no randomness or probability associated with it. It should be pointed out here

that the social network sampling discussed here is different from information/population

sampling methods [92] [93] utilized while collecting social network data. In the former,

characteristics of the overall social network is already identified and attempts are made

to retain those traits in the sampled population but for the later, the characteristics is

identified progressively during the sampling process as new samples and relationships are

encountered. In the proposed approach, the sampling step is designed as a plug-in and

any sampling method can be defined by the user without any loss of generality.

Random sampling of social networks can be extended to random graphs [108] based

on graph theory and statistical probability distributions on sets of graphs. When a finite

graph (a graph with a fixed population) is investigated by sampling and observing only a

part of it, a typical class of graph sampling called subgraph sampling can be implemented.

For social network preview, such subgraph sampling could also be utilized. The major

subgraph sampling methods are [21][31][75]. Inclusion probabilities are utilized in these

sampling approaches. If S be a subset of V (where, V is the original population with

n members and S is the sample population with m members) selected with a random

sampling having inclusion probabilities P (iεS) = πi and P (iεS, jεS) = πij, for simple

random sampling, πi = m
n

and πij = m(m−1)
n(n−1)

, i 6= j. The subgraph sampling can be

further classified as induced subgraph sampling [84], star sampling [32], etc.

In this chapter, two sampling techniques are utilized: a simple random sampling and

a centrality-based pre-meditated strategy. First, the value of m should be determined.

The choice of m depends on the data set, the kind of analysis to be performed on the

social network structure and the performance of the visualization method utilized. A

121

simple random sampling is chosen because the subsequent steps of the preview gener-

ation algorithm attempts to maximize the similarity between the sampled nodes with

the original nodes and assign them accordingly without depending upon the initial sam-

ples. The main objective of this chapter is to demonstrate the effectiveness of using the

Graph Similarity, the Hungarian Assignment and a typical node connectivity approach

together. Thus, to make the initial samples unbiased, a simple random sampling strat-

egy is adopted. Definitely, as more computationally extensive and complex sampling

techniques are used, the end results would benefit accordingly. In the random sampling

approach used, m of the original n nodes are randomly chosen without replacements,

as representatives. In statistics, a sample space is defined as the set of of all possible

outcomes. In this case the sample space (S) is represented as S = {0, 1}, which denotes

if a particular node is chosen (1) or not (0). Once a particular node is selected, it is

eliminated from the pool and n is decremented by 1.

For demonstrating the effect of pre-meditated approach, a stratified sampling based

on centrality scores of the nodes is utilized. The main goal is to preserve the distribution

of the original social network as closely as possible in the samples so that even if a

social network has a typical trait visible in only a certain population type, the chances

of capturing it in the sampled pool is increased while using stratified sampling. All

the original nodes are first sorted based on their degree centrality and are divided into

strata. Next equal number of nodes are selected from each strata. The stratification of

the original dataset is done based on the centrality values because centrality has been

successfully utilized in the past to study the holistic behavior of social networks in several

complex social systems [56][16]. However, since a great deal of subjective interpretation

is involved in the definition of the special trait of a particular social network and is by

itself imprecise, no sampling method can be considered to be perfect or universal.

122

8.2.2 Determining Similarity

Graph Similarity has been a research topic for a long time. There are several approaches

to compute Graph Similarity. Isomorphism between a pair of graph is perhaps the basic

interpretation of Graph Similarity. Two graphs are isomorphic if there exists a bijective

function between the node sets of each graph such that two nodes are connected by an

edge in one graph iff their images under the bijection are connected too. However, deter-

mining if two graphs are isomorphic is a NP-complete problem. There are several other

techniques where a global approach is undertaken to determine the similarity between

pair of graphs such as error correcting graph matching [26], maximum common and min-

imum common subgraph matching utilizing edit distance technique [27], etc. A separate

genre of graph similarity approach is based on considering the local characteristics of the

nodes and the edges. Here, the similarity between a pair of nodes or edges is determined

based on the behavior of the neighboring nodes and edges respectively. Such local it-

erative approaches has been found useful in the hub and authority scoring employed in

web searching [130] [22]. Other algorithms based on similar idea are Similarity Flooding

[156], where two different database structures are matched by representing each database

as graph with labels on the nodes (database elements) and edges (relationships between

elements); SimRank [118], where a graph’s self-similarity (that is the similarity between

pairs of nodes within a single graph) is calculated; determining the evolutionary relation-

ships between species [105] using enzyme graphs; etc. However, all of these approaches

consider only the nodes and its neighbors in order to compute the similarity between

a pair of graphs iteratively. They do not consider scoring the similarity based on the

behavior of the edges. For social network graphs, the nature of relationships between

the actors (graph elements), represented as edges of a graph, are as crucial as the char-

acteristics of the actors themselves. Thus, if the edge similarity is not considered while

computing the similarity scores between the graph structures, major information might

be lost. Thus, in the proposed approach, a coupled node-edge similarity score [228] is

123

adopted. The main idea behind this method is to update edge scores based on node

scores and node scores based on the edge scores. The concept of edge similarity is intro-

duced by defining a relationship between the similarity among the nodes and the edges

as: two edges belonging to two graphs are considered similar if their source and terminal

nodes are similar as well. Let, GA and GB be two graphs with m nodes and p edges and

n nodes and q edges respectively. Let, sA(i), sB(j), tA(i) and tB(j) denote the source

node and terminal node of GA and GB for edges i and j respectively. Let, xij denote the

similarity between nodes i and j of GA and GB respectively and yij is the similarity score

between edges i and j belonging to GA and GB respectively. The equation computing

the edge and node scores for the kth iteration can be represented as:

yij(k)← xs(i)s(j)(k − 1) + xt(i)t(j)(k − 1) (8.1)

xij(k)←
∑

t(u)=i,t(v)=j

yuv(k − 1) +
∑

s(u)=i,s(v)=j

yuv(k − 1) (8.2)

Here, Equation 8.1 computes the similarity score between edges i and j of GA and GB at

the kth iteration by adding the node similarity scores between the sources (s(i) and s(j))

and terminals (t(i) and t(j)) of the edges i and j, computed at the (k − 1)th iteration.

Similarly, Equation 8.2 computes the similarity score between nodes i and j at the kth

iteration by summing up edge similarity scores, obtained at the (k − 1)th iteration, for

all the edges where nodes i and j has been the source and the terminal respectively. A

Frobenius norm is applied at each iteration for normalization. Equation 8.1 and 8.2 can

be represented in matrix form as:

Yk ← BT
s Xk−1As + BT

t Xk−1At (8.3)

Xk ← BsYk−1A
T
s + BtYk−1A

T
t (8.4)

Where, As and At are the edge-source and edge-terminus matrices of Graph A, Bs and

Bt are the edge-source and edge-terminus matrices of Graph B and T represents the

transpose of the corresponding matrix. Edge-source and edge-terminus matrices can be

124

easily derived from adjacency matrices, which are normally utilized to represent a graph

structure. For k = 1, that is for the initial condition, both X and Y are chosen to

be all-ones. The intuition behind this choice is to provide an unbiased initial condition

where all the nodes and edges are considered equally similar to one another. The above

equations are designed for simultaneous update of the node and the edge pairs. But, for

practical implementation purpose, a sequential update is utilized which can be defined

as:

yk = Gxk−1 (8.5)

xk = GT yk (8.6)

or as:

xk = GT yk−1 (8.7)

yk = Gxk (8.8)

Where, G = AT
s⊗BT

s + AT
t ⊗BT

t , x and y are equal to vec(Y) and vec(X) respectively.

However, for the purpose of determining the similarity between the original social network

structure and its representative preview structure, only the node similarity, that is x is

utilized. This is because for all the dataset we used, the nodes have identifiers but have

no edge labels. Thus, for final preview, it only matters whether a particular node is

used as a representative and if it is connected to other nodes by any edge. It is not

important to find out whether a particular edge is utilized in the preview graph or not.

Since, edge representative does not contribute towards the final preview representation,

we omit using the edge similarity matrix. Nevertheless, the node similarity matrix is

generated while considering the edge similarities as well.

Additionally, for each node of the original social network graph, a vector of semantic

scores is defined. The length of the vector and the types of the semantic scores depend

on the dataset and the application. The overall role of an individual in a social envi-

ronment has often been described as an aggregation of sets of relations of various types

125

linking this node/actor as ego to sets of others [96]. In a social network structure, two

elements a and b can be considered structurally equivalent if a relates to every object

x of C (C is the population category to which both a and b belong) in exactly the

same ways as b does. This concept of similarity between two nodes/actors of a social

network can be extended in determining a semantic similarity matrix. For most social

network structures, Centrality has been found to be an important characteristics that

captures the influence and contribution of each node (member) on the overall network.

Centrality is computed based on the structural property of an individual with respect to

other members belonging to the same network. But it also provides information about

semantic properties such as the power/importance/contribution of the individual in its

social environment. Additionally, for labeled or weighted graph structures, where weights

are assigned to the edges and nodes are labeled, they can be utilized as semantic score

metrics as well. In this chapter, the three different centrality values (namely, degree

centrality, betweenness centrality and closeness centrality) are utilized. However, other

specific information, if available for the dataset to be analyzed, can be utilized as well

which will enrich the semantic similarity score vector. For example, for a social network

developed based on the email communications among members of an organization [131],

the rank of the individual in the hierarchy might be utilized as a semantic metric. For

instance, the rank might be categorized as manager, director, or senior engineer. The

communication between individuals, analyzed based on their ranks, might present in-

teresting social network activities. Thus, while computing the similarity between a pair

of nodes or edges, considering the ranks assigned to the nodes (actors) might provide a

more inclusive similarity measure.

For the numerical attributes (such as centrality values), popular Euclidean Distance

function can be utilized to determine the (dis)similarity measure between a pair of nodes.

However, for nominal attributes (such as rank information), definitions of (dis)similarity

becomes non-trivial [55]. A commonly used approach is overlap metric [202], where

126

Table 8.2: Node assignment algorithm maximizing similarity
Node Assignment(C) {
//C is the combined similarity matrix with n rows and m columns.
Set k = min(n, m);
Set cmax = maximum similarity value from the matrix C;
Replace each cij of the C matrix with cmax − cij;
From each row subtract the row minimum;
From each column subtract the column minimum;
For each element of the matrix C {
Find a ‘zero’ ;
Set i = row containing the ‘zero’ ;
Set j = column containing the ‘zero’ ;
if (ith row and jth column do not have a marked ‘zero’)
Mark the zero at the (i, j) cell as ‘starred’ ;
}
Set kcovered = Number of columns containing a ‘starred zero’ ;
if (kcovered 6= k) {
Mark a ‘zero’ as ‘prime’ in a column having no ‘starred zero’ ;
if (row having ‘prime zero’ do not have any ‘starred zero’) {
while (a column has a ‘prime zero’ with no ‘starred zero’) {
Remove marking from each ‘starred zero’ ;
Mark each ‘prime zero’ as ‘starred’ ;
Remove all the covered lines;
}
}
else {
while !(rows having ‘zero’ uncovered) {
Mark this row as ‘covered’ ;
Remove ‘covered’ marking from the column
containing the ‘starred zero’ ;
}
Set uncovered min = smallest uncovered value;
}
For each element of each row marked ‘covered’
Add uncovered min to the corresponding element;

For each element of each column not marked ‘covered’
Subtract uncovered min to the corresponding element;
}
else {
solution set = cells having ‘starred zero’ ;

//row and column values of the starred zero is the assignment pair.
}
}

127

for two possible values vx and vy, the distance is assigned as zero when vx and vy are

identical and one if they are different. The main drawback of this metric is that it

is unable to differentiate between different degrees of similarity and considers that all

attribute values are of equal distance from each other. For example, a director can be

considered more similar to a manager than to a senior engineer, but this differentiation

cannot be translated by the overlap matrix. Thus, real-valued distance metric is often

more desirable. A frequently used real-valued metric is value difference metric (vdm)

[202] which is defined as follows:

d(vx, vy) = w(vx)
∑
c∈C

(P (c|vx)− P (c|vy))
2 (8.9)

Where, C is the set of all class labels, P (c|v) is the conditional probability of class c

given v, and w(vx) =
√∑

c∈C P (c|vx)2 is a weighing factor attaching higher weights

to an attribute value that discriminates a class better. However, vdm has three major

limitations: first, due to the asymmetric nature of the weighing factor (w) it is not a

metric, second, it implicitly assumes attribute independence and third, the class condi-

tional probabilities need to be determined separately from the training data which might

not generate satisfactory results especially when the training data set is limited. Deci-

sion tree classifiers [173] are another approach to handle nominal data but their main

limitations are their inability to handle attribute correlations efficiently and poor perfor-

mance for continuous attributes. An alternative approach is to use Adaptive Dissimilarity

Matrix [55] by learning the dissimilarity between the nominal attribute values. Let us

consider a training set λ = {(x1, y1), ..., (xn, yn)}, with input xi = (xi1, ..., xim) having

m attributes and yi ∈ −1, +1 be the class label. If an attribute X can take values in

VX = {vx1, vx2, ..., vxnx}, the dissimilarity measure (d) between each of these values is a

real-valued function on V XV such that:

0 = d(vx, vx) ≤ d(vx, vy) = d(vy, vx) ≤ ∞,∀vx, vy ∈ V (8.10)

128

The (dis)similarity (d) for a pair xi, xj is defined as:

d(xi, xj) =

√√√√ m∑
X=1

d2
X(xi, xj) (8.11)

Where,

d2
X(xi, xj) = MX(xiX , xjX) = F 2

X(xiX , xjX) (8.12)

Where, MX is the non-negative matrix representing the (dis)similarity between two values

in VX , MX = FX � FX and FX is learned based on the training set λ by minimizing the

classifier error.

Thus for a social network graph having n nodes and to be represented with m rep-

resentative nodes (selected as explained in Section 8.2.1), two nXm similarity matrices

are generated. The first matrix, called the structural similarity matrix, is developed

by applying the coupled node-edge scoring technique and the second matrix, called the

semantic similarity matrix, is developed by applying appropriate distance functions on

the semantic vectors (either numerical or nominal) of a pair of nodes. Thus, each cell

(aXb) of each matrix has the structural or semantic similarity between the nodes a and

b respectively. The two matrices are then combined by following a weighted matrix cell-

by-cell addition as represented in equation 8.13 to form the combined similarity matrix.

Weights (W) are attached by the users depending on the data available and the char-

acteristics of the data to be analyzed and represented. The weight varies from 0.1 − 1.

Lower the weight, lesser is the contribution of the particular similarity matrix towards

the overall similarity. Here, since the main motivation is to demonstrate the performance

and generic characteristics of the proposed graph preview technique without depending

on pre-acquired knowledge of the particular dataset, both the matrices are given equal

129

importance and the weights are set to 1.

c0,0 c0,1 . . c0,m

c1,0 c1,1 . . c1,m

.

.

cn,0 cn,1 . . cn,m

= Wa

a0,0 a0,1 . . a0,m

a1,0 a1,1 . . a1,m

.

.

an,0 an,1 . . an,m

+ Wb

b0,0 b0,1 . . b0,m

b1,0 b1,1 . . b1,m

.

.

bn,0 bn,1 . . bn,m

(8.13)

Where, the left-hand-side of the equation represents the combined similarity matrix, the

right-hand-side represents the structural and semantic similarity matrices respectively,

Wa is the weight attached to the structural similarity matrix and Wb is the weight at-

tached to the semantic similarity matrix.

8.2.3 Node Assignment

Once the similarity between the m representative nodes with the n original nodes is

determined, each of these m nodes needs to be assigned to an original node in such a way

so as to maximize the total similarity score. An extension [30] of Munkres Algorithm

[159] (a combinatorial optimization algorithm) is used to solve the assignment problem.

The assignment problem derives its name from the practice of optimally assigning n

workers to n jobs (each worker to one job only) where there is a fixed cost associated

to each worker performing a particular job. The optimum assignment should result

in a minimum total cost while assigning all the n workers to one of the n jobs. The

original Munkres Algorithm is capable of handling only square matrices. The assignment

problem for square matrices can be formally stated as: given a nXn square matrix

A with each element represented as aij, one needs to find a permutation p (pi; i =

{1, 2, ..., n}) that minimizes
∑n

i=1 aipi
. However, the assignment problem can be extended

for rectangular matrices and is defined in that case as: for a nXm matrix, a set of

k independent elements(where k = min (n,m)) should be determined for which the

130

sum of these elements is minimum. Though, for cost-related assignment scenarios, the

optimum outcome is a total minimum cost, for assignment scenarios based on similarity

measure, the optimum outcome is a total maximum similarity. So, an initial step is

added to the original algorithm, where values of each cell in each row of the combined

similarity matrix is subtracted from the maximum value among all the entries. The

version of the Munkres Algorithm, as used in this chapter, is presented in Table 8.2.

The nXm combined similarity matrix is created where n is the total number of nodes in

the original social network graph and m is the number of selected nodes to be utilized

as representatives. If necessary, the matrix should be rotated to ensure that m ≤ n.

Since, for our purpose, m is always much less than n, the rotation is not necessary. As

the combined similarity matrix is a rectangular matrix, the k (as discussed above for

extended munkres algorithm) need to be computed. Next, the minimum value from

each row is subtracted from each corresponding row value. The same is then repeated for

column values as well where the minimum value from each column is subtracted from each

column entry. Each element of the resulting matrix is then searched for a ‘zero’ value.

If there is no other ‘zero’ element marked ‘starred’ in that particular row or column,

the corresponding entry is marked ‘starred’. Next, each column containing at least one

‘starred zero’ is marked as ‘covered’. If k columns has already being marked ‘covered’,

the ‘starred zero’ s describe a complete set of unique assignments and the process is

complete. However, if k columns are not ‘covered’ so far, a ‘noncovered zero’ is found and

marked as ‘prime’. If the row containing this marked ‘zero’ do not have a ‘starred zero’,

alternating ‘zero’ s are marked ‘starred’ or ‘primed’ respectively. On the other hand, if the

row containing the aforementioned ‘primed zero’ has a ‘starred zero’, the particular row

containing the ‘primed zero’ is marked ‘covered’ and the ‘covered’ marking is removed

from the particular row containing the ‘starred zero’. The smallest ‘uncovered’ value

is then sequentially added to each element of every ‘covered’ row and subtracted from

each element of every ‘uncovered’ column. The process is repeated for each ‘noncovered

131

zero’ until k columns are covered. The time complexity of the implemented version of

the algorithm is O(n3). However, the complexity can be decreased to O(n2) by adopting

the dynamic version of the algorithm as proposed in [209]. After the completion of the

assignment process, each representative node has been assigned to an unique original

node and these m assigned original nodes are used for the remaining steps of the the

social network preview generation technique.

8.2.4 Representative Graph Generation

In order to generate the final representative preview of a social network graph, the rep-

resentative nodes, assigned to the original nodes, need to be connected via edges to form

a graph structure. The technique by which edges are added between a node pair deter-

mines the structure of the resulting graph. Since preserving the structure of the original

graph, as closely as possible, in the representatives is the primary goal of the proposed

approach, the edge-connectivity criteria is very crucial. Table 8.3 presents the algorithm

which generates the final representative graph to preview a large social network graph

structure. The input is an array A containing the indices of the nodes of the original

graph that the representative nodes are assigned to. The edge connectivity (whether to

connect a node pair directly by an edge) is decided based on the shortest path length

between the node pair being considered. The process starts by initializing the represen-

tative graph (Gdisp) with m nodes and an empty set of edges. The m nodes are selected

from the indices of the original graph stored in the A matrix. The shortest path between

each node pair is computed from the original graph. Though this is a computationally

expensive task, but it can be performed offline and only once for each graph. For each

node i in the final display graph, the maximum length of the shortest path between i

and all other nodes in the original graph is determined. For each node-pair (i, j) in A,

132

the allowed path length ratio is determined. It is defined as:

allowed path length ratio[i, j] =
shortest path[i, i]

Max SP [i]
(8.14)

Where, shortest path[i,j] is the length of the shortest path between the nodes i and j and

Max SP[i] is the maximum length among the shortest paths between node i with all other

nodes of the original graph. For each pair of nodes in A, if the allowed path length ratio

is greater than or equal to a cut off value, the node-pair (i,j) is connected via an edge

and the edge is added to the edge set of the representative graph Gdisp. The denomi-

nator of allowed path length ratio is set as Max SP [i] because it provides information

about the overall edge-connectivity characteristics of the particular node in the original

graph. A higher value for Max SP [i] suggests that this node has a high reachability

in the Graph and connects to distant neighbors. A higher value for Max SP [i] lowers

the allowed path length ratio. Thus, for the same cut off value, a node with a higher

Max SP [i] has a greater chance of being connected via an edge to another node than a

node with a lower Max SP [i] (suggesting its lower reachability in the Graph). The cut

off value should range between 0 and 1. Lower values make the edge connectivity criteria

strict whereas higher values loosen this requirement condition. If this value is kept too

low, very few edges will be connected and would lead to a disconnected final graph. On

the other hand if it is kept too high, almost all the nodes will be connected to each other.

There cannot be a fixed threshold value, applicable to all graphs. The cut off value

needs to be determined dynamically for individual graphs after determining its over-

all connectivity characteristics. One approach is to find the allowed path length ratio

for every node in the original graph during the pre-analysis phase. The average of the

allowed path length ratio is then utilized as the cut off value. Other approaches include

running the algorithm through several iterations with different cut off values in differ-

ent ranges and picking up the appropriate one. For example, for a largely disconnected

graph, different low cut off values, such as between 0.1 − 0.2 are tried. Whereas, for a

133

densely connected graph, higher values in the range 0.5 − 0.75 are utilized in different

iterations.

Table 8.3: Representative graph generation
Preview Graph Generation(A) {
//A is the array containing ids of the original nodes to which the representative

//nodes are assigned.
Initialize output graph Gdisp with m nodes and empty vertex set;
for each node i in original graph {
for each node j in original graph {
Set shortest path[i,j] = shortest path length between

node i and j in the original graph;
}}

for each node k in A {
Set Max SP[k] = Max(shortest path [k]);
//Max SP stores the maximum of the shortest path length

//between node k and all other nodes in graph.
}
for each pair of nodes (i and j) in A {
Set allowed path length ratio[i, j] = shortest path[i,j]

Max SP [i]
;

if (allowed path length ratio[i, j] ≤ cut off ratio) {
Add node i and j by edgeij;
Add edgeij to Gdisp;
}}

output: Gdisp

}

8.3 Evaluation Score

Evaluating the generated representative preview graphs, in terms of similarity to the

original graphs, is largely based on perspective of the individual and can be imprecise in

nature. However, since preserving the overall structure of the original graph in the repre-

sentative graph is the main motivation of this research, an overall structural comparison

of the graphs is utilized for the evaluation purpose. The structure of a social network

graph can be determined by measuring the degree of similarity between connected nodes

(dyads). [161] proposes a measure to quantify this similarity using assortative mixing by

134

Table 8.4: Data set characteristics
DataSet # of Nodes # of Edges Average EC

adjnoun 112 850 0.565733
celegansneural 297 2359 0.720667

enrongraph 500 215 400 0.730867
enrongraph 5000 516 5000 0.7972
enrongraph 10000 628 10000 0.7377

karate 34 156 0.433467
lesmis 77 508 0.5339

netscience 1461 5484 0.945133

determining the correlation between centrality measures of every node-pair. An alter-

native approach is using Euclidean distances to measure the similarity between dyads,

which has been found to be more precise in determining the overall structural character-

istics of a social-network graph [122]. As centrality has been found to capture the overall

characteristics of a social network structure based on individual actor behaviors, the

Euclidean distance computation utilizing centrality of all the dyads of a social network

graph provides an overall structural measurement metric. The structure of a social net-

work graph is determined by the ties or the relations among the nodes. The two extreme

structures resulting from such ties are star configuration (where every node is connected

to a single node) and circle configuration (where every node is connected to every other

node). Thus EC , defined in Equation 8.15, provides information about the structural

characteristics of the graph (if it is having a star configuration or a circle configuration or

a configuration in-between). The Euclidean distance based on equi-centrality is defined

as:

EC = 1−
∑M

k=1

√
(cik − cjk)2

max(
∑M

k=1

√
(cik − cjk)2)

(8.15)

Where, cik and cjk are the normalized centrality values of actors i and j connected by

the edge k, i, j = 1, 2, ..., N , k = 1, 2, ...,M , N is the number of actors in the network

and M is the number of dyads.

The denominator is the maximum possible value of the numerator (presented in Equa-

tion 8.16) and is used as a normalizing factor. When the graph has a star configuration,

135

the numerator becomes maximum since every actor is connected to a single central actor,

the centrality of the node at one end of the edge (cjk) is always zero (illustrated in Figure

8.1(a)). Hence, the numerator becomes:

numerator =
M∑

k=1

cik (8.16)

EC has a minimum value of 0 when the graph has a star configuration and the numerator

and the denominator of the second term of Equation 8.15 becomes equal. It attains a

maximum value of 1 when the graph has a circle configuration (Figure 8.1(b)) where

all the actors have exactly the same centrality value and the numerator of the second

term of Equation 8.15 becomes 0. Thus, when EC of a particular graph is high, it

indicates that the actors in it tends to associate with others who have similar central

position in the network. On the other hand, when EC of a particular graph is low, it

suggests that actors having more central locations interact with actors with less central

positions in the network. As there are different types of centrality calculations, such as

degree centrality, betweenness centrality and closeness centrality, there can be different

EC measures depending upon the type of centrality used. Thus, from the score of EC , one

can derive information about the overall structure of the social network graph structure,

whether it is tending towards a star or a circle configuration.

Figure 8.1: A graph with (a) Star configuration (b) Circle configuration

To evaluate how close the generated representative graph is to the original social

network, their structural metrics are compared. For a pair of original graph and its gen-

erated preview graph, the EC values are calculated and the percentage error (ErrorO,R)

136

is determined as:

ErrorO,R = |(ECO
− ECR

)

ECO

|X100 (8.17)

Where, ECO
and ECR

are the overall Centrality-based Euclidean Scores for the origi-

nal and the representative graphs respectively. Lower the ErrorO,R value, closer is the

structure of the representative graph to the original graph.

Table 8.5: Generated pre-determined representative graph characteristics
DataSet # of Nodes # of Edges Average EC

adjnoun 59 102 0.722567
celegansneural 153 374 0.822433

enrongraph 500 122 174 0.596967
enrongraph 5000 294 1118 0.725767
enrongraph 10000 346 1901 0.7765

karate 17 19 0.596067
lesmis 35 55 0.8504

netscience 275 2637 0.8972

8.4 Data Set

In this chapter, eight social network data-sets with different characteristics and sizes have

been used for demonstrating the effect of the proposed algorithm. The dataset adjnoun

[162] is the adjacency network of common adjectives and nouns in the novel David Cop-

perfield. The dataset celegansneural [217] is a network representing the neural network

of C. Elegans. The datasets enrongraph 500, enrongraph 5000 and enrongraph 10000

are social networks developed from the e-mail communications among employees in an

organization [131]. In order to demonstrate the effect of size, the same dataset with

different number of data elements is used (number of data elements in enrongraph 500

< enrongraph 5000 < enrongraph 10000). The dataset karate [230] is a social network

of friendships between 34 members of a karate club at a US university in the 1970s. The

dataset lesmis [132] is the co-appearance network of characters in the novel Les Mis-

erable. The dataset netscience [162] is the co-authorship network of scientists working

137

on network theory and experiments. The input data is in the form of GML (Graph

Modeling Language) [107]. Each dataset has been pre-analyzed to derive an idea about

the characteristics of these social network data. These measures can be compared with

that of the generated preview graphs for evaluation. Since, centrality is an important

property of a social network structure, three different centrality values, namely degree

centrality, betweenness centrality and closeness centrality are determined and presented

in Figure 8.2.

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n
 o

f
C

e
nt

ra
li

ty

Data Set

Standard Deviation of Centrality for Original Social Network

Degree Centrality

Figure 8.2: Characteristics of the original social network graphs

Additionally, different statistics of the individual dataset is computed, such as num-

ber of nodes in the social network graph (actors), number of edges (relations between the

actors) and the average EC (as explained in Section 8.3). Also, the standard deviation of

the centrality values is calculated to obtain the centrality distribution. Table 8.4 presents

the characteristics of the input data. As EC provides information about the general struc-

tural characteristics of the social network graph (0 for star configuration and 1 for circle

configuration), from the value of average EC , it can be deduced that adjnoun and lesmis

has neither a complete star configuration nor a complete circle configuration. Thus, in it

the actors uniformly associate with one another and do not have a preference of either as-

138

sociating with others similar in position (power) to itself or with those who are different.

On the other hand, celegansneural, enrongraph 500, enrongraph 5000, enrongraph 10000

and netscience, all have high EC thereby suggesting that in these datasets, actors tend to

network with other actors who are similar to it (or having similar positions/power in the

data set). Thus, intermingling among different categories is less. Conversely for dataset

karate, a low EC suggest that intermingling is large (that is actors having more central

positions associate with ones having less central positions).

8.5 Empirical Analysis

In this section, a detailed experimental analysis of the proposed social network preview

technique is presented with different types of social network data varying both in source,

size as well as in network structure. For each data-set, four representative social network

graphs are generated, namely Pre-determined Representative Graph (Representative I),

Random Representative Graph (Representative II), Clustered Graph (Clustered I) and

Random Clustered Graph (Clustered II). Representative I and Representative II are gen-

erated by utilizing the proposed preview generation algorithm utilizing graph similarity.

The only difference between them is in the initial sampling process. While Representa-

tive I uses a centrality-based stratified sampling technique, Representative II adopts a

random sampling without replacement method. For both Representative I and II, the

structural similarity matrix is computed using an iterative edge-node coupled similarity

computation method. For all the datasets used, the number of iterations (k) necessary

for the solutions to converge range from 3− 5. Since the most popular existing method

of representing social network graphs with fewer nodes/edges is via Clustered Graphs,

the approach proposed in this chapter is compared with them. There can be several

techniques of generating clustered graphs as discussed in Section 8.1. The two important

steps of generating clustered graphs are (i) constructing the clusters and (ii) connecting

139

the clusters forming graphs. For unbiased comparison purposes, we formed the clusters

based on centrality criteria as Representative I and II use centrality for the initial sam-

pling. The average of three different centrality measures (namely degree, betweenness

and closeness) are calculated for each node of a social network graph and are sorted. 20%

of the nodes are used as initial cluster seeds or cluster centers. These 20% of the nodes

should have preferabely unique centrality scores. Each node (the cluster center) is checked

for adjacent nodes, not already in another cluster. If any such node is found, it is inserted

into the corresponding cluster. Thus, clusters are formed based upon interactions among

the neighboring nodes. This approach is adopted to introduce the notion of locality in

the clustered-graphs and to make them comparable to the preview representatives, gen-

erated with the the proposed technique, where neighboring nodes influence the similarity

scores between the nodes. Once the clusters are formed, a graph structure is obtained by

connecting the clusters with edges (relations). Two clusters are connected via an edge

if there is at least an edge between two nodes belonging to each cluster. For example,

let us assume two clusters A and B with i and j nodes respectively. Let, {a1, a2, ..., ai}

and {b1, b2, ..., bj} be the node-sets belonging to clusters A and B respectively. Clusters

A and B are connected via an edge in the clustered graph Gclustered, iff ∀ A,B; ∃ edgers

between some ar,bs. Clustered II is generated following the same algorithm with the only

difference in the way the initial cluster seeds are selected. For Clustered II, 20% of nodes

from the original social network graph are selected as cluster seeds randomly. The main

reason for selecting 20% of the original nodes as representative cluster seeds is due to the

fact that for the given datasets, most did not have more than 20% nodes with unique

centrality values. The reason for preferring unique cluster seeds is to make the clusters

as disjoint as possible (which is the baseline for good cluster generation).

The statistics of the representative graphs, generated with different techniques, is

presented in Tables 8.5, 8.6, 8.7 and 8.8. Table 8.5 presents the characteristics of the rep-

resentative preview graph generated utilizing the proposed method with pre-meditated

140

sampling. Comparing the Average EC score between Representative I and the Origi-

nal Graph, it can be concluded that the generated representative preserves the original

structural characteristics better when the data set is large. This can be seen from the

EC scores for the dataset enrongraph 10000, enrongraph 5000 and netscience, having the

three highest number of nodes among the given dataset in Table 8.4 (628, 516 and 1461

respectively). This is mainly because larger datasets have more sample points and more

well-identified distributions which help in capturing the characteristics better.

Table 8.6: Generated random representative graph characteristics
DataSet # of Nodes # of Edges Average EC

adjnoun 54 82 0.742867
celegansneural 112 327 0.873733

enrongraph 500 114 173 0.552133
enrongraph 5000 211 513 0.700767
enrongraph 10000 307 1435 0.760067

karate 5 3 0.532867
lesmis 29 37 0.830433

netscience 134 620 0.887633

Table 8.6 presents the characteristics of the representative preview graphs generated

utilizing the proposed method with random sampling. They behave in a similar way

to Representative I though with a slightly higher EC error. Though for a few instances,

Representative II performs better than Representative I, this behavior can be contributed

to the randomness of the selection process and is not a trend. If the random samples are

able to capture the distribution of the original dataset closely, the final representative

graph has a close structural resemblance to the original graph. Whereas, if the random

samples fail to capture the distribution, the final results deteriorate. However, it should

be noticed that the effect of the initial sample selection is not that pronounced in the

proposed approach. The similarity computation, the node assignment and the graph

generation steps together are able to produce impressive final results independent of the

initial selection techniques. This further demonstrates the domain-independence of the

proposed technique as the only place where any domain knowledge might be necessary is

141

the initial node selection step. Thus, since the performance is consistent even for random

selections (where no domain-information is used), the claim of the generic nature of the

proposed algorithm is established.

Table 8.7: Generated clustered graph characteristics
DataSet # of Nodes # of Edges Average EC

adjnoun 9 36 1
celegansneural 26 264 0.082067

enrongraph 500 14 52 0.251167
enrongraph 5000 52 821 0.121433
enrongraph 10000 61 1336 0.091967

karate 6 11 0.041467
lesmis 9 29 0.076433

netscience 18 93 0.118167

Table 8.7 presents the characteristics of the representative preview graph generated

utilizing a clustered graph approach as discussed before. The EC error is higher than

the proposed approach for all the datasets. This is due to the drawback of the clustered

graphs where the overall structural similarity is not preserved naturally in the repre-

sentative preview graphs. Table 8.8 presents the characteristics of the representative

preview graphs generated utilizing clustered graph technique with random initial cluster

seed selection and performs very poorly in terms of EC error. This is due to two reasons:

first, just as clustered graphs (Clustered I), natural structure conservation is absent and

second, random initial cluster seeds might fail to pick up the most suitable ones (those

that are capable of forming disjoint clusters) which further deteriorate the performance.

Figure 8.3 compares the data characteristics in terms of centrality values of the repre-

sentative preview graphs generated using different discussed techniques with the original

graphs. Figure 8.3(a) compares the degree centrality values, Figure 8.3(b) compares the

betweenness centrality values and Figure 8.3(c) compares the closeness centrality values.

It can be seen that both Representative I and II have values closer to the original graphs

than the clustered graphs. Similar deductions can be made from Figure 8.4, where EC

of the different preview graphs generated using different techniques is compared with the

142

(a)

(b)

(c)

Figure 8.3: Comparison between original graph and representative graphs for (a) Degree
centrality, (b) Betweenness centrality, (c) Closeness centrality

143

Table 8.8: Generated random clustered graph characteristics
DataSet # of Nodes # of Edges Average EC

adjnoun 9 22 0.1825
celegansneural 30 207 0.223467

enrongraph 500 8 21 0.028033
enrongraph 5000 39 334 0.092567
enrongraph 10000 57 551 0.175767

karate 4 5 0
lesmis 9 18 0.2359

netscience 17 60 0.335233

original graphs. It can be seen here as well that Representative I and Representative II

have closer EC values to the original graphs than the clustered graphs.

Figure 8.5 compares the performance of the proposed technique (Representative I and

Representative II) with clustered graphs (Clustered I and Clustered II) in terms of the EC

error as presented in Equation 8.17. The proposed algorithm produces less error than the

clustered graphs. The average percentage error for Representative I and Representative

II is 24% and 25% respectively whereas for Clustered I and II, the average percentage

error is as high as 84%. The representative preview graphs generated with the proposed

algorithm along with the original graph structures and the clustered graphs are presented

in Figures A.1 - A.28 for most of the datasets for visual comparison. Since Random

Clustered Graphs have similar characteristics as Clustered Graphs, their representations

are not presented in these figures. As pointed out before, evaluation of the representative

graphs is imprecise and though the visual representations provide some preliminary ideas

about the overall similarity between different graph structures, precise scores such as EC

is nevertheless very important for more precise conclusions.

8.6 Multimedia Data Network

When a multimedia data corpus is shared by multiple users in a collaborative environ-

ment, the pattern of the user behavior affects the relationships among the data. This

144

(a)

(b)

(c)

Figure 8.4: Comparison of EC between original graph and representative graphs using
(a) Degree centrality, (b) Betweenness centrality, (c) Closeness centrality

145

(a)

(b)

(c)

Figure 8.5: Comparison of EC error between original graph and representative graphs
using (a) Degree centrality, (b) Betweenness centrality, (c) Closeness centrality

146

relationship between the data might change with different user groups even if the data

corpus remains the same. Thus for each user group, the relationships between multime-

dia data objects can be modeled as a graph, replicating the representation of a social

network. Such a representation of the multimedia data corpus, modeled based on the

user behavior, can be termed as a Data Network. Each multimedia data object is repre-

sented as a node in the graph and can be considered as an actor (to keep the resemblance

with a social network). The relationship between the data objects are represented as

edges. These relationships are determined from the users behavior, that is how the users

have used these multimedia data objects together. The result is a model of the entire

multimedia data corpus depicting their inter-relationships for a particular user group. It

should be mentioned here that just like a social network, the type of relationship between

the multimedia data varies and depends on the application from which the user behavior

has been collected.

One of the most important and common relationships between a pair of multimedia

data is similarity. Since the concept of similarity between multimedia data is an imprecise

but nevertheless a very fundamental factor in guiding the management and organization

policies, here, the data network is modeled based on the similarity relationships between

the multimedia data. Furthermore, the main motivation of this dissertation is to develop

an index structure that can accommodate the different characteristics and behavior of

multimedia data. Thus, the primary interest was to ascertain that the data network

developed can improve the proposed index structure and make it more flexible and effi-

cient. Since, the index structure has to primarily handle content-based similarity queries,

developing the data network modeled on similarity and utilizing it to better design the

index structure is the desired outcome. Keeping all the above requirements in mind, the

data network for the multimedia data corpus is built based on the similarity which is

measured as the number of times users belonging to a particular group have thought two

images to be similar to each other. To emphasize on the degree of similarity, a weighted

147

graph representation is used where the varying weights are demonstrated with variable

thickness of the edges. Figure 8.6 presents a sample of the data network generated for

100 images from the COREL data corpus. The similarity information is collected from a

content-base image retrieval application where users are given the option to mark images

similar to a submitted query. The data has been collected from several users belonging

to the student community of Florida International University, for over five years. As seen

in Figure 8.6, such graph is often disconnected. Images form clusters and similar images

are clustered together at different regions of the Data Network. Also, it should be noted

that the edges (relationships) have a varying thickness. More is the thickness, stronger is

the users’ perception of similarity between that pair of image. The entire COREL data

corpus has been modeled in Figure 8.7. As described in this chapter, since the size of

the generated Data Network for 10000 images is large and hence visually analyzing it

becomes quite difficult. The proposed graph preview technique can be as well utilized to

generate representatives of the Data Network with fewer number of nodes and edges.

8.6.1 Analyzing Multimedia Data Network

In order to utilize the information gathered from the generated Multimedia Data Network

to design the database components of the multimedia database management system, the

Multimedia Data Network needs to be analyzed. Since, the Multimedia Data Network is

modeled based on Social Network structures, characteristics related to a social network

are used. It has been discussed in details in the beginning of this chapter how centrality

plays an important role in capturing the behavior of an individual element of a social net-

work with respect to the overall network structure and characteristics. The three types of

centrality, namely Degree Centrality, Closeness Centrality and Betweenness Centrality is

computed for all the elements of the entire Data Network. For brevity, 100 top centrality

values along with the corresponding image ids are presented in Appendix A in Tables

A1, A2 and A3 respectively. Table A1 presents the 100 highest degree centrality values,

148

Table A2 presents the 100 highest closeness centrality values and Table A3 presents the

100 highest betweenness centrality for the COREL database.

Improving GeM-Tree Utilizing Multimedia Data Network

It should be recalled here that though the retrieval strategies supported by the proposed

index structure consider the high-level semantic relationships among the multimedia data

objects, the generation of the index structure along with the corresponding operations

such as insert, delete, and update are based on only the low-level features of the data.

As presented in Lemma 4.3.1, the high-level relationship could not be included while

constructing the GeM-Tree without violating the properties of the underlying metric

space. Thus, the feature-level similarity computation (also called the distance) between

a pair of multimedia data objects is the only factor deciding the distribution of the data

objects in the metric space. This definitely has its disadvantages especially when the

dataset is such that the low-level features are unable to translate the high-level semantic

similarity.

Under those circumstances, the generated Data Network and the subsequent analysis

can help to introduce the concept of high level similarity into the index structure. Some

typical decisions related to the index structure that might be derived from the semantic

network and the analysis of the various properties are as follows:

1. Insertion Policies: As recalled from Chapter 4, the insertion policies applied to a

node of an index structure greatly affects the subsequent performances of the index

structure. It is essential to pick up the appropriate node where an incoming data is

to be inserted as it influences the similarity search results. If an appropriate node

is not chosen during insertion, it may lead to false dismissals of potential query

results, thus reducing the accuracy or might result in unnecessary traversal of a

particular node, thus increasing the computation cost. The insertion policy used in

the proposed index structure follows the rule of picking up a node as a candidate

149

which has no or minimum increase in the covering radius as expressed in Equation

8.18 and 8.19 respectively and discussed in details in Section 4.2.4.

d(Or, On) ≤ r (8.18)

∀ Op, Oq, pick Op if

d(Op, On)− rp ≤ d(Oq, On)− rq (8.19)

It can be noted here, that the above policy is entirely determined based on the

low-level feature distances. The d used in both the equations essentially measures

the distance between the feature vectors of the candidate multimedia data object

and the multimedia data object to be inserted. To the best of our knowledge, there

is no existing insertion policy that considers the high-level semantic relationships

between the multimedia data objects as well. The Centrality value can play a

pivotal role in this case. More specifically the degree centrality should be utilized

along with the low-level feature similarity to select the intermediate tree node where

new data should be inserted. Hence, if a node with a higher degree centrality is

chosen as a candidate node where a new data object is to be inserted, after it passes

a certain threshold of feature-level similarity with the data object, the probability

that these two data objects are semantically related becomes larger. Thus, if there

are two candidate nodes with comparable feature level distances (similarity) with

the data object to be inserted, its a prudent choice to pick up the one that has a

greater degree centrality as the particular node is more important and influential in

the semantic network and has been voted, by users, as similar to more data objects

in the database than the other one. For example, during insertion of a particular

image object, say it has almost equal low-level similarity with images #198 and

#7226, each having a degree centrality value of 0.97 and 0.74 respectively, with

the low-level similarity slightly higher with image #7226. But, since the degree

centrality of image #198 is much higher that that of the other, image #198 can

150

be chosen to be the node where the incoming data is to be inserted. Elementary

experimental results demonstrated the effectiveness of the above concept. Such

approach can be also utilized when a tie is reached during the splitting of a full

node during insertion. The approach introduces the concept of high-level semantic

relationships between multimedia data objects in the tree structure itself without

violating the metric properties.

2. Deletion Policies: At present, whenever a delete request is received from an user,

it is executed, without any consideration of the effect it might have on the exist-

ing semantic relationships among the data objects. But, frequently such decision

might lead to removal of important semantic links, useful in the retrieval techniques

and thus affecting the performance of subsequent query results. The property of

betweenness centrality can be utilized to determine the cascading effect that a mul-

timedia data object might have on the rest of the network. If there are several

strong semantically related pairs linked via a particular data object, it is certainly

not a good idea to remove it from the database. Thus, while a deletion request

is received, before acting upon it, it is efficient to analyze its importance in the

semantic network. If it is a crucial data object, the user should be notified of the

effects that its deletion will have and possibly avoid such action.

Another important usefulness of this data modeling is to understand the collaborative

behavior of the multimedia data and utilize it to customize the index structure so as to be

able to serve applications where multimedia data need to be managed in a collaborative

environment. It is worth mentioning here that not only the index structure but other

components of the database management framework such as the query processor, query

optimizer, etc. might be designed differently with the behavioral information of the

multimedia data gathered from such Data Network.

151

Figure 8.6: Sample data network for 100 images from COREL

152

Figure 8.7: Complete data network for 10000 images from COREL

153

8.7 Conclusion

In this chapter a social network preview technique utilizing graph similarity is proposed

which represents a large social network graph with fewer nodes and edges. Thus, visu-

alization and analysis of such large social networks become convenient. The proposed

approach largely preserves the original social network structure in the representative

graphs. It uses an edge-node coupled graph similarity method to compute the struc-

tural similarity between the nodes of the original and the representative graphs and an

euclidean distance based metric to compute the semantic similarity between them. A

node assignment approach is adopted utilizing an extended Munkres Algorithm to assign

each representative node to a node of the original graph so as to maximize the total

similarity between the two graphs. A final preview graph is generated by appropriately

connecting the representative nodes following a novel graph generation method based on

shortest path lengths. The generated graph structures are evaluated and compared with

the original graphs using a metric based on centrality scores which can provide important

information about the overall structure of a graph. Extensive experiments are performed

with different social network data belonging to different genres and having different char-

acteristics and sizes. The proposed technique is compared with a popular graph preview

approach, the clustered graph method. Experimental results demonstrate that the pro-

posed algorithm is capable of generating representative social network previews with low

percentage error and closely preserves the overall characteristics of the original social

networks. The proposed technique also performed better than the clustered graph meth-

ods. Thus, it can be concluded that the proposed technique is a promising method and

has potential for future improvements. The concept of social network representation is

extended to model multimedia data relationships for a given data corpus to form Multi-

media Data Networks. The generated Data Networks are analyzed to collect important

information about individual data object with respect to the entire network. These prop-

erties can be utilized to introduce the concept of high-level semantic information into the

154

proposed index structure to improve the quality of query results without violating the

properties of the underlying search space.

155

CHAPTER 9

A DISTRIBUTED MULTIMEDIA DATA MANAGEMENT OVER THE

GRID

9.1 Introduction

Grid computing can be described as a form of distributed computing which combines the

power of several computing nodes of varied computing resources to execute one or more

tasks collaboratively in a seamless and transparent manner without any central control

[80][81][82]. In the recent years, the popularity of Grid Computing has enabled experts

from different scientific backgrounds to use its high computing power to execute compu-

tation intensive applications. Often these applications are data intensive like in protein

folding, semiconductor manufacturing, and DNA sequence analysis. Such applications

need a well defined data management within the distributed Grid environment.

There are basically two different approaches of designing a Data Grid: namely man-

agement of static data and supporting dynamic data sets. The first approach is also

called Level 0 Data Grid [40]. It does not address data management issues as updates,

transactions, integrations, etc., which are typical to data that changes with time. Basi-

cally, it addresses two fundamental issues: data access and meta data access. The data

access provides managing, accessing and transferring data that are stored in the stor-

age (typically as file systems). It essentially implements a storage system abstraction

so that the applications need not be aware of the specific low-level policies utilized in

the data management. The meta-data service provides a mechanism for presenting and

using the information about the data (stored in the files). Different categories of meta

data can be used: such as content information of the file, data creation environment,

and application-specific information related to the data. Apart from the two basic func-

tionalities, Level 0 Data Grid provides some added services such as authorization and

authentication, resource allocation, and performance evaluation. Level 1 [203] data Grid

156

is for dynamic data sets and accommodates methods such as access, management, trans-

action and synchronization of data. To develop data Grids comparable in performance

and robustness to the traditional data management techniques, features including index-

ing, querying, and transaction management should be provided effectively as well. These

features should be incorporated seamlessly along with features which are typical to Grid

environment such as data regionalization, data synchronization, and load balancing.

As it has been already discussed, multimedia data is more complicated than tradi-

tional text-based data both in representations as well as in access mechanisms involved

during their retrievals. Thus, any data management framework for multimedia data

should be able to accommodate the atypical characteristics of multimedia data: namely

the multidimensional representation and the semantic information. Though multime-

dia data is more complex than traditional text-based data; they are a popular media

of communication due to their expressiveness. Thus, their presence and requirements

in today’s popular applications cannot be avoided. Hence, to enhance the usability of

Grid environment, the data Grid should be able to manage multimedia data effectively

as well. But, since multimedia data is quite different from traditional text-based data,

their management frameworks should also be different. For example, the index structure

for multimedia data should be multidimensional as opposed to the popular single dimen-

sional index structures of text-based data. Additionally, since their information needs

are different, the retrieval methodologies that the database system, managing multimedia

data, should support are different too. All these calls for a dedicated multimedia data

management framework over the distributed environment of a Grid architecture.

The Internet can be considered as a distributed environment and can be simulated

with a Grid architecture. Several popular applications such as social networks, collabora-

tive tools, and search use multimedia data heavily. Thus a multimedia data management

architecture for Grid environment can be considered as a prototype for investigating mul-

timedia data management within the Web environment. One specific application which

157

can benefit immediately from such prototype is multimedia search. Currently, the mul-

timedia search is based on keywords or annotations. Such search paradigm degrades the

relevance of the search results manifold. Firstly, a single multimedia object (an image or

a video) can have multiple high-level semantic meaning attached to it as the semantics

vary with the perspective of the user who labels it. Thus, one keyword will be unable to

capture the different aspects of different users. Secondly, the multimedia data is repre-

sented and stored as multidimensional feature vectors. Thus, for a keyword-based search,

during retrieving them from the underlying storage, a relationship need to be established

between the low-level features and the high-level semantics (keywords with which they

are labelled). This relationship is often fuzzy and there exists a gap between them, called

the semantic gap. This affects the relevance of the query results and degrades the quality

of the search results. The best approach is to introduce a content-based search paradigm

for multimedia data which will be distributed over the Internet. Thus, a successful layout

of a multimedia data management and content-based retrieval system over the Grid will

be a potential solution for solving the problem of managing multimedia data in the Web

environment.

In this chapter, we lay down the framework for distributed multimedia data man-

agement over a Grid computing environment. It comprises of two types of components:

firstly, components related to the multimedia data management such as index structure,

and query manager; and secondly, components related to the Grid architecture like au-

tomatic load balancing techniques, and replica management policies. These two sets of

components should seamlessly communicate with one another so that the overall goal of

achieving multimedia data management over a distributed Grid environment is achieved.

A database management system is primarily composed of two major blocks: a robust stor-

age and efficient well-rounded retrieval mechanisms. An index structure is the backbone

of both and is the useful connection between them. Traditional single dimensional index

structures such as B-Tree [14] cannot handle the multidimensional feature vectors that

158

are used to represent the multimedia data. Though there are numerous multidimensional

index structures such as those in [60][35] that can handle the multidimensional aspect

of the multimedia data but they lack the capability to handle the high-level semantic

relationships efficiently. In this dissertation, we proposed a generalized multidimensional

index structure, GeM-Tree [47] designed for efficient management of multimedia data

comprising of images and videos. In this chapter, we extend the usability of such mul-

timedia index structures in a distributed Grid environment. We propose a distributed

query management technique which embeds a content-based similarity search into a k-NN

based algorithm in a distributed environment. We also introduce Grid specific compo-

nents including a load balancing manager and semantic relationships manager between

Grid nodes to enable the proposed multimedia database framework to be used success-

fully in a Grid environment. Extensive experiments with varied data loads and number

of computation nodes are performed. The promising results demonstrate the usability of

the proposed architecture and its potential extensibility.

The rest of the chapter is organized as follows. Section 9.2 presents a discussion

on the related works in the field of distributed data management techniques and Data

Grids. Section 9.3 lays down the overall framework of the proposed system and discusses

the different components in details. Section 9.4 provides a detailed empirical study of

the proposed system. Section 9.5 presents a brief conclusion and future direction of this

research.

9.2 Related Work

In this section, we study the existing works on three important aspects: Distributed

Multimedia Database Management Framework, Distributed Index Structures and Data

Grids. Developing a successful distributed multimedia database management framework

over the Grid environment is basically a seamless combination of all these different as-

159

pects. Thus, understanding the characteristics of each aspect would help to clearly define

the capabilities that should be incorporated into the proposed architecture. Also, it would

help to identify the limitations of each individual aspect when handling multimedia data

in a distributed Grid environment. Thus, this survey of related works would enable to

appreciate the necessity of an effective multimedia data management framework to be

incorporated into a Grid architecture.

Though there are some proposed architectures for distributed multimedia database

systems such as [20][116], none of them discusses the intrinsic database components;

for example, index structures, and query manager in a distributed environment. [116]

proposes an object-oriented database with an object request broker (a brokering server).

It uses specialized repository servers for storing different multimedia data types. Using

specialized servers enable some query functionalities such as content-based retrievals, and

optimized access to be allocated at the repository level rather than at the database level.

Thus clearly, here the data storage is separated from the main database functionalities.

Hence, different database tuning and optimization techniques, those depending on both

the data stored as well as on the user accessibility, such as query optimization, query

cost determination, and index structures cannot be used seamlessly across the entire

framework (since storage and database functionalities are separated). [20] also treats

each multimedia data as an object and does not represent it as feature vectors. Hence,

there is no well-defined index structure to facilitate efficient storage and retrieval based

on the contents. The retrieval is done with object graphs where two levels of object

graphs are used: namely local and central. Thus, the logical relationships among the

multimedia data objects are captured but their relationships in terms of their content

as well as storage strategies are not handled. Moreover, it doesn’t propose any index

structure, as robust as ones used in relational database systems, to be deployed in a

distributed environment.

160

A replicated index structure for distributed data is proposed in [149]. It uses a dPi-

tree based on the Pi-tree [72]. The index structure is replicated in each location of the

distributed environment without message passing schemes. Though the proposed index

structure can be utilized in a distributed environment, it is not tailored to suit the re-

quirements of complex multimedia data. Firstly, although theoretically it is supposed

to be able to handle multidimensional data, complex containment issues can arise. Sec-

ondly, it is a space-based index structure and hence does not support similarity search

(based on distance calculation) naturally as distance-based index structures do. Fi-

nally, content-based retrievals, typical for multimedia data, are not embedded in the

search methodologies. Although [134] proposes a distributed search tree in a dynamic

distributed environment, it uses an extended binary leaf search tree. This limits the us-

ability of such approach for multidimensional data representation. Also, [119] proposes a

lazy update method for B+ tree in a distributed environment. However, B+ tree is not a

suitable candidate to handle multimedia data as it cannot handle multidimensional data

effectively.

[40] discusses the various approaches to design a Data Grid. It defines the require-

ments that a data Grid must satisfy and APIs necessary for its implementation. The

design of the early data Grids was based on four major principles: mechanism neutrality,

policy neutrality, compatibility with Grid infrastructure and uniformity of information

infrastructure. The architecture is typically a two-layered structure, where the lower

layer provides the data Grid specific services such as those related to the storage system

and to the meta-data repository. The upper layer consists of the high-level components

such as the replica selection service, and replica management service. The storage system

utilized in the proposed architecture is basically a file structure and uses GridFTP for

data transfers. There are no database components such as index structures or query

managers associated with the storage and meta-data repositories. [82] defines a virtual

Data Grid that is capable of encompassing the expertise of a large distributed diverse

161

multidisciplinary communication. It proposes general abstractions for representing data

and computation. Further, it lays down a virtual data schema and an architecture that

develops techniques for representing and maintaining data on an Open Grid Service

Architecture (OGSA). These architectures are specifically for static data and do not

address issues such as data synchronizations, and transaction data policies. To enable

these frameworks to support dynamic data, services such as data regionalization, data

synchronization, transactional management, data locality, event notification, and data

load functions need to be introduced [203]. Additionally, data grids should have specific

data distribution and data replication policies. For example, distribution approaches

such as round-robin, Gaussian, random and Poisson can be used [203]. Data replication

policy [139] is an important characteristics of a data Grid. The combination of data

distribution and data replication policy defines the ability of a data region to support an

application with minimum amount of data movement.

9.3 Overall Framework

Figure 9.1 presents the overall framework of the Distributed Multimedia Architecture

over Grid. Each data node of the Grid is connected to all other nodes and has a mul-

timedia database management system embedded in it. Each data node has a GridFTP

server that takes care of the physical transfer of multimedia data objects from one node

to another. The data is basically stored in a data server. The multimedia database

framework is divided into four major components: a multimedia interface, a core DBMS

engine, a content-retrieval engine and a high-level relationship manager. These four com-

ponents interact with one another to achieve the major functionalities including query,

and update. The multimedia interface handles the users’ requests and access the other

three components to provide the information requested by the user. The core DBMS

engine manages the functions related to the database that store the multimedia data. It

162

is comprised of sub-components that are useful to designing a successful database system

in a distributed Grid environment.

While components such as a transaction manager, and a query optimizer are the gen-

eral components needed for a complete database engine design, components specific to

a distributed environment such as an automatic load balancing system are also present

in the proposed architecture. The content-retrieval engine houses the index structure

and the access manager. The index structure along with the access manager handle the

content-based retrieval queries. The index structure is a replicated multidimensional in-

dex structure which logically spans across the data nodes over the Grid. Thus, the index

structure can be considered as a single unit organizing all the data that the entire Grid

is comprised of. The high-level relationship manager maintains the semantic relationship

among the multimedia data objects. It has three major sub-components: an affinity re-

lationship metric, a local affinity update unit and a global affinity synchronization unit.

The affinity relation metric basically captures and stores the high-level relationship be-

tween the multimedia data objects, based on the user access and feedback, while utilizing

the Markov Model Mediator construct (discussed in details in Section 9.3.2). The local

affinity update unit collects the user feedback and access patterns and updates the affin-

ity relationship metric after specific time intervals. The global affinity synchronization

unit updates the global affinity metrics based on the update of the local affinity metrics.

The maintenance and use of the global affinity synchronization enables the users to is-

sue queries transparently to the Grid without concerning themselves about the location

and relationships of the multimedia data. Additionally the data Grid may contain other

components specific to the Grid: namely a replica manager designed specially to cater

the typical needs of multimedia data and applications; a failure management component

designed to detect the non-functioning of a particular node and how to share the load

among the remaining functioning nodes; etc.

163

Figure 9.1: Overview of the proposed framework.

9.3.1 Replicated Multidimensional Index Structure

As mentioned in Section 9.1, an index structure is the backbone of an efficient database

management system and is the link between the data storage and the retrieval engines.

For the proposed framework, the index structure should be designed to satisfy two ba-

sic requirements. First, it should be able to handle multimedia data efficiently; and

second, it should be possible to be deployed over a Grid environment. To satisfy the

first requirement, the index structure should be a multidimensional index structure, so

that it can handle the multidimensional representation of the data objects. Also, the

similarity search methods supported by the index structure should be able to handle

the semantic relationship among the multimedia data objects along with the content-

level closeness while answering the queries. To satisfy the second requirement, the index

structure should be able to span across several distributed data locations and consider

characteristics of each while dealing with user requests. Basically, the k-NN algorithm,

which is the standard similarity search algorithm for tree-based indexes, is customized to

164

support the content-based retrievals while considering the high-level semantic relation-

ships among the data objects. In this chapter, we use GeM-Tree to organize only images

and incorporate it into the proposed multimedia database management framework in a

Grid environment. It should be pointed out here that videos can be used as well in the

proposed framework without any loss of generality. Since images are simpler in repre-

sentation and have simpler retrieval strategies, the proposed distributed architecture is

tested with images as a proof of concept. It will be extended to include videos in the

future.

We use a replicated indexing approach, similar in philosophy to the one proposed in

[149]. The multimedia data is distributed across multiple data nodes of a Grid and the

index structure is replicated across multiple sites as well. Each data node with an index

replica has complete access to the local data. There is a logical link among the local

index structures at each node. Thus while searching, the search results generated pick

up the closest match to the submitted query among all the multimedia data present in

the entire Grid repository utilizing this logical link. Each multimedia data is represented

with a data signature that enables the system to uniquely identify a multimedia data

object. The data signature F of a multimedia object is represented with two components,

FA and FB.

FA = {x1, x2,, xi} (9.1)

FB = {objectid, nodeid, replicaflag} (9.2)

The feature vector representing the distribution of each multimedia data object is a union

of the two parts represented as:

F = {FA ∪ FB} (9.3)

Where FA represents the low-level feature vector of the multimedia data object and FB

is the unique identifier of the data object. The objectid is the identifier of the multimedia

data object, nodeid is the identification of the data node in the Grid where it belongs

and replicaflag is set to 1 or 0 depending on whether the particular data object has a

165

duplicate entry in any of the other data nodes. If 1, the replica manager of the node

under consideration should be consulted whenever this particular data is accessed or

modified. The benefit of using the data signature is that it makes the proposed framework

transparent to the type of multimedia data object used. Any multimedia data can be

represented with F . F might need slight extension to capture the characteristics of the

particular multimedia data used.

Node Structures

The different node types and their structures are discussed in details in 4.2.3. In addition,

a virtual link exists between the local index tree structures of the Data Grid, having a

large number of semantically related data objects. The High-level Relationship Manager

along with the Global Affinity Synchronization component determines which data nodes

(locations) of the Grid have large amount of semantically related data objects. The index

structures, belonging to those data nodes, are logically linked to represent a virtual single

multidimensional index structure.

Insertion and Deletion

To insert a node in the index structure, the tree is recursively traversed until a candidate

leaf node is identified. A particular sub-tree leading to the leaf node is chosen by selecting

an intermediate node for which there is no or minimum increase in the covering radius.

Essentially, a new object is inserted at the leaf node, and if it is full, a split is required

followed by a rearrangement of the tree. Whenever a new data object is inserted into the

index structure, an entry for its high-level semantic relationship with other multimedia

objects is created in the Local Affinity Update component and the Affinity Metrics.

As subsequent queries are issued, user feedback on the generated results generated are

collected over time. They are used to populate/update values at Affinity Metrics and

Local Affinity Update respectively. To delete a node in the index structure, the tree is

166

first traversed to locate the node. If it is an intermediate node, the pointer to the sub-tree

it points to is set to zero, the memory is released and the links are rearranged. If it is

a leaf-node, the actual data object at the repository pointed by it, is removed. As with

any update, the Local Affinity Update component and the Affinity Metrics are modified

to reflect the change.

9.3.2 Distributed Query Processing

The query processing component implements the most popular form of multimedia simi-

larity search: namely, content-based retrieval. The Distributed Query Processing method

is comprised of two major components. The first component is called the Multimedia Ap-

plication Interface (as in Figure 9.2). It is a global query processing interface that takes

in queries from the users and sends them across the data nodes of the Grid. At each

data node, the queries are received by the local Content-Retrieval Engine, and is the

second component of the Distributed Query Processor. The queries, once received by

the individual local query processor are processed with the k-NN based similarity search

algorithm of the multidimensional index structure. The k-NN algorithm searches the

underlying data repository based on both the low-level contents of the multimedia data

and their high-level semantic relationships. The search results, comprising of the k clos-

est data objects to the query, are returned from each data node of the Grid, back to the

Multimedia Application Interface. The search results, returned by each data node of the

Grid have two pieces of information. First, the address of the multimedia data object at

the local repository of the particular Grid node; and second, its distance from the query

object. The result sets from each data node of the Grid are merged together and sorted

based on the distance. The top k objects from the sorted list are retrieved from their

corresponding local repositories to form the final query result. Figure 9.2 demonstrates

the distributed query process.

167

Figure 9.2: Distributed query processing.

High Level Relationship

A major attribute for the successful processing of the issued queries is the efficient mainte-

nance and use of the high-level semantic relationship among the multimedia data objects.

There are three major components of the High-Level Relationship Manager : namely the

Affinity Metrics, the Local Affinity Update and the Global Affinity Synchronization. The

Affinity Metrics stores the affinity relationships (as discussed in Section 4.3.1) of the mul-

timedia data objects present in the local repository of the Grid node. The Local Affinity

Update maintains the update information of the affinity values. The update process takes

place whenever a new query is issued and the user feedback on the query results is ob-

tained. The Global Affinity Synchronization helps in maintaining information necessary

to synchronize the affinity relationships among the different nodes of the Data Grid. For

example, let Image # 101 and # 369 be marked similar by the user in a particular query

instance. Also, say Image # 101 belong to Node # 6 of the Grid and # 369 belong to

Node # 2. A NXN matrix (N is the number of nodes in the Grid) is updated at two

168

locations (with same values): namely at the 6th row and 2nd column and 2nd row and

6th column where the affinity is increased between that particular pair of nodes. If the

number of nodes of a Grid are huge, it is not practical to store the semantic closeness

among all the nodes of the Grid. Instead, semantic relationships between the Grid nodes

belonging to logical regions are maintained. As mentioned earlier, in this chapter we use

image as the testbed for the prototype framework. Thus, in the rest of the chapter, we

discuss the different functionalities that handle images.

The high-level image relationship utilized is captured using a stochastic construct

called the Markov Model Mediator (MMM) [191], that maps the low level features and

high level concepts in CBIR by capturing the image relationship as perceived by the user.

It should be noted that any high-level image relationship capturing mechanism, similar

to the affinity relationship, can be used in the proposed index structure without loss of

generality.

Distributed Content-Based k-NN Similarity Search

Table 9.1 presents the k-NN similarity search algorithm in a distributed environment that

supports Content-Based Image Retrievals (CBIR) over Grid. It follows a branch and

bound technique as in [98]. The algorithm presented in Table 9.1 is for the metric region.

Before ensuing the search on the metric region, a filtering stage is undertaken where the

space-based index structures in each node of the Grid is searched to get the k closest

feature-spaces. They are merged together and the metric search is executed on them.

Although every index structure can have two basic similarity search paradigms: namely

Range Search and k-NN Search, for CBIR based retrievals, k-NN approach models the

information requirements of the users more naturally. Hence, we concentrate exclusively

on the k-NN based search in this chapter. To issue content-based retrieval queries, an

user must submit the query to the Multimedia Application Interface.

169

The low-level features are extracted from the submitted query image to represent the

query in the same feature space as that of the indexed data. For example, if the images

stored in the Grid are represented as color and texture features, when a query image

is submitted, it should be also represented as a feature vector comprising of color and

texture. The query, in the form of the feature vector, is submitted to the local multimedia

interface at each Grid node. The affinity value is promoted in the multidimensional index

Table 9.1: Implementation of distributed content-based k-NN similarity search
Distributed Similarity Search(Q, Nchild, r(Q), aff) { //CBIR over Grid.

Get User Query;
Extract the low-level feature values from the query;
Submit the query across the Grid;
For each Node of the Grid do: {
Affinity Promotion(); //promotion of affinity value.
∀ Or in Nchild do: {

if (Or is an intermediate index node) {
if (| d(OM , Q) - d(Or, OM)| ≤ r(Q)+r(Or)) {
Compute d(Or, Q) and aff(Or, Q);
if ((d(Or, Q) ≤ r(Q)+r(Or)) && (aff(Or, Q) ≥ aff)) {
Distributed Similarity Search(ptr(T(Or)), Q, aff);

//T(Or): pointer to the subtree.
}}}

elseif (Or is a leaf object){
If the object qualifies the distance function and the affinity,
add to the result set along with the distance d;
}}}
Merge result set from each Grid node;
Sort result set on distance (similarity) with the query Q;
Pick the k closest multimedia objects from the sorted result set;

}

structure as explained in Chapter 4. The index structure is traversed from the root to

the leaf level. For each intermediate node of the index structure, the similarity between

the indexed multimedia object and the query is determined in terms of both the low-

level feature similarity and high-level semantic closeness. If the indexed multimedia

object under consideration is more similar than the current kth candidate in the priority

170

list, it is replaced with the indexed multimedia object, just considered. The priority

queue is updated and the search continues recursively on the next closest candidate.

Typically, the sub-tree contained in the candidate index entry is searched recursively.

If the examined node is a leaf and satisfies the similarity conditions of distance and

affinity, the corresponding data object is pushed into the result set. The result set itself

is another priority queue, where the results are prioritized according to the distance and

affinity score with the query object. Once, each Grid node has a result-set ready, the

result-sets are sent back to the Multimedia Application Interface. Here, the result sets

get merged and sorted. The top k objects are returned to the user as the query result.

The user feedback is collected on each presented query result and components in the

High-Level Relationship Manager are updated accordingly.

When the number of Grid nodes is large, it is not practical to involve all the nodes for

every query. Generally, under those circumstances, initially, the query is submitted to a

reasonable number of Grid nodes (eg. in the range between 100−200). After receiving the

query results for the first iteration, the Global Affinity Synchronization of the Grid nodes,

which have data objects marked similar to the query object by the user, is consulted. The

Grid nodes that are most similar to the Grid node under consideration (i.e., those that

contain similar multimedia data objects) are selected. In the next iteration, the refined

query is submitted to these selected Grid nodes and the process continues. The merged

and sorted result set produced at the end of each query iteration is stored. After a few

iterations (the number of iterations depends upon the Grid layout), all the previously

stored result sets are merged and sorted again to get the top k results corresponding to

the issued query across the entire Grid.

It should be pointed out here that to reduce the number of distance computations and

use as many pre-computed distances as possible, a technique similar to [60] is introduced.

In this method, in order to avoid unnecessary computation of distances between every

indexed entry with the query, the covering radius of a parent node, its distance with

171

the child, along with its distance with the query object, is tested before a particular

sub-tree is considered. It uses the classic metric space property of triangular inequality

to formulate the checking condition. To reach a child node, its parent must have been

traversed and thus there has to be a distance computation between the parent with the

query. This distance computation is saved and reused for the next iteration. For example,

one needs to start by computing the distance between the root with the query object.

It then checks if any child of the root satisfies the qualification condition. If so, the

corresponding child, along with its sub-tree, is considered.

9.3.3 Automatic Load Balancing

Any application in a Grid environment is incomplete without a proper load balancing

functionality. Additionally, the domain that is dealt in this research (i.e. Multimedia

Data) has an undeniable necessity for an effective load balancing component. This is

because, multimedia data is much bulkier than ordinary text-based alpha-numeric data

and the quality of service expected from multimedia applications is much higher than

traditional text-based retrieval methods. Thus, whenever a particular Grid node is over-

loaded, the load should be distributed among the less-utilized Grid nodes to attain a

balanced computation cost. Moreover, as discussed in Section 9.3.2, when a query is

issued to a Grid, it is simultaneously issued to all the Grid nodes. Query results from

all the nodes of the Grid are collected and compiled to present the user with a single

result set. Thus, if one/more nodes of the Grid is overloaded, it affects the performance

of the entire Grid framework as the Multimedia Application Interface needs to wait till it

receives responses from all the Grid nodes. We note that in some applications, although

load balancing may result in a more balanced utilization of resources, it may however

worsen the overall performance. For typical Multimedia Data Application, this is not

the case though.

172

Table 9.2: Load balancing in the distributed multimedia database management frame-
work

Load Balancing(n, i) { //Load Balancing over Grid.
For each iteration i {
Set min time = minimum computation time among n Grids in iteration i− 1;
Set max time = maximum computation time among n Grids in iteration i− 1;
Set nmin = node with minimum computation time;
Set nmax = node with maximum computation time;
if (number of data objects in nmax ≥ number of data objects in nmin)
Set num data moved = (number of data objects in nmax − number of

data objects is nmin)/2;
else
Set num data moved = x; //x is a pre-determined value.

Move num data moved from nmax to nmin;
}
}

We propose a load balancing algorithm as presented in Table 9.2. The basic heuris-

tics used behind the proposed algorithm is computation time∞ number of indexed data

points. Since, for developing the index structure and for subsequent queries, distances

between pairs of multimedia objects need to be calculated. Thus the number of necessary

distance computations increase with the increase of the number of data objects involved.

Now, the total number of distances computed determine the overall computation time.

So, to balance the computation time over the Grid, the number of multimedia data ob-

jects in each Grid node repository is to be balanced. The load balancing is typically not

achieved in a single iteration but requires quite a few iterations. The number of itera-

tions required depends on the data set involved. For each iteration, the maximum and

minimum computation time for processing the submitted query is determined. Addition-

ally, the Grid nodes having the maximum and minimum loads, are identified. Normally,

the number of data points in the Grid node taking the maximum time should be more

than that taking the minimum time. If the condition is not as it is predicted, it can be

concluded that the imbalance is not related to the query but due to some other appli-

cations on the Grid. Under such circumstances a pre-defined number of data points are

173

moved from the most loaded node to the least loaded one. The pre-defined number (x)

is determined based on the initial load in each Grid node. If the condition is satisfied,

data points are moved from the most loaded to the least loaded such that they both end

up having the same data load. The process is repeated until a desired balanced state is

reached.

It should be mentioned here that the proposed algorithm is devised with the assump-

tion that the Grid under consideration is a dedicated multimedia data management Grid

with no other computation intensive applications running simultaneously. In other sce-

narios, this basic load balancing algorithm should be extended to include the different

real-time factors that would decide on the amount of data to be moved. Such modifica-

tions, specific to particular Grid characteristics, should be possible without any loss of

generality.

Basics of Load Balancing in a Distributed Environment

There are two approaches of dynamic load distributions: load-sharing and load-balancing.

Where both load-sharing and load-balancing approaches tend to maximize the rate at

which distribution systems work, when required resources are available, load-balancing

additionally attempts to equalize the loads on the available nodes [147]. Addition-

ally, load distribution algorithms can be categorized as: Sender-Initiated Algorithms

[68], Receiver-Initiated Algorithms [68], Symmetrically Initiated Algorithms [135] and

Adaptive Algorithm [136]. As the name suggests, in Sender-Initiated Algorithms, load-

distribution is initiated by an overloaded sender that tends to send a task to an under-

loaded receiver. In the Receiver-Initiated Algorithms, load distribution is initiated from

an under-loaded node (receiver) to a overloaded node (sender). For Symmetrically ini-

tiated algorithms, both the overloaded as well as the under-loaded nodes initiate the

load-distribution and possess the advantages of both the Sender-Initiated as well as the

Receiver-Initiated algorithms. The Adaptive algorithms attempt to address the issues

174

that arise in the above three approaches. The main issue is the indiscriminate polling by

the senders’ negotiation component. The adaptive algorithms maintain the state of the

relationship between the sender and the receiver and adapt themselves so as to scale well

in larger systems. The load balancing algorithm proposed for our framework can be con-

sidered as the mixture of the Sender-Initiated and the Adaptive approach. It considers

the states of all the nodes of the distributed environment but essentially transfers load

from the most loaded node to the least loaded. A mixed approach is utilized because Grid

environments have an increasing potential to grow. Thus, any function developed for a

Grid environment should be scalable. By keeping track of the states of the overall sys-

tem, the different load balancing parameters (such as the amount of load that should be

transfered, identification of the nodes whose loads should be balanced) can be adjusted.

9.4 Empirical Study

We carried out an extensive analysis of the performance of the different critical function-

alities of the proposed framework with a varied data set and in a varied environment.

As mentioned before, in this chapter we used images as the multimedia object type and

all subsequent experiments were performed on them. We used about 9000 images from

different categories, collected from the COREL dataset [42]. These 9000 images are dis-

tributed among the data repositories of the different nodes of the Grid. The simulated

distributed/Grid environment has 8 Intel-based nodes. The total storage available for

users is around 320GB. Each node is simulated by a Pentium 4 processor with Hyper

Threading at 3GHz. The images are represented with 12 features comprising of colors

and textures.

We divided the experiments into three categories. At first, we analyze the relationship

of the computation cost with the number of distribution nodes while generating the index

tree. The experimental results, presented in Figure 9.3, demonstrate that as the number

175

of distribution nodes increases, the average computation time (measured in seconds)

decreases. The same data load is distributed over multiple nodes and they all run in

parallel, thus decreasing the computation overhead of individual node. We performed k-

NN search for about 15 queries and averaged the results. The computation time for each

instance for each query is the maximum of the computation time among the distributed

loads. This is because, the Multimedia Application Interface waits for the query results

from all the nodes before providing the aggregate query result to the user. It is interesting

to note that the computation overhead during the k-NN search has no direct relationship

with the number of distribution nodes used. Each node handles the query individually

and the time taken for completing it depends on the data set (both the data load as well

as the data content) in the particular node. As demonstrated in Figure 9.4, for Data Set

A distributed over 4 nodes, the computation time increases steadily with the increase

in the number of nodes. However, Figure 9.5 demonstrates that for a different data set

B, the computation time drops when the number of nodes is 3 before rising again when

number of nodes is 4.

1 2 3 4
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
Computation Time for Tree Generation with 9000 Multimedia Objects

Number of nodes in the Grid

Ex
ec

ut
io

n
Ti

m
e

fo
r G

en
er

at
in

g
In

de
x

Tr
ee

 (i
n

se
co

nd
s)

Figure 9.3: Relationship of the computation time with the number of distribution nodes
during tree generation.

176

1 2 3 4
52

54

56

58

60

62

64

66

68

70
Computation Time for k−NN Search with Data Set A

Number of nodes in the Grid

Ex
ec

ut
io

n
Ti

m
e

fo
r k

−N
N

se
ar

ch
 (i

n
se

co
nd

s)

Figure 9.4: Relationship of the computation time with the number of distribution nodes
during k-nn search for data set A.

1 2 3 4
50

52

54

56

58

60

62

64

66

68

70
Computation Time for k−NN Search with Data Set B

Number of nodes in the Grid

Ex
ec

ut
io

n
Ti

m
e

fo
r k

−N
N

se
ar

ch
 (i

n
se

co
nd

s)

Figure 9.5: Relationship of the computation time with the number of distribution nodes
during k-nn search for data set B.

177

1 2 3 4 5
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Load Balancing for Scenario 1

Number of Iterations

Ex
ec

ut
io

n
Ti

m
e

fo
r G

en
er

at
in

g
In

de
x

Tr
ee

 (i
n

se
co

nd
s)

1 node
2 nodes
3 nodes

Load Balanced at Iteration 3

Figure 9.6: Experimental results for load balancing for data set I.

The average accuracy of query results is about 80− 85%. We deployed a distance-based

index structure, M-Tree, over the Grid which doesn’t consider the high-level semantic

relationships during the retrievals. The results obtained, although comparable in the

computation overhead to the proposed framework, generated query results with very

poor relevance (averaging as low as 15− 20%).

The load balancing technique is demonstrated in Figure 9.6, 9.7, and 9.8, respectively.

It should be noted that the load is balanced after different number of iterations for

different data sets. We limited our examination for 5 iterations on an average, since in

most of the cases we reached a considerable balanced load distribution within 5 iterations.

Again, the variation is dependent on the characteristics of the data set used. In our

experiment, we varied the number of data sets used in each case to bring a variation.

Scenario I uses 500 data points, Scenario II uses 2300 data points and Scenario III uses

8500 data points, respectively.

From the detailed experimental analysis, it can be concluded that the proposed Dis-

tributed Multimedia Database Management Framework is capable of fulfilling the fol-

lowing requirements. First, it leverages the distributed environment of the Grid in econ-

178

omizing the computation overhead. Second, it is capable of supporting the popular mul-

timedia retrieval requirements with relevant query results in a distributed environment.

And finally, it successfully embeds functionalities typical to distributed environments,

for example load balancing, into the multimedia environment, to make the proposed

architecture adept for the Grid.

9.5 Conclusion and Future Works

In this chapter, we proposed a Distributed Multimedia Database Management Framework

over a Grid. The framework introduced includes the important components necessary for

storing and supporting multimedia applications over the Grid. A multidimensional repli-

cated index structure was proposed that can support the popular multimedia retrievals

based on contents. The framework introduces a stochastic construct, called the Markov

Model Mediator, to capture and utilize the high-level semantic relationship among the

multimedia objects. The novel inclusion of the high-level semantic relationship into the

k-NN search algorithm, without violating the underlying indexed space, bridges the se-

mantic gap and increases the relevance of query results manifold.

A load balancing approach for the multimedia data objects is also introduced, which

successfully distributes the load across all the nodes of the Grid. In additions, intensive

experimental analysis is performed with varied data set and different Grid configurations,

which demonstrates that the proposed framework is a novel approach and a big step

towards a full-fledged Multimedia Data Grid. The current framework can be extended in

several directions. First, more Grid specific components such as replica managers, auto

failure detection and recovery of the Multimedia Data Nodes can be added. Second,

the current framework could be easily extended to support other forms of multimedia

data such as videos, and documents within one seamless platform. And third, developing

179

1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Load Balancing for Scenario 2

Number of Iterations

Ex
ec

ut
io

n
Ti

m
e

fo
r G

en
er

at
in

g
In

de
x

Tr
ee

 (i
n

se
co

nd
s)

1 node
2 nodes
3 nodes

Load Balanced at Iteration 5

Figure 9.7: Experimental results for load balancing for data set II.

1 2 3 4 5
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Load Balancing for Scenario 3

Number of Iterations

Ex
ec

ut
io

n
Ti

m
e

fo
r G

en
er

at
in

g
In

de
x

Tr
ee

 (i
n

se
co

nd
s)

1 node
2 nodes
3 nodes

Load Balanced at Iteration 3

Figure 9.8: Experimental results for load balancing for data set III.

Multimedia Grid Services such as Content-Based Information Retrievals and Content-

Based Multimedia search could be deployed.

180

CHAPTER 10

CONCLUSION AND FUTURE WORK

The main motivation behind the research presented in this dissertation is to develop a

Multimedia Database Management Framework which would provide robust organization

and retrieval of different genres of multimedia data from within one seamless structure. As

discussed in Chapter 1, there are three major challenges in developing such a framework

with a performance comparable to traditional database management systems, designed

for alpha-numeric data viz. (1) the multidimensional and sometimes multi-modal feature

set used to represent the multimedia data, (2) the semantic gap that exists between the

high-level interpretation of a multimedia object and the low-level feature set and (3) the

imprecise nature of the queries issued to multimedia data due to perception subjectivity.

Thus, all the components designed for the multimedia database management framework

should be able to address the above three issues efficiently for satisfactory performance.

This dissertation focuses on the following three main aspects of a Multimedia Data

Management Framework.

1. A generalized index structure is proposed for multimedia data which can handle the

multidimensional representation, the semantic gap and the imprecise query nature

quite efficiently (as corroborated by the results obtained so far). The proposed

index structure, called GeM-Tree is a multidimensional distance-based index struc-

ture which uses a novel data signature technique to represent and organize both

image and video data effectively in a metric space. In addition, it accommodates

the hierarchical relationships that exist between the different classification units of

video data. It supports the popular retrieval approaches viz. content-based image

and video retrievals in its similarity search routines with the proposed k-NN based

algorithms. It is also capable of supporting cross-multimedia object type similarity

retrievals where users might wish to extract images or videos related to one an-

other and to some particular concept. The novelty of the proposed index structure

181

is its flexibility which is demonstrated with the following capabilities: (i) it can ac-

commodate different multimedia data representation from fixed length to variable

length weighted features and (ii) it has the potential to support most of the popular

multimedia data retrievals such as region-based image and video retrievals, object-

based retrievals along with the basic content-based image and video retrievals as

presented. Moreover, it uses a probabilistic construct called Markov Model Media-

tor to capture the high-level relationship between the multimedia data objects and

use them in the similarity search methods to produce semantically related query

image. Additionally, a distributed version of the proposed index structure is dis-

cussed which can manage multimedia data along with content-based information

retrieval over a Grid architecture.

2. Since there are no known query refining strategy for distance-based index struc-

tures, a hybrid query refinement strategy is proposed for distance-based index struc-

tures which handles the high-level semantic relationship and low-level feature-wise

similarity between multimedia data objects separately and thus overcomes the prob-

lems that arises while using query refinement techniques like [39] for scenarios when

the low-level feature-wise similarity and the high-level semantic similarity between

the multimedia data objects do not follow the same pattern.

3. A Social Network preview technique is proposed whereby large Social Networks

are visualized with fewer number of nodes using graph similarity. Further, this

social network visualization and analysis technique is used to model a multimedia

data corpus into a Data Network where each data object acts as an actor (nodes)

and their relationships, derived from the behaviors of the users who utilize them,

act as the connections (edges). This modeling helps to understand the evolving

semantic relationships among multimedia data in a collaborative environment. This

further helps in designing the index structure so as to accommodate the storage

requirements of applications designed for collaborative environments where multiple

182

users share and use the same data corpus. Further, this enables to introduce the

high level semantic relationship while developing the index structure in operations

such as insertion and deletion without violating the underlying metric space.

Though, this dissertation proposes to lay down the basic components, especially

related to indexing mechanisms, required towards developing a successful multimedia

database framework, its far from completion. There are several improvements that need

to be made on the proposed designs and several additional components need to be de-

veloped in the future for a successful and efficient functioning of the framework.

10.1 Future Work

The proposed framework can be extended in the following directions to develop a com-

plete Multimedia Data Management Framework that will cater the needs of different

applications and user groups:

• Intelligent Multimedia Index Structure Optimizer

An intelligent multimedia index structure optimizer is planned to be developed by

applying data mining techniques to the existing framework. As far as the literature survey

goes, it can be concluded that such attempt was never done before i.e. to fine tune and

optimize an index structure automatically based on the data type, access patterns and

the past performance of the index structure. Historic access patterns of the users are

to be stored and mined to generate decision rules which can be utilized to optimize the

index structure and the retrieval algorithms. A knowledge repository is to be used which

will store the past user feedbacks along with corresponding queries and query results.

An instance-based learning approach [2] will be adopted where the training sets will be

stored verbatim and a distance function will be utilized to determine the closest member

belonging to a training set to an unknown test instance. Once, the nearest training

instance is evaluated, the class that it belongs to is predicted to be the class of the test

183

instance. But this nearest neighbor rule has several drawbacks. Firstly, it is very slow for

large data sets which cannot be accepted in cases where the dataset is usually huge and

the optimization process should be ideally dynamic and should change with the varying

data set. Secondly, it performs poorly when the data set is noisy as no cross-validation

is performed. Thirdly, it fails to capture the effect of different attributes of the feature

set. These drawback can be largely overcome by using exemplar generalization. [189]

proposes that using generalization with nested exemplars can achieve a high accuracy of

classification whereas [220] disputed the claims stating that the results of [189] are domain

specific. Later [153] proposed that if nesting and overlapping are altogether avoided,

excellent results are achieved in most of the domains. Hence, [153] or [189] is to be

used in this approach. An instance-based learning approach is chosen because the index

structure developed here is also distance based and the multimedia objects are indexed

based on a metric distance among themselves. Hence, it is an added benefit if the data

analysis and prediction tool also follow such distance-based approaches. Also, the feature

attributes used in this research are numeric, hence using a distance function to predict

rules is possible. Thus, such learning approach will help to determine optimized decision

rules that are derived from the historic data. For example, knowledge like different

successful split policies along with the representative access patterns for each case might

be fed to the system to generate a set of decision rules that will help to determine which

split policy is appropriate when a particular access pattern is encountered. There can be

several other decision rules that can be derived and need further investigations.

• Additional Extensions of Existing Components

1. Techniques such as Association Rule Mining (ARM) can be utilized to predict

the semantic relationships of a new multimedia data object with the rest of the

existing data objects or in other words to avoid the ‘cold start’. Usually, when a

new multimedia object is added to the database, it does not have any semantic

relationship with any multimedia object. Thus, the similarity searches need to go

184

through fairly a good number of iterations, before the new object is accessed and

it obtains an affinity value. This might result in poor retrieval results involving

the newly added object initially, till the object gets trained and has an affinity

value. Such a scenario can be avoided by applying ARM techniques, where based

on the feature values and the existing affinity values (the presence of an affinity

value between two multimedia objects can be considered as an association), the

affinity value or at least the information if the new object is related to a particular

multimedia data object can be deduced. This would help to increase the relevance

of query results. Also as an extension, temporal relationship will be considered in

the k-NN based similarity search techniques of the index structures for video data.

At present, such information is not utilized in the index framework, but they are

crucial and should be considered.

2. Document Indexing: Documents are considered as another popular multimedia

data. A document can be considered to be constituted of texts, e-mails, xmls,

etc. Thus, with the goal to have a single index framework to organize all types of

multimedia data, introducing document indexing into the existing GeM-Tree along

with images and videos should be considered. The main challenge in achieving it

is to find a way to coherently represent a document as a numerical feature vector,

which is currently the only known form in which a multidimensional index structure

can handle any data. Mainly they are represented with key words or terms related to

the context of the document. Parallel researches are being performed to determine

the appropriate key terms of a document or to a context. Thus, utilizing those

researches in document searching genres, a feature extraction and representation

technique need to be devised to successfully index them. Also, a high-level semantic

relationships among the documents need to be captured to assist in the retrieval

process.

185

3. Supporting Traditional Alpha-Numeric Data Management: Since alpha-numeric

data still forms the majority of the utilized and accessed data in the commercial

scale, to ensure success of a robust DataSpace Management System, the tradi-

tional relational or object-relational database management frameworks should be

integrated with the proposed multimedia database framework. Such integration

should be as conflict-free as possible where the performance of one should not af-

fect the performance of another.

4. Query Optimizer: Developing a query engine component for multimedia data is an

important step. The cost evaluation rules used in a query optimizer for traditional

data will not generate optimized results for multimedia data since they are way

different and complicated that the traditional data. Thus, cost evaluation rules and

metrics for multimedia data should be developed to improve the query performance.

• Develop Multimedia Data Management Framework for Applications in a

Collaborative Environment

The multimedia database management system, capable of handling content-based re-

trieval, can be linked to social network applications. A sample scenario will be managing

the media of a social network multimedia application such as Youtube based on user

behavior observed in other related social network applications such as Facebook, where

they share and post multimedia contents. The multimedia database systems can be also

extended in Collaborative Search Environments, where users though explicitly may not

be a part of any social network, forms an implicit relationship via their simultaneous

search operations. Such concept will be very beneficial in improving multimedia web

search.

Furthermore, the developed technique for managing information in collaborative envi-

ronments can be applied in domains like disaster management or health-care. In disaster

management applications, there is a constant influx of information from varied sources,

some reliable while some not. The challenge is to manage this information (both as

186

texts as well as multimedia data in the form of captured images and videos) and pro-

vide an effective visualization and retrieval functionality, to help the common people as

well as officials in charge of managing the situations, to evaluate and thus take crucial

decisions. Collaboration is also an evolving direction for health-care management where

multimedia data, in the form of medical imaging, forms a huge portion of the informa-

tion. An effective representation, analysis and management of these data, to be utilized

by different types of health-care professionals in different geographic locations, will be

beneficial in helping the health-care systems in developing and under-developed nations.

Doctors from across the globe will be able to collaborate and discuss on diagnosis based

on medical images which would channel the knowledge of experts to people with lesser

amenities.

It is envisioned that the multimedia database management framework proposed in

this dissertation has great potential to be extended and improved so as to be a com-

plete solution for organizing multimedia data efficiently and cater to different genres of

applications, user groups and environments.

187

BIBLIOGRAPHY

[1] F. N. Abu-Khzam, N. F. Samatova, M. A. Rizk, and M. A. Langston, “The Maxi-
mum Common Subgraph Problem: Faster Solutions via Vertex Cover,” in Proceed-
ings of IEEE/ACS International Conference on Computer Systems and Applications,
pp. 367-373, 2007.

[2] D. Aha, “Tolerating Noisy, Irrelevent, and Novel Attributes in Instance-Based Learn-
ing Algorithms,” International Journal of Man-Machine Studies, vol. 36, no. 2, pp.
267-287, 1992.

[3] H. Akaike, “A New Look at the Statistical Model Identification” IEEE Transactions
on Automatic Control, vol. 19, no. 6, pp. 716-723, 1974.

[4] T. Akutsu, “A Polynomial Time Algorithm for Finding a Largest Common Subgraph
of Almost Trees of Bounded Degree,” IEICE Trans. Fundamentals, vol. 76, pp. 1488-
1493, 1993.

[5] A.A. Alatan, A.N. Akansu, and W. Wolf, “Multi-modal Dialogue Scene Detection
Using Hidden Markov Models for Content-Based Multimedia Indexing,” Multimedia
Tools and Applications, vol. 14, no. 2, pp. 137-15, 2001.

[6] A. D. Alexandrov, W. Y. Ma, A. El Abbadi, and B. S. Manjunath, “Adaptive
Filtering and Indexing for Image Databases,” in Proceedinds of SPIE Storage and
Retrieval for Image and Video Databases, pp. 12-23, 1995.

[7] C.J. Alpert and A.B. Kahng, “Recent Developments in Netlist Partitioning: A Sur-
vey,” Integration: The VLSI Journal, vol. 19, no. 2, pp. 1-81, 1995.

[8] E. Ardizzone and L. M. Cascia, “Automatic Video Database Indexing and Re-
trieval,” Multimedia Tools and Applications, vol. 4, pp. 29-56, 1997.

[9] W. G. Aref, A. Catlin, J. Fan, A. K. Elmagarmid, M. A. Hammad, I. F. Ilyas, M.
S. Marzouk, and X. Zhu, “ A Video Database Management System for Advancing
Video Database Research,” in Proceedings of International Workshop on Multimedia
Information Systems, pp. 8-27, 2002.

[10] N. Babaguchi, Y. Kawai, and T. Kitahashi, “Event Based Indexing of Broadcasted
Sports Video by Intermodal Collaboration,” IEEE Transactions on Multimedia, vol.
4, no. 1, pp. 68-75, 2002.

[11] M.T. Barakat and P.M. Dean, “Molecular Structure Matching by Simulated Anneal-
ing. III. The Incorporation of Null Correspondences into the Matching Problem,” J
Comput Aided Mol Des., vol. 5, pp. 107-117, 1991.

188

[12] J.M. Barnard, “Substructure Searching Methods: Old and New,” J. Chem. Inf.
Comput., vol. 33, pp. 532-538, 1993.

[13] A. Basharat, Y. Zhai, and M. Shah, “Content Based Video Matching Using Spa-
tiotemporal Volumes,” Jornal of Computer Vision and Image Understanding, vol.
110, no. 3, pp. 360–377, 2008.

[14] R. Bayer, “Binary B-Trees for Virtual Memory,” in Proceedings of SIGFIDET Work-
shop, pp. 219-235, 1971.

[15] R. Bayer and E. M. McCreight, “Organization and Maintenance of Large Ordered
Indices,” Journal of Acta Informatica, vol. 1, no. 2, pp. 173-189, 1972.

[16] M.A. Beauchamp, “An Improved Index of Centrality,” Behavioural Science, vol. 10,
pp. 161-163, 1965.

[17] N. Beckmann, H. Kreigel, R. Schneider, and B. Seege, “The R*-tree: An Efficient
and Robust Access Method for Points and Rectangles,” in Proceedings of the 1990
ACM SIGMOD International Conference on Management of Data, pp. 322-331,
1990.

[18] S. Belongie, C. Carson, H. Greenspan and J. Malik, “Color and Texture-Based Image
Segmentation Using EM and its Application to Content Based Image Retrieval,” in
Proceedings of IEEE International Conference on Computer Vision, pp. 675–682,
1998.

[19] S. Berchtold, D. A. Keim, and H. Kriegel, “The X-Tree: An Index Structure for High
Dimensional Data,” in Proc. 22nd International Conf. on Very Large Database, pp.
28–39, 1996.

[20] P. B. Berra, C. Y. R. Chen, A. Ghafoor, C. C. Lin, T. D. C. Little, and D. Shin,
“Architecture for Distributed Multimedia Database Systems,” Journal of Computer
Communication, vol. 13, no. 4, pp. 217-231, 1990.

[21] A.R. Bloemena, “Sampling from a Graph,” Mathematical Centre Tracts, pp. 85-86,
1964.

[22] V. D. Blondel, A. Gajardo, M. Heymans, P. Senellart, and P. Van Dooren, “A
Measure of Similarity Between Graph Vertices: Applications to Synonym Extraction
and Web Searching,” SIAM Rev., vol. 46, no. 4, pp. 647-666, 2004.

189

[23] T. Bozkaya and M. Ozsoyoglu, “Distance-Based Indexing for High-Dimensional Met-
ric Spaces,” in Proceedings of the 1997 ACM SIGMOD International Conference on
Management of Data, pp. 357-368, 1997.

[24] F.J. Brandenburg, M. Himsolt, and C. Rohrer, “An Experimental Comparison of
Force-Directed and Randomized Graph Drawing Algorithms,” in Proceedings of the
Symposium on Graph Drawing, pp. 76-87, 1995.

[25] R. L. Breiger, “The Analysis of Social Networks,” in Handbook of Data Analysis,
edited by Melissa Hardy and Alan Bryman, Sage Publication, pp. 505-526, 2004.

[26] H. Bunke, “Error Correcting Graph Matching: On the Influence of the underlying
Cost Function,” IEEE Transactions of Pattern Analysis and Machine Intelligence,
vol. 21, no. 9, pp. 917-922, 1999.

[27] H. Bunke, X. Jiang, and A. Kandel, “On the Minimum Common Supergraph of Two
Graphs,” Computing, vol. 65, no. 1, pp. 13-25, 2000.

[28] J.C. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition,”
Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 121-167, 1998.

[29] R. Burt, “Toward a Structural Theory of Action: Network Models of Social Struc-
ture, Perception, and Action,” Academic Press, ISBN: 9780121471507, 1982.

[30] F. Bourgeois and J.-C. Lassalle, “An Extension of the Munkres Algorithm for the
Assignment Problem to Rectangular Matrices,” Communications of the ACM, vol.
14, no. 12, pp. 802-804, 1971.

[31] M. Capobianco, “Statistical Inference in Finite Populations Having Structure,”
Transactions of the New York Academy of Sciences, vol. 32, pp. 401-413, 1970.

[32] M. Capobianco and O. Frank, “Comparison of Statistical Graph-Size Estimators,”
Journal of Statistical Planning and Inference, vol. 6, pp. 87-97, 1982.

[33] C. Carson, S. Belongie, H. Greenspan, and J. Malik, “Blobworld: Image Segmen-
tation Using Expectation-Maximization and Its Application to Image Querying,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 8,
pp. 1026-1038, 2002.

[34] F. Cazals and C. Karande, “An Algorithm for Reporting Maximal C-Cliques,” The-
oretical Computer Sciences, vol. 349, no. 3, pp. 484-490, 2005.

190

[35] K. Chakrabarti and S. Mehrotra, “The hybrid Tree: An Index Structure for High-
Dimensional Feature Spaces,” in Proceedings of the IEEE International Conference
on Data Engineering, pp. 440-447, 1999.

[36] K. Chakrabarti, K. Porkaew, M. Ortega and S. Mehrotra, “Evaluating Refined
Queries in Top-k Retrieval Systems,” Technical Report TR-MARS-00-04, Univer-
sity of California at Irvine, 2000.

[37] K. Chakrabarti, M. Ortega, K. Porkaew and S. Mehrotra, “Query Refinement in
Similarity Retrieval Systems,” IEEE Data Engineering Bulletin, vol. 24, no. 3, pp.
3-13, 2001.

[38] K. Chakrabarti, K. Porkaew, M. Ortega, and S. Mehrotra, “Evaluating Refined
Queries in Top-k Retrieval Systems,” IEEE Transaction on Knowledge and Data
Engineeringn, vol. 16, no. 2, pp. 256-270, 2004.

[39] K. Chakrabarti, K. Porkaew, and S. Mehrotra, “Efficient Query Refinement in Mul-
timedia Databases,” in Proc. 16th IEEE International Conference on Data Engi-
neering (ICDE), pp. 196-196, 2000.

[40] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke, “The Data
Grid: Towards an Architecture for the Distributed Management and Analysis of
Large Scientific Datasets,” Journal of Network and Computer Applications, vol. 23,
pp. 187–200, 2001.

[41] K. Chakrabarti, Hybrid Tree Code, //www.ics.uci.edu/ kaushik/research/htree.html,
2005.

[42] COREL STUDIO http://www.digitalriver.com/v2.0-
img/operations/corelpps/desc/index.htm. Cited 9 March 2010.

[43] N. S. Chang and K. S. Fu, “A Relational Database System for Images,” Technical
Report TR-EE 79-28, Purdue University, 1979.

[44] N. S. Chang and K. S. Fu, “Query-By-Pictorial-Example,” IEEE Transaction on
Software Engineering, vol. 6, no. 6, pp. 519–524, 1980.

[45] K. Chatterjee and S.-C. Chen, “Affinity Hybrid Tree: An Indexing Technique for
Content-Based Image Retrieval in Multimedia Databases,” in Proceedings of the
IEEE International Symposium on Multimedia (ISM06), pp. 47-54, 2006.

[46] K. Chatterjee and S.-C. Chen, “A Novel Indexing and Access Mechanism using
Affinity Hybrid Tree for Content-Based Image Retrieval in Multimedia Databases,”

191

International Journal of Semantic Computing (IJSC), vol. 1, no. 2, pp. 147-170,
2007.

[47] K. Chatterjee and S.-C. Chen, “GeM-Tree: Towards a Generalized Multidimensional
Index Structure Supporting Image and Video Retrieval,” in Fourth IEEE Interna-
tional Workshop on Multimedia Information Processing and Retrieval (MIPR2008),
in conjunction with IEEE International Symposium on Multimedia (ISM2008), pp.
631-636, 2008.

[48] K. Chatterjee and S.-C. Chen, “Hierarchical Affinity-Hybrid Tree: A Multidimen-
sional Index Structure to Organize Videos and Support Content-Based Retrievals,”
in Proceedings of 2008 IEEE International Conference on Information Reuse and
Integration, pp. 435-440, 2008.

[49] K. Chatterjee and S.-C. Chen, “Hybrid Query Refinement: A Strategy for Refining
Multimedia Queries in terms of both Feature Space and Semantic Relationships in
a Distance Based Index Structure,” In preparation to be submitted to ACM Trans-
actions of Multimedia.

[50] S.-C. Chen, M.-L. Shyu, C. Zhang, L. Luo, and M. Chen, “Detection of Soccer Goal
Shots Using Multimedia Features and Classification Rules,” in Proceedings of the
4th International Workshop on Multimedia Data Mining, pp. 36-44, 2003.

[51] S.-C. Chen, M.-L. Shyu, N. Zhao, and C. Zhang, “An Affinity-based Retrival System
for Multimedia Authoring and Presentation,” in Proceedings of 11th Annual ACM
International Conference on Multimedia (ACM-MM), pp. 446-447, 2003.

[52] S.-C. Chen, M.-L. Shyu, and C. Zhang, “Innovative Shot Boundary Detection for
Video Indexing,” edited by Sagarmay Deb, Video Data Management and Informa-
tion Retrieval. Idea Group Publishing, ISBN: 1-59140546-7; pp. 217-236, 2005.

[53] S.-C. Chen, N. Zhao, and M.-L. Shyu, “Modeling Semantic Concepts and User
Preferences in Content-Based Video Retrieval,” International Journal of Semantic
Computing (IJSC), Vol. 1, no. 3, pp. 377-402, 2007.

[54] Y. Chen, and J. Z. Wang, “Image Categorization by Learning and Reasoning with
Regions,” Journal of Machine Learning Research, vol. 5, pp. 913-939, 2004.

[55] V. Cheng, C.-H Li, T.K. James, and C.-K. Li, “Dissimilarity learning for nominal
data,” Pattern Recognition, Vol. 37, no. 7, pp. 1471-1477, 2004.

[56] B.S. Cohn and M. Mariott, “Networks and Cenres of Intergration in Indian Civi-
lization,” Journal of Machine Learning Research, vol. 1, pp. 1-9, 1958.

192

[57] C. Colombo, A. Del Bimbo, and P. Pala, “Semantics in Visual Information Re-
trieval,” IEEE Multimedia, vol. 7, no. 1, pp. 60-67, 2000.

[58] D. Comer, “Ubiquitous B-Tree,” in ACM Comput. Surv., vol. 11, no. 2, pp. 121-137,
1979.

[59] T. H. Coremen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Introduction to Algo-
rithms,” M.I.T Press, ISBN: 9780262032933, 2001.

[60] P. Ciaccia,M. Patella, and P. Zezula, “M-tree: An Efficient Access Method for Sim-
ilarity Search in Metric Spaces,” in Proc. 23rd VLDB International Conference, pp.
426-435, 1997.

[61] M. Croitoru, B. Hu, S. Dashmapatra, P. Lewis, D. Dupplaw, and L. Xiao, “A
Conceptual Graph Bsed Approach to Ontology Similarity Measure,” in Proceedings
of the 15th International Conference on Conceptual Structures, pp. 154-164, 2007.

[62] G. C. Cross and A. K. Jain, “Markov Random Field Texture Models,” IEEE Trans-
action of Pattern Recognition and Machine Intelligence, vol. 5, pp. 25-39, 1983.

[63] CuVid Columbia Video Search System, http://apollo.ee.columbia.edu/cuvidsearch/

[64] D. Daneels, D. Campenhout, W. Niblack, W. Equitz, R. Barber, E. Bellon, and F.
Fierens, “Interactive Outlining: An Improved Approach Using Contours,” in SPIE
Proceedings of Storage and Retrieval for Image and Video Databases, pp. 226-233,
1993.

[65] J. Dowe, “Content-based Retrieval in Multimedia Imaging,” in Proceedings of SPIE
Storage and Retrieval for Image and Video Databases, pp. 164–167, 1993.

[66] C.A. Duncan, M.T. Goodrich, and S.G. Kobourov, “Balanced Aspect Trees and their
use for Drawing Very Large Graphs,” in Proceedings of the Symposium on Graph
Drawing, pp. 111-124, 1998.

[67] P. Eades and Q.-W. Feng, “Multilevel Visualization of Clustered Graphs,” in Pro-
ceedings of the Symposium on Graph Drawing, pp. 101-112, 1997.

[68] D. Eager, E. D. Lazowska, and J. Zahorjan, “Adaptive Load sharing in Homogeneous
Distributed Systems,” IEEE Trans. Softw. Eng., vol. 12, no. 5, pp. 662-675, 1986.

[69] S. Eickeler and S. Muller, “Content-based Video Indexing of TV Broadcast News
using Hidden Markov Models,” in Proceedings of IEEE International Conference on
Acoustics, Speech, and Signal Processing, pp. 2997-3000, 1999.

193

[70] R.M. Emerson, “Exchange Theory Part 2: Exchange Relations and Network Struc-
tures,” Sociological Theories in Progress, vol. 2, pp. 58–87, 1972.

[71] W. Equitz and W. Niblack, “Retrieving Images from a Database using Texture-
Alogrithms from the QBIC System,” Technical Report RJ 9805, Computer Science,
IBM Research Report, 1994.

[72] G. Evangelidis, D. Lomet, and B. Salzberg, “The hB-Pi-Tree: A Modified hB-tree
Supporting Concurrency, Recoverey, and Node Consolidation,” in Proceedings of
Very Large Databases Conference, pp. 551-561, 1995.

[73] Facebook at http://en.wikipedia.org/wiki/Facebook.

[74] Q. Feng, “Algorithms for Drawing Clustered Graphs,” PhD Thesis, Department of
Computer Science and Software Engineering, The University of New Castle, Aus-
tralia, 1997.

[75] O. Frank, “Structure Inference and Stochastic Graphs,” FOA-Reports, vol. 3, no. 2,
pp. 1-8, 1969.

[76] R. Fagin, “Fuzzy Queries in Multimedia Database Systems,” in Proc. 17th ACM
SIGACT-SIGMOD-SIGART symposium on principles of database systems, pp. 1-
10, 1998.

[77] C. Faloutsos, “Searching Multimedia Databases by Content,” Kluwer Academic Pub-
lishers, Boston, ISBN: 9780792397779, 1996.

[78] C. Faloutsos, W. Equitz, M. Flickner, W. Niblack, D. Petkovic, and R. Barber, “Ef-
ficient and Effective Querying by Image Content,” Journal of intelligent information
systems, vol. 3, no. 4, pp. 231-262, 1994.

[79] “http://en.wikipedia.org/wiki/F-score”.

[80] I. Foster and C. Kesselman, “The Grid: Blueprint for a New Computing Infrastruc-
ture,” Morgan Kaufmann Publishers, ISBN: 978155860475, 1999.

[81] I. Foster “What is the Grid? - A Three Point Checklist,” GRIDtoday, vol. 1, no. 6,
pp. 22–25, 2002.

[82] I. Foster, “The Virtual Data Grid: A New Model and Architecture for Data-intensive
Collaboration,” in Proceedings of the 15th International Conference on Scientific and
Statistical Database Management, pp. 11-22, 2003.

194

[83] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid: Enabling Scal-
able Virtual Organizations,” International Journal of Supercomputer Applications,
vol. 15, no. 3, pp. 200-222, 2001.

[84] O. Frank, “Survey Sampling in Graphs,” Journal of Statistical Planning and Infer-
ence, vol. 1, pp. 235-264, 1977.

[85] 0. Frank and D. Strauss, “Markov graphs,” Journal of the American Statistical
Association, vol. 81, pp. 832-842, 1986.

[86] O. Frank, “Random Sampling and Social Networks: A Survey of Various Ap-
proaches,” Mathematitiques et Sciences Humaines, vol. 104, no. 26, pp. 19-33, 1988.

[87] D. Franks, R. James, J. Noble, and G. Ruxton, “Developing a Methodology for
Social Network Sampling,”, Behavioral Ecology and Sociobiology, vol. 63, no. 7, pp.
1079-1088, 2009.

[88] L. C. Freeman, “Centrality in Social Networks: Conceptual Clarification,” Social
Networks, vol. 1, no. 3, pp. 215-239, 1979.

[89] L. Freeman, S. Borgatti, and D. White, “Centrality in Valued Graph: A Measure of
Betweenness Based on Network Flow,” Social Networks, vol. 13, no. 2, pp. 141-154,
1991.

[90] N.E. Friedkin, “Theoretical Foundations of Centrality Measures,” American Journal
of Sociology, vol. 96, no. 6, pp. 1478-1504, 1991.

[91] H. Frohlich, A. Kosir, and B. Zajc, “Optimization of FPGA Configurations Using
Parallel Genetic Algorithm,” Information Sciences, vol. 133, no. 3, pp. 195-219,
2001.

[92] L.A. Goodman, “Snowball Sampling,” Annals of Mathematical Statistics, vol. 32,
pp. 148-170, 1961.

[93] M.S. Granovetter, “Network Sampling: Some First Steps,” American Journal of
Sociology, vol. 81, pp. 1287-1303, 1976.

[94] D. Greene, “An Implementation and Performance Analysis of Spatial Data Access
Methods,” in Proc. 5th International Conference on Data Engineering, pp. 606-615,
1989.

195

[95] H. Greenspan, J. Golberger, and A. Mayer, “Probabilistic Space-time Video Mod-
eling via Piecewise GMM,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 26, no. 3, pp. 384-396, 2004.

[96] N. Gross, W.S. Mason, and W. McEachern, “Explorations in Role Analysis,” in
Wiley Publishers, ISBN: 9780471328025, 1958.

[97] B. Gunsel, A.M. Ferman, and A.M. Tekalp, “Video Indexing through Integration of
Syntactic and Semantic Features,” in Proceedings of 3rd IEEE Workshop on Appli-
cations of Computer Visions, pp. 90-95, 1996.

[98] A. Guttman, “R-trees: A Dynamic Index Structure for Spatial Searching,” in Pro-
ceedings of the 1984 ACM SIGMOD International Conference on Management of
Data, pp. 47-57, 1984.

[99] R. M. Haralick, K. Shanmugam, and I. Dinstein, “Texture Features for Image Clas-
sification,” IEEE Trans. on Sys. Man. and Cyb., vol. 3, no. 6, pp. 610–621, 1973.

[100] M. Handcock, “Assessing Degeneracy in Statistical Models of Social Networks,”
Journal of the American Statistical Association, vo. 76, pp. 33–50, 2003.

[101] A. Hanneman and M. Riddle, “Introduction to Social Network Methods,” online
at http://www.faculty.ucr.edu/hanneman/nettext/”, 2005.

[102] J. Heer and D. Boyd, “Vizster: Visualizing Online Social Networks,” in Proceedings
of the 2005 IEEE Symposium on Information Visualization (InfoVis05), pp. 33-40,
2005.

[103] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer, “Generalized Search Trees for
Database Systems,” in Proceedings of 21st Conference on Very Large DataBases
(VLDB95), pp. 562-573, 1995.

[104] I. Herman, G. Melanon, and M. S. Marshall, “Graph Visualization and Navigation
in Information Visualization: a Survey,” IEEE Transactions on Visualization and
Computer Graphics, vol. 6, no. 1, pp. 24–43, 2000.

[105] M. Heymans, and A. Singh, “Deriving Phylogenetic Trees from the Similarity Anal-
ysis of Metabolic Pathways,” Bioinformatics, vol. 19, no. 1, pp. 138-146, 2003.

[106] D. Hidovic, and M. Pelillo, “Metrics For Attributed Graphs Based On The Maximal
Similarity Common Subgraph,” IJPRAI, vol. 18, no. 3, pp. 299-313, 2004.

196

[107] M. Himsolt, “GraphEd: A Graphical Platform for the Implementation of Graph
Algorithms,” Graph Drawing, Lecture Notes in Computer Science, vol. 894, pp. 182-
193, 1994.

[108] P.W. Holland, and S. Leinhardt, “An Exponential Family of Probability Distri-
butions for Directed Graphs,” American Statistical Association, vol. 76, pp. 33-65,
1981.

[109] P. Hong, Q. Tian, and T.S. Huang, “Incorporate Support Vector Machines to
Content-based Image Retrieval with Relevance Feedback,” in Proceedings of IEEE
international conference of Image Processing, pp. 750-753, 2000.

[110] T.S. Huang and Y. Rui, “Image retrieval: Past, Present, and Future,” in Journal
of Visual Communication and Image Representation, vol. 10, pp. 1–23, 1997.

[111] M.L. Huang and P. Eades, “A Fully Animated Interactive System for Clustering
and Navigating Huge Graphs,” in Proceedings of the Symposium on Graph Drawing,
pp. 374-383, 1998.

[112] T. S. Huang, S. Mehrotra, and K. Ramachandran, “Multimedia Analysis and Re-
trieval System (MARS) Project,” in Proceedings of 33rd Annual Clinic on Library
Application of Data Processing-Digital Image Access and Retrieval, 1996.

[113] C.H. Hubbell, “An Inputoutput Approach to Clique Identification,” Sociometry,
vol. 28, pp. 377-399, 1965.

[114] IBM Marvel: MPEG-7 Multimedia Search Engine,
http://www.research.ibm.com/marvel/

[115] Y. Ishikawa, R. Subramanya, and C. Faloutsos, “MindReader: Querying Databases
Through Multiple Examples,” in Proceedings of 24th International Conference on
Very Large Data Bases, VLDB, pp. 218-227, 1998.

[116] L. Ivan, M. Ricarte, and C. M. Tobar, “Towards an Architecture for Distributed
Multimedia Databases,” in Proceedings of the 1996 IASTED/ISMM International
Conference on Intelligent Information Management Systems, pp. 68–71, 1996.

[117] M. Jamali and H. Abolhassani, “Different Aspects of Social Network Analysis,” in
Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intel-
ligence, pp. 66-72, 2006.

197

[118] G. Jeh and J. Widom, “SimRank: A Measure of Structural-context Similarity,”
in Proceedings of the Eights ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 538-543, 2002.

[119] T. Johnson and P. Krishna, “Lazy Updates for Distributed Search Structure,” in
Proceedings of ACM SIGMOD Conference, pp. 337-346, 1993.

[120] H. Jiang and A. Elmagarmid, “Spatial and Temporal Content-based Access to
Hypervideo Databases,” VLDB Journal vol. 7, no. 4, pp. 226-238, 1998.

[121] F. Jing, M. Li, H. J. Zhang, and B. Zhang, “An Effective Region-Based Image
Retrieval Framework,” in Proceedings of ACM International Conference on Multi-
media, pp. 456-465, 2002.

[122] S.M. Kang, “A Note on Measures of Similarity Based on Centrality,” Social Net-
works, vol. 29, no. 1, pp. 137-142, 2007.

[123] V. Kann, “On the Approximability of NP-Complete Optimization Problems,”
Ph.D. Thesis, Department of Numerical Analysis and Computing Sciences, Royal
Institute of Technology, Stockholm, Sweden, 1992.

[124] L. M. Kaplan, et al., “Fast Texture Database Retrieval Using Extended Fractal
Features,” in Proceedings of IS&T/SPIE Conference on Storage and Retrieval for
Media Databases, pp. 162-173, 1998.

[125] N. Katayama and S. Satoh, “Application of Multidimensional Indexing Methods to
Massive Processing of Multimedia Information,” Systems and Computers in Japan,
vol. 31, no. 13, pp. 31-41, 2000.

[126] N. Katayama and S. Satoh, “The SR-Tree: An Index Structure for High-
dimensional Nearest-Neighbor Queries,” in Proceedings of 1997 ACM SIGMOD, pp.
369-380, 1997.

[127] A. Robles-kelly and E. R. Hancock, “Graph Matching using Adjacency Matrix
Markov Chains,” in Proceedings of the British Machine Vision Conference, pp. 384-
390, 2001.

[128] A. Robles-Kelly, “A Thermodynamics Approach to Graph Similarity,” in Proceed-
ings of the Digital Image Computing: Technqiues and Applications, pp. 65-70, 2005.

[129] D. Kimelman, B. Leban, T. Roth and D. Zernik, “Reduction of Visual Complexity
in Dynamic Graphs,” in Proceedings of the Symposium on Graph Drawing, pp. 218-
225, 1994.

198

[130] J.M. Kleinberg, “Authoritative Sources in a Hyperlinked Environment,” Journal
of the ACM, vol. 46, no. 5, pp. 614-632, 1999.

[131] B. Klimt and Y. Yang, “The Enron Corpus: A New Dataset for Email Classification
Research,” in Proceedings of the 15th European Conference on Machine Learning,
pp. 217-226, 2004.

[132] D.E. Knuth, “The Stanford GraphBase: A platform for Combinatorial Comput-
ing,” Addison-Wesley, 1993.

[133] R. Krishnapuram, S. Medasani, J. Hwan, C. Y. Sik, and R. Balasubramaniam,
“Content Based Image Retrieval Based on Fuzzy Approach,” IEEE Trans. on
Knowledge and Data Engineering (TKDE), vol. 16, no. 10, pp. 1185-1199, 2004.

[134] B. Kroll and P. Windmayer, “Distributing a Search Tree Among a Growing Number
of Processors,” in Proceedings of ACM SIGMOD Conference, pp. 265-276, 1994.

[135] P. Krueger and M. Livny, “The Diverse Objectives of Distributed Scheduling Poli-
cies,” in Proceedings of the IEEE Symposium on Distributed Computing Systems,
pp. 242-249, 1987.

[136] P. Krueger and R. Chawla, “The Stealth Distributed Scheduler,” in Proceedings of
the 11th International Conference on Distributed Computing Systems, pp. 336-343,
1991.

[137] H. W. Kuhn, “The Hungarian Method for the Assignment Problem,” Naval Re-
search Logistics Quarterly, vol. 2, pp. 83-97, 1955.

[138] H. W. Kuhn, “Variants of the Hungarian Method for Assignment Problems,” Naval
Research Logistics Quarterly, vol. 3, pp. 253-258, 1956.

[139] H. Lamehamedi, B. Szymanski, Z. Shentu, and E. Deelman, “Data Replication
Strategies in Grid Environments,” in Proceedings of the 5th International Conference
on Algorithms and Architecture for Parallel Processing, pp. 378-383, 2002.

[140] G. Levi, “A Note on the Derivation of Maximal Common Subgraphs of Two Di-
rected or Undirected Graphs,” Calcolo, vol. 9, pp. 341-352, 1972.

[141] Linkedin. http://en.wikipedia.org/wiki/LinkedIn.

[142] J. Z. Li, M. T. Ozsu, and D. Szafron “Modeling of Video Spatial Relationships in an
Object Database Management System,” in Proceedings of International Workshop
on Multimedia Database Management Systems, pp. 124-132, 1996.

199

[143] J. Li, N. Allinson, D. Tao, and X. Li, “Multitraining Support Vector Machine
for Image Retrieval,” IEEE transactions on image processings, vol. 15, no. 11, pp.
3597-3601, 2006.

[144] Z. Liu, Y. Wang, and T. Chen, “Audio Feature Extraction and Analysis for Scene
Segmentation and Classification,” Journal of VLSI Signal Processing Systems for
Signal, Image, and Video Technology, vol. 20, no. 1/2, pp. 61-80, 1998.

[145] D. Liu, K. Hua, K. Vu, and N. Yu, “Fast Query Point Movement Techniques with
Relevance Feedback for Content-Based Image Retrieval,” Lecture Notes in Computer
Science, pp. 700-717, 2006.

[146] S. Liu, N. Cao, P. Moody, and T. Wang, “Trammel Map: Providing a Clear View
of the Enterprise Social Network,” in IEEE Infovis 2007 (Interactive Poster), 2007.

[147] M. Livny and M. Melman, “Load Balancing in Homogeneous Broadcast Distributed
Systems,” in Proceedings of the Computer Network Performance Symposium, pp. 47-
55, 1982.

[148] D. B. Lomet and B. Salzberg, “The hB-Tree: A Multiattribute Indexing Method
with Good Guaranteed Performance,” ACM Transactions on Database Systems, vol.
15, no. 4, pp. 625-658, 1990.

[149] D. B. Lomet, “Replicated Indexes for Distributed Data,” in Proceedings of Inter-
national Conference of Parallel and Distributed Information Systems, pp. 1-8, 1996.

[150] M. Loka, “A Method of Defining the Similarity of Images on the Basis of Color
Information,” Technical Report RT-0030, IBM Research, Tokyo, 1989.

[151] W. Y. Ma and B. S. Manjunath, “Netra: A Toolbox for Navigating Large Image
Databases,” in Proceeding of IEEE International Conference on Image Processing,
pp. 568–571, 1997.

[152] W. Y. Ma and B. S. Manjunath, “Edge flow: A Framework for Boundary Detection
and Image Segmentation,” in IEEE Transactions on Image Processing, vol. 9, No.
8, pp. 1375–1388, 2000.

[153] B. Martin, “Instance-Based learning: Nearest Neighbor With Generalization,”
MSc. Thesis, Dept. of Computer Science, University of Waikato, 1995.

[154] B. S. Manjunath and W. Y. Ma, “Image Indexing Using a Texture Dictionary,”
in Proceedings of SPIE Conference on Image Storage and Archiving System, pp.
288–298, 1995.

200

[155] J.J. McGregor, “Backtrack Search Algorithms and the Maximal Common Subgraph
Problem,” Softw., Pract. Exper., vol. 12, no. 1, pp. 23-34, 1982.

[156] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity Flooding: A Versatile
Graph Matching Algorithm and its Application to Schema Matching,” in Proceed-
ings. 18th International Conference on Data Engineering, pp. 117-128, 2002.

[157] A. Motro, “Vague: A User Interface to Relational Databases that Permits Vague
Queries,” ACM Transactions on Office Information Systems, vol. 6, no. 3, pp. 187-
214, 1998.

[158] S. Mukherjea, J.D. Foley, and S. Hudson, “Visualizing Complex Hypermedia Net-
works through Multiple Hierarchical Views,” in Proceedings of the Human Factors
in Computing Systems (CHI ’95), pp. 331-337, 1995.

[159] J. Munkres, “Algorithms for the Assignment and Transportation Problems,” Jour-
nal of the Society for Industrial and Applied Mathematics, vol. 5, no. 1, pp. 32-38,
1957.

[160] A. Natsev, R. Rastogi, and K. Shim, “WALRUS: A Similarity Retrieval Algorithm
for Image Databases,” IEEE Trans. on Knowledge and Data Engineering, vol. 16,
No. 3, pp. 301-316, 2004.

[161] M.E.J. Newman, “Assortative Mixing in Networks,” Phys. Rev. Lett., vol. 89, No.
20, pp. 208701-208704, 2002.

[162] M.E.J. Newman, “Finding Community Structure in Networks Using the Eigen-
vectors of Matrices,” Physical Review E (Statistical, Nonlinear, and Soft Matter
Physics), vol. 74, No. 3, pp. 036104, 2006.

[163] W. Niblack, R. Barber, et. al., “The QBIC Project: Querying Images by Content
Using Color, Textute and Shape,” in Proceedings of SPIE Storage and Retrieval for
Image and Video Databases, pp. 173-187, 1993.

[164] J. A. Orenstein and T.H. Merret, “A Class of Data Structures for Associate Search-
ing,” in Proceedings of the ACM SIGMOD-PODS, pp. 294-305, 1984.

[165] M. Ortega, Y. Rui, K. Chakrabarti, K. Porkaew, S. Mehrotra, and T. S. Huang,
“Supporting Ranked Boolean Similarity Queries in MARS,” IEEE Transaction on
Knowledge and Data Engineering, vol. 10, no. 6, pp. 905-925, 1998.

201

[166] P. Palma, L. Petraglia, and G. Petraglia, “The Virtual Image in Streaming Video
Indexing,” in Proceedings of International Conference on Dublin Core and Metadata
for e-Communities, pp. 97-103, 2002.

[167] A. Pentland, R. W. Picard, and A. Sclaroff, “Photobook: Content Based Manipu-
lation of Image Databases,” International Journal of Computer Vision, vol. 18, no.
3, pp. 233-254, 1996.

[168] H.H. Permuter, J. Francos and I.H. Jarmyn, “Gaussian Mixture Models of Texture
and Colour for Image Database Retrieval,” in Proceedings of IEEE International
Conference on Acoustics, Speech, and Signal Processing, pp. 569–572, 2003.

[169] M. Petkovic and W. Jonker, “Content-based Video Retrieval: A Database Perspec-
tive,” by Kluner Academic Publishers, ISBN: 9781402076176, 2004.

[170] K. Porkaew, K. Chakrabarti and S. Mehrotra, “Query Refinement for Multimedia
Similarity Retrieval in MARS,” in Proceedings of the ACM Multimedia, pp. 235-238,
1999.

[171] M. Patella, M-Tree Code, http://www-db.deis.unibo.it/Mtree, 2005.

[172] K. Porkaew, M. Ortega and S. Mehrotra, “Query Reformulation for Content Based
Multimedia Retrieval in MARS,” in Proceedings of IEEE International Conference
on Multimedia Computing and Systems ICMCS, Volume 2”, pp. 47-751, 1999.

[173] J.R. Quinlan, “C4.5: Programs for Machine Learning,” in Morgan Kaufmann Pub-
lishers Inc., isbn 1-55860-238-0, 1993.

[174] S. T. Rachev, “The Monge-Kantorovich Mass Transference Problem and its
Stochastic Applications,” Theory of Probability and its Applications, vol. 29, no.
4, pp. 647-676, 1984.

[175] F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K. Elhardt, R. Bayer, B. Forschungszen-
trum, and T. Mnchen, “Integrating the UB-Tree into a Database System Kernel,”
in Proceedings of 26th International Conference on VLDB, pp. 263-272, 2000.

[176] J. W. Raymond, E. J. Gardiner, and P. Willett, “RASCAL: Calculation of Graph
Similarity using Maximum Common Edge Subgraphs,” Computer Journal, vol. 45,
pp. 631-644, 2002.

[177] J.W. Raymond and P. Willett, “Maximum Common Subgraph Isomorphism Al-
gorithms for the Matching of Chemical Structured,” Journal of Computer Aided
Molecular Design, vol. 16, pp. 521-533, 2002.

202

[178] J. Rissanen, “Modeling by Shortest Data Description,” Automatica, vol. 14, no. 2,
pp. 465-471, 1978.

[179] J. T. Robinson, “The K-D-B-Tree: A Search Structure for Large Multidimensional
Dynamic Indexes,” in Proceedings of the 1981 ACM SIGMOD International Con-
ference on Management of Data, pp. 10-18, 1981.

[180] A. Robles-kelly and E.R. Hancock, “Graph Matching using Adjacency Matrix
Markov Chains,” in Proceedings of the British Machine Vision Conference, pp. 384–
390, 2001.

[181] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest Neighbor Queries,” in Proc.
1995 ACM SIGMOD international conference on Management of Data, pp. 71-79,
1995.

[182] Sellis, Timos, N. Roussopoulos, and C. Faloutsos, “The R+-Tree: A Dynamic Index
for Multidimensional Objects,” in Proceedings of the 13th International Conference
on Very Large Databases, pp. 507-518, 1987.

[183] T. Roxborough and A. Sen, “Graph Clustering Using Multiway Ratio Cut,” in
Proceedings of the Symposium on Graph Drawing, pp. 291-296, 1997.

[184] B. Rubin and G. Davenport, “Structured Content Modeling for Cinematic Infor-
mation,” SIGCHI Bulletin, vol. 21, no. 2, pp. 78-79, 1989.

[185] Y. Rubner, C. Tomasi, and L. J. Guibas, “A Metric for Distributions with Appli-
cations to Image Databases,” in Proceedings of IEEE International Conference on
Computer Vision, pp. 59-66, 1998.

[186] Y, Rui, T. S. Huang, and S. Mehrotra, “Content-based Image Retrieval with Rele-
vance Feedback in MARS,” in Proceedings of the 1997 International Conference on
Image Processing, pp. 815-818, 1997.

[187] Y, Rui, T. S. Huang, and S. Mehrotra, “Relevance Feedback: A Power Tool for In-
teractive Content-Based Image Retrieval,” IEEE Transactions on Circuit and Video
Technology, Special Issue on Segmentation, Description, and Retrieval of Video Con-
tent, vol. 8, no. 5, pp. 644-655, 1998.

[188] Y. Rui, T.S. Huang, S. Mehrotra, and M. Ortega, “Automatic Matching Tool
Selection Using Relevance Feedback in MARS,” in Proceedings of 2nd International
Conference On Visual Information Systems, 1997.

203

[189] S. Salzberg, “A Nearest Hyperrectagular Learning Method,” Machine Learning,
vol. 6, no. 3, pp. 251-276, 1991.

[190] G. Schwarz, “Estimating the Dimensioan of Model,” Annals of Statistics, vol. 6,
no. 2, pp. 461-464, 1978.

[191] M.-L. Shyu, S.-C. Chen, M. Chen, C. Zhang, and C.-M. Shu, “MMM: A Stochastic
Mechanism for Image Database Queries,” in Proceedings 5th International Sympo-
sium on Multimedia Software Engineering (MSE2003), pp. 188-195, 2003.

[192] J. R. Smith and S. F. Chang, “Transform Features for Texture Classification and
Discrimination in Large Image Databases,” in Proceedings of IEEE International
Conference on Image Processing, pp. 407–411, 1994.

[193] J. R. Smith and S.-F. Chang, “Tools and Techniques for Color Image Retrieval,” in
Proceedings of Storage and Retrieval for Image and Video Databases, pp. 426–437,
1995.

[194] J. R. Smith and S. F. Chang, “Automated Image Retrieval Using Color and Tex-
ture,” Technical Report CU/CTR 408-95-14, Columbia University, 1995.

[195] J. R. Smith and S. F. Chang, “VisualSeek: A Fully Automated Content-Based
Query System,” Proceedings of ACM Multimedia, pp. 87-98, 1996.

[196] J. R. Smith and S.-F. Chang, “Automated Binary Texture Feature Sets for Image
Retrieval,” in Proceedings of ICASSP, pp. 2239–2242, 1996.

[197] J. R. Smith and S.-F. Chang, “Visually Searching the Web for Content,” IEEE
Multimedia Magazine, vol. 4, no. 3, pp. 12-20, 1997.

[198] P. Smyth, “Statistical Modeling of Graph and Network Data,” in Proceedings of
IJCAI Workshop on Learning Statistical Modelsfrom Relational Data, 2003.

[199] T. A. Snijders, P. E. Pattison. G. L. Robins, and M. S. Handcock, “New Epecifi-
cations for Exponential Random Graph Models,”, 2004.

[200] C. G. M. Snoek and M. Worring, “Goalgle: A Soccer Video Search Engine,” in
Proceedings of IEEE International Conference on Multimedia and Expo, 2003.

[201] C. Snoek and M. Worring, “Multimodal Video Indexing: A Review of the State-
of-the-art,” Multimedia Tools and Applications, vol. 25, no. 1, pp. 5-35, 2005.

204

[202] C. Stanfill and W. David, “Toward Memory-based Reasoning,” Communications
of ACM, vol. 29, no. 12, pp. 1213–1228, 1986.

[203] M. D. Stefano, “Distributed Data Management for Grid Computing,” Wiley, ISBN:
9780471687191, 2005.

[204] R. O. Stehling, M. A. Nascimento, and A. X. Falcao, “On Shapes of Colors for
Content-Based Image Retrieval,” in Proceedings of ACM International Workshop
on Multimedia Information Retrieval, pp. 171-174, 2000.

[205] M. Stricker and M. Orengo, “Similarity of Color Images,” in Proceedings of SPIE
Storage and Retrieval for Image and Video Databases, pp. 381–392, 1995.

[206] H. Sundaram and S.F. Chang, “Audio Scene Segmentation Using Multiple Features,
Models And Time Scales,” in Proceedings of ICASSP, pp. 2441–2444, 2000.

[207] M. Swain and D. Ballard, “Color Indexing,” International Journal of Computer
Vision, vol. 7, no. 1, pp. 11–32, 1991.

[208] H. Tamura, S. Mori, and T. Yamawaki, “Texture Features Corresponding to Visual
Perception,” IEEE Transaction on Sys., Man. and Cyb., vol. 8, no. 6, pp. 460–473,
1978.

[209] C.A. Mills-Tettey, A. Stentz and M.B. Dias, “The Dynamic Hungarian Algorithm
for the Assignment Problem with Changing Costs,” Technical Report CMU-RI-TR-
07-27, Robotics Institute, Carnegie Mellon University, 2007.

[210] at http://en.wikipedia.org/wiki/Twitter.

[211] J.K. Uhlmann, “Satisfying General Proximity/similarity Queries with Metric
Trees,” Inf. Proc. Lett., vol. 40 no. 4, pp. 175-179, 1991.

[212] M. Wagener and J. Gasteiger, “The Determination of Maximum Common Sub-
structures by a Genetic Algorithm: Application in Synthesis Design and for the
Structural Analysis of Biological Activity.,” Angew. Chem. Int. Ed. Engl., vol. 33,
pp. 1189-1192, 1994.

[213] S. Wasserman and K. Faust, “Social Network Analysis: Methods and Application,”
Cambridge University Press, ISBN: 9780521387071, 1994.

[214] S. Wasserman and P. Pattison, “Logit Models and Logistic Regression for Social
Networks: I. An Introduction to Markov Graphs and p*”, Psychometrika, vol. 61,
pp. 401-425, 1996.

205

[215] Y. Wang, Z. Liu, and J. Huang, “Multimedia Content Analysis Using Both Audio
and Visual Clues,”Signal Processing Magazine, vol. 17, pp. 12-36, 2000.

[216] J. Z. Wang, J. Li, and G. Wiederhold, “SIMPLIcity: Semantics-Sensitive Inte-
grated Maching for Picture Libraries,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 23, no. 9, pp. 947-963, 2001.

[217] D.J. Watts and S.H. Strogatz, “Collective dynamics of ’small-world’ networks,”
Nature, vol. 393, pp. 440-442, 1998.

[218] R. Weiss, A. Duda, and D. K. Gifford “Content-based Access to Algebraic Video,”
in Proceedings of International Conference on Multimedia Computing and Systems,
pp. 140-151, 1994.

[219] H. Wang and S.-F. Chang, “Compressed-domain Image Search and Applications,”
Technical Report, Columbia Univ., 1995.

[220] D. Wettschereck and T. G. Dietterich, “An Experimental Comparison of the
Nearest-Neighbor and Nearest-Hyperrectangular Algorithms,” Machine Learning,
vol. 19, no. 1, pp. 5-28, 1995.

[221] D. A. White and R. Jain, “Similarity Indexing with SS-tree,” in Proc. 12th Inter-
national Conference on Data Engineering, pp. 516-523, 1996.

[222] D. R. White and S. P. Borgatti, “Betweenness Centrality Measures for Directed
Graphs,” Social Networks, vol. 16, pp. 335-346, 1994.

[223] D. Willer, “Predicting Power in Exchange Networks: A Brief History and Intro-
duction to the Issues,” Social Networks, vol. 14, no. 3, pp. 187-211, 1992.

[224] J. K. Wu, “Content-based Indexing of Multimedia Databases,” IEEE Trans. on
Knowledge and Data Engineering (TKDE), vol. 9, no. 6, pp. 978-989, 1997.

[225] L. Wu, T. Bretschneider, “VP-EMD tree: An efficient Indexing Strategy for Data
with Varying Dimension and Order,” in Proceedings of of International Conference
on Imaging Science, Systems and Technology, pp. 421-426, 2004.

[226] B- L. Yeo and M. M. Yeung, “Retrieving and Visualizing Video,” Communications
of ACM, vol. 40, no. 12, pp. 43-52, 1997.

[227] P. N. Yianilos, “Data Structures and Algorithms for Nearest Neighbor Search in
General Metric Spaces,” in Proc. 3rd Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 311-321, 1993.

206

[228] L. A. Zager and G. C. Verghese, “Graph Similarity Scoring and Matching,” Applied
Mathematics Letters, vol. 21, no. 1, pp. 86-94, 2007.

[229] P. Zezula, P. Ciaccia, and F. Rabitti, “M-tree: A Dynamic Index for Similarity
Queries in Multimedia Databases,” in Technical Report 7, HERMES ESPRIT LTR
Projects, 1996.

[230] W.W. Zachary, “An Information Flow Model for Conflict and Fission in Small
Groups,” Journal of Anthropological Research, vol. 33, pp. 452-473, 1977.

[231] D. S. Zhang and G. Lu, “Generic Fourier Descriptors for Shape-Based Image Re-
trieval,” in Proceedings of IEEE International Conference on Multimedia and Expo,
pp. 425-428, August 2002.

[232] F. B. Zhan, and C. E. Noon, “Shortest Path Algorithms: An Evaluation Using
Real Road Networks,” Transportation Science, vol. 32, pp. 65–73, 1998.

[233] J. Zhong, H. Zhu, J. Li and Y. Yu, “Conceptual Graph Matching for Semantic
Search,” Proceedings of the 10th International Conference on Conceptual Structures,
pp. 92-196, 2002.

[234] M. M. Zloof, “Query by Example,” AFIPS Conference Proceedings, National Com-
puter Conference, pp. 431-438, 1975.

207

APPENDICES

Table A.1: Degree centrality computation for the top

100 images of the multimedia data network for COREL

datset

Image Id Degree Centrality

9468 1

198 0.9714

4046 0.9429

447 0.9

4042 0.9

7240 0.9

4039 0.8714

2650 0.8571

3108 0.8571

6676 0.8571

7199 0.8571

9454 0.8571

7233 0.8429

163 0.8286

2264 0.8286

2624 0.8286

187 0.8143

7228 0.8143

7237 0.8143

7252 0.8143

Continued on Next Page. . .

208

Table A.1 – Continued

Image Id Degree Centrality

7454 0.8143

7456 0.8143

7459 0.8143

7464 0.8143

7466 0.8143

7467 0.8143

7469 0.8143

7473 0.8143

7475 0.8143

7477 0.8143

7478 0.8143

7479 0.8143

7480 0.8143

7481 0.8143

7482 0.8143

7483 0.8143

7486 0.8143

7487 0.8143

7488 0.8143

7490 0.8143

7491 0.8143

7492 0.8143

7494 0.8143

Continued on Next Page. . .

209

Table A.1 – Continued

Image Id Degree Centrality

7495 0.8143

9453 0.8143

9843 0.8143

2583 0.8

4028 0.8

4029 0.8

4030 0.8

4031 0.8

4035 0.8

4037 0.8

4041 0.8

4043 0.8

1510 0.7857

2630 0.7857

144 0.7714

162 0.7714

5091 0.7714

6138 0.7714

6656 0.7714

199 0.7571

1156 0.7571

1514 0.7571

1520 0.7571

Continued on Next Page. . .

210

Table A.1 – Continued

Image Id Degree Centrality

6672 0.7571

6683 0.7571

9435 0.7571

165 0.7429

3071 0.7429

6109 0.7429

6139 0.7429

7204 0.7429

7205 0.7429

7206 0.7429

7207 0.7429

7210 0.7429

7219 0.7429

7220 0.7429

7224 0.7429

7226 0.7429

7227 0.7429

7229 0.7429

7232 0.7429

7241 0.7429

7244 0.7429

72534 0.7429

7255 0.7429

Continued on Next Page. . .

211

Table A.1 – Continued

Image Id Degree Centrality

9443 0.7429

206 0.7286

2513 0.7286

2516 0.7286

2638 0.7286

2639 0.7286

2649 0.7286

2663 0.7286

3349 0.7286

4081 0.7286

5062 0.7286

Table A.2: Closeness centrality computation for the top

100 images of the multimedia data network for COREL

datset

Image Id Closeness Centrality

123 1

126 1

626 1

898 1

940 1

994 1

1019 1

Continued on Next Page. . .

212

Table A.2 – Continued

Image Id Closeness Centrality

1204 1

1913 1

1919 1

2109 1

2150 1

2160 1

2169 1

2329 1

2339 1

2361 1

2528 1

2542 1

2859 1

2879 1

3112 1

3118 1

3123 1

3222 1

3233 1

3286 1

3317 1

3321 1

3347 1

Continued on Next Page. . .

213

Table A.2 – Continued

Image Id Closeness Centrality

3397 1

3478 1

3532 1

3708 1

3721 1

3905 1

3980 1

4260 1

4821 1

4886 1

4910 1

4961 1

4984 1

5116 1

5117 1

5473 1

5600 1

5675 1

5753 1

5798 1

5846 1

5858 1

6187 1

Continued on Next Page. . .

214

Table A.2 – Continued

Image Id Closeness Centrality

6188 1

7002 1

7007 1

7069 1

7082 1

7558 1

7736 1

7921 1

7922 1

8266 1

8278 1

8357 1

8604 1

8651 1

8805 1

8806 1

9042 1

9089 1

9169 1

9226 1

9228 1

9261 1

9288 1

Continued on Next Page. . .

215

Table A.2 – Continued

Image Id Closeness Centrality

9304 1

9410 1

9466 1

9590 1

94 0.5

100 0.5

292 0.5

337 0.5

703 0.5

822 0.5

824 0.5

944 0.5

948 0.5

957 0.5

1100 0.5

1107 0.5

1241 0.5

1691 0.5

1786 0.5

1820 0.5

1826 0.5

2166 0.5

2302 0.5

Continued on Next Page. . .

216

Table A.2 – Continued

Image Id Closeness Centrality

2330 0.5

Table A.3: Betweenness centrality computation for the

top 100 images of the multimedia data network for

COREL datset

Image Id Betweenness Centrality

2151 1

1164 0.6961

165 0.6942

1119 0.6238

2094 0.6149

3885 0.5747

2782 0.5716

4081 0.5404

4641 0.5404

2519 0.524

3113 0.5101

9080 0.5022

2795 0.4978

9039 0.4929

6670 0.4869

2100 0.4654

3535 0.4547

Continued on Next Page. . .

217

Table A.3 – Continued

Image Id Betweenness Centrality

1619 0.4534

2599 0.4497

2723 0.4446

3795 0.4244

3108 0.4214

1680 0.3895

7131 0.3854

2071 0.3822

7214 0.3783

4622 0.3752

2048 0.3723

9013 0.365

7240 0.3628

9363 0.3523

9440 0.3523

6020 0.3448

687 0.3322

4232 0.3312

5580 0.323

206 0.3225

7213 0.322

8782 0.3177

6015 0.3138

Continued on Next Page. . .

218

Table A.3 – Continued

Image Id Betweenness Centrality

7199 0.3111

4640 0.3062

1625 0.3003

2870 0.2958

6301 0.2952

9435 0.293

2056 0.2845

9481 0.276

6153 0.275

4734 0.2726

7163 0.2715

2705 0.2581

2332 0.2566

7155 0.2528

3808 0.2464

35644 0.2446

8193 0.2433

357 0.2428

5062 0.2399

7232 0.2397

5907 0.2375

1332 0.2364

9443 0.2317

Continued on Next Page. . .

219

Table A.3 – Continued

Image Id Betweenness Centrality

243 0.2315

1156 0.2291

1814 0.2278

4633 0.2273

2650 0.2252

5183 0.2248

2536 0.2117

2084 0.211

245 0.2015

7 0.2

9151 0.1993

5414 0.1973

9461 0.197

2054 0.1955

7090 0.1953

1011 0.1951

198 0.194

606 0.194

1951 0.1924

1360 0.1917

7900 0.1913

3398 0.1881

447 0.1868

Continued on Next Page. . .

220

Table A.3 – Continued

Image Id Betweenness Centrality

8036 0.1868

1556 0.1833

1960 0.1802

2785 0.1773

5057 0.1765

4042 0.1725

2152 0.1702

5073 0.1702

3556 0.1666

4254 0.1661

6763 0.1656

5671 0.1655

7624 0.1651

2472 0.165

221

Figure A.1: Original graph for enrongraph 500

222

Figure A.2: Pre-determined representative graph for enrongraph 500

223

Figure A.3: Random representative graph for enrongraph 500

Figure A.4: Clustered graph for enrongraph 500

224

Figure A.5: Original graph for enrongraph 5000

225

Figure A.6: Pre-determined representative graph for enrongraph 5000

226

Figure A.7: Random representative graph for enrongraph 5000

Figure A.8: Clustered graph for enrongraph 5000

227

Figure A.9: Original graph for enrongraph 10000

228

Figure A.10: Pre-determined representative graph for enrongraph 10000

Figure A.11: Random representative graph for enrongraph 10000

229

Figure A.12: Clustered graph for enrongraph 10000

230

Figure A.13: Original graph for adjnoun

231

Figure A.14: Pre-determined representative graph for adjnoun

232

Figure A.15: Random representative graph for adjnoun

Figure A.16: Clustered graph for adjnoun

233

Figure A.17: Original graph for calegansneural

234

Figure A.18: Pre-determined representative graph for calegansneural

235

Figure A.19: Random representative graph for calegansneural

236

Figure A.20: Clustered graph for calegansneural

237

Figure A.21: Original graph for karate

Figure A.22: Pre-determined representative graph for karate

238

Figure A.23: Random representative graph for karate

Figure A.24: Clustered graph for karate

239

Figure A.25: Original graph for lesmis

240

Figure A.26: Pre-determined representative graph for lesmis

241

Figure A.27: Random representative graph for lesmis

242

Figure A.28: Clustered graph for lesmis

243

VITA

Kasturi Chatterjee

June 30, 1979 Born, India

2004–present Ph.D. candidate in Computer Science
School of Computing and Information Sciences
Florida International University
Miami, Florida

2004–2006 M.S., Computer Science
School of Computing and Information Sciences
Florida International University
Miami, Florida

1999–2003 B.Tech., Computer Science
Institute of Engineering and Management
Kalyani University
Kolkata, India

PUBLICATIONS AND PRESENTATIONS

Kasturi Chatterjee, Shixia Liu and Shu-Ching Chen, (2010). Social Network Preview
using Graph Similarity. ACM Transactions on Information Systems (under review).

Kasturi Chatterjee, S. Masoud Sadjadi, and Shu-Ching Chen, (2009). A Distributed
Multimedia Data Management over the Grid. Multimedia Services in Intelligent Envi-
ronments - Integrated Systems, Springer, 2009, in press.

Kasturi Chatterjee and Shu-Ching Chen, (2009). HAH-tree: Towards a Multidimen-
sional Index Structure Supporting Different Video Modelling Approaches in a Video
Database Management System. International Journal of Information and Decision Sci-
ences (IJIDS), vol. 2, no. 2, pp. 188-207, 2010.

Kasturi Chatterjee and Shu-Ching Chen, (2009). A Multimedia Data Management Ap-
proach with GeM-Tree. Journal of Multimedia, in press.

Shu-Ching Chen, Min Chen, Na Zhao, Shahid Hamid, Kasturi Chatterjee, and Michael
Armella, (2009). Florida Public Hurricane Loss Model: Research in Multi-Disciplinary
System Integration Assisting Government Policy Making. Special Issue on Building the
Next Generation Infrastructure for Digital Government, Government Information Quar-
terly, Volume 26, Issue 2, pp. 285-294, April 2009.

Yudan Li, Kasturi Chatterjee, Shu-Ching Chen, and Keqi Zhang, (2009). A 3-D Traffic
Animation System with Storm Surge Response. accepted for publication, IEEE Inter-

244

national Symposium on Multimedia (ISM2009), Hyatt Regency Mission Bay Spa and
Marina, San Diego, California, USA, pp. 257-262, December 14-16, 2009.

Kasturi Chatterjee and Shu-Ching Chen, (2008). GeM-Tree: Towards a Generalized
Multidimensional Index Structure Supporting Image and Video Retrieval. accepted for
publication, the Fourth IEEE International Workshop on Multimedia Information Pro-
cessing and Retrieval (MIPR2008), in conjunction with IEEE International Symposium
on Multimedia (ISM2008), Berkeley, California, USA, pp. 631-636, December 15-17,
2008.

Kasturi Chatterjee and Shu-Ching Chen, (2008). Hierarchical Affinity-Hybrid Tree: A
Multidimensional Index Structure to Organize Videos and Support Content-Based Re-
trievals. accepted for publication, Proceedings of the 2008 IEEE International Conference
on Information Reuse and Integration (IEEE IRI-08), Hilton Hotel, Las Vegas, USA, pp.
435-440, July 13-15, 2008.

Shu-Ching Chen, Min Chen, Na Zhao, Shahid Hamid, Khalid Saleem, and Kasturi Chat-
terjee, (2008). Florida Public Hurricane Loss Model (FPHLM): Research Experience in
System Integration. accepted for publication, The 9th Annual International Conference
on Digital Government Research, Montreal, Canada, pp. 99-106, May 18-21, 2008.

Kasturi Chatterjee, Shixia Liu, and Shu-Ching Chen, (2008). Using Graph Similarity
for Social Network Analysis. in 6th LA Grid Summit, October 30-31, 2008, Boca Raton,
Florida, USA (First Place).

Kasturi Chatterjee and Shu-Ching Chen, (2007). A Novel Indexing and Access Mecha-
nism using Affinity Hybrid Tree for Content-Based Image Retrieval in Multimedia Databases.
International Journal of Semantic Computing (IJSC), Vol. 1, Issue 2, pp. 147-170, June
2007.

Kasturi Chatterjee and Shu-Ching Chen, (2006). Affinity Hybrid Tree: An Indexing
Technique for Content-Based Image Retrieval in Multimedia Databases. In proceedings
of IEEE International Symposium on Multimedia (ISM2006), San Diego, CA, USA, pp.
47-54, December 11-13, 2006 (Best Paper Award).

Kasturi Chatterjee, Khalid Saleem, Na Zhao, Min Chen, Shu-Ching Chen, and Shahid
Hamid, (2006). Modeling Methodology for Component Reuse and System Integration for
Hurricane Loss Projection Application. In proceedings of IEEE International Confer-
ence on Information Reuse and Integration (IEEE IRI-2006), September 16-18, 2006, pp.
57-62, Hawaii, USA.

245

