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Abstract—This paper presents the AH+-tree, a balanced,
tree-based index structure that efficiently supports Content-
Based Image Retrieval (CBIR) through similarity queries. The
proposed index structure addresses the problems of seman-
tic gap and user subjectivity by considering the high-level
semantics of multimedia data during the retrieval process.
The AH+-tree provides the same functionality as the Affinity-
Hybrid Tree (AH-Tree) but utilizes the high-level semantics in
a novel way to eliminate the I/O overhead incurred by the AH-
Tree due to the process of affinity propagation, which requires
a complete traversal of the tree. The novel structure of the
tree is explained, and detailed range and nearest neighbor
algorithms are implemented and analyzed. Extensive discus-
sions and experiments demonstrate the superior efficiency of
the AH+-tree over the AH-Tree and the M-tree. Results show
the AH+-tree significantly reduces I/O cost during similarity
searches. The I/O efficiency of the AH+-tree and its ability
to incorporate high-level semantics from different machine
learning mechanisms make the AH+-tree a promising index
access method for large multimedia databases.

Keywords-index structures; range queries; nearest neighbor
queries

I. INTRODUCTION

Nowadays multimedia data pervade everyone’s life and
are more and more accessible every day. Online com-
munities such as Facebook [1] handle a large amount of
multimedia data that need to be stored, accessed efficiently,
and meaningfully-retrieved by users. However, due to the
nature of multimedia data, traditional database management
systems are unable to provide efficient and meaningful
multimedia data retrieval [2] due to the well known problems
of (a) semantic gap between low-level features and high-
level concepts and (b) the users’ subjectivity [3].

Users require a mechanism that effectively accesses and
allows the meaningful retrieval of multimedia data. Tree-
based index structures offer the best solution since they
provide both constant access to the indexed records and
data retrieval through similarity queries. Consisting of range
and nearest neighbor queries, similarity queries allow the
retrieval of objects that are “similar” to a given query
object. Given the fact that multimedia data are usually trans-
formed into feature vectors on a multidimensional feature
space on which a suitable (dis)similarity function can be
defined, similarity queries provide content-based retrieval by

allowing the retrieval of objects that are close to the query
object. Multidimensional, tree-based indexing mechanisms,
therefore, ought to provide similarity queries to access
multimedia data.

For multidimensional data, several index structures exist
in the literature, which can be categorized into feature-
based and distance-based index structures. Please refer to
Section VII for a discussion on this taxonomy. Feature-
based index structures make difficult the introduction of
object-level information that is not represented as a vector
because they do not allow any correlation between the
feature values in the distance function used to represent the
(dis)similarity of data objects [4]. Providing a solution to this
issue, distance-based structures index the pairwise distances
or similarities of the objects. Representative distance-based
index structures are the vp-tree [5], the M-tree [6], and the
AH-Tree [4]. To the best of our knowledge, the AH-Tree
is the only distance-based, tree-structured index method that
tackles the problem of CBIR by incorporating high-level
relationships in the index structure.

The AH-Tree combines both vector and metric spaces in
a novel way to organize large image databases and supports
CBIR [4]. An important characteristic of the AH-Tree is that
it utilizes information from a learning mechanism to address
the issues of semantic gap and user subjectivity. Specifically,
the AH-Tree utilizes the concept of affinity relationship from
the Markov Model Mediator (MMM) model [7]. Affinity
relationships map low-level features to high-level concepts
and aim to represent the users’ perspective of concept-based
relationships between the images. The AH-Tree provides k-
nearest-neighbor (kNN) queries that directly support CBIR.
Moreover, the AH-Tree was built upon the M-tree, so in the
case when no affinity values are available, the AH-Tree has
the same efficiency and accuracy of the M-tree.

Notwithstanding, the I/O overhead of the AH-Tree pre-
vents it from being utilized on large multimedia datasets.
The limitation arises from the process of affinity promotion
which is executed every time the AH-Tree is queried. The
promotion of affinity values [4] begins at the leaves of the
tree and promotes the affinity values of the indexed records
with respect to the given query upward the tree up to the root
node. The affinity value of each internal node is computed



as the maximum affinity value between the node’s children.
Once the whole tree has been populated with affinity values,
the search algorithms are able to visit only nodes whose
affinity values with respect to the given query object are
higher or equal than a supplied query minimum affinity
value, thus computing less distance computations during
the query process by avoiding visiting sub-trees that do not
comply with the query’s minimum affinity requirement. The
process of affinity promotion saves distance computations
but forces a complete tree traversal for each query, which
causes a significant increase in I/O overhead since each node
in the tree has to be read from the disk onto the main
memory.

To address the I/O overhead problems of the AH-Tree, this
paper presents the AH+-tree, which utilizes the affinity val-
ues in a novel way to avoid having to perform the process of
affinity promotion while still providing the same accuracy of
the AH-Tree. Instead of traversing the whole tree to promote
affinity values, the AH+-tree efficiently stores and makes
use of the affinity information along with object-to-node and
node-to-node relationships to identify the sub-trees that need
to be trimmed out during the retrieval process. Each query
specifies a minimum affinity value, and the AH+-tree only
visits nodes whose sub-trees contain indexed objects that
comply with the query’s affinity, thus providing the same
functionality as that of the AH-Tree but without having to
traverse the whole tree. Furthermore, the size of the internal
data structures used by the AH+-tree to keep track of object-
to-node and node-to-node relationships is insignificant when
compared to the size of the multimedia data being indexed.
The contribution of this paper is in presenting an index
structure that utilizes high-level multimedia information in
a novel way to significantly improve the I/O efficiency of
the AH-Tree.

The remainder of this paper is organized as follows.
Section II describes the concept of high-level affinity re-
lationships. Section III details the structure of the AH+-
tree. Sections IV and V presents range queries and nearest
neighbor queries respectively. Section VI discusses the ex-
periments. Section VII covers related work. Finally, section
VIII concludes the work presented in this paper.

II. HIGH-LEVEL AFFINITY RELATIONSHIPS

The AH+-tree makes use of high-level affinity relation-
ships to tackle the issues of semantic gap and user subjec-
tivity. High-level affinity relationships numerically represent
how close objects are from a semantic concept point of view.
For the present work, the high-level affinity relationships
are obtained from the Markov Model Mediator (MMM)
mechanism. Shyu et al. [7] base the affinity concept on the
idea that the more frequent two images are accessed together,
the more related they are. Given a set of q queries issued
over a period of time, the affinity measurement between two
images, m and n, is defined as follows:

affm,n =
∑q

k=1 usem,k × usen,k × accessk

The terms usem,k and usen,k denote the usage pattern
of image m with respect to query k per time period and of
image n with respect to query k respectively, and accessk
denotes the access frequency of query k per time period.
Through usage patterns and frequencies, the affinity mea-
surements capture high-level image relationships and thus
provide a model to bridge the gap between low-level image
features and semantic concepts.

The MMM model is not the only mechanism that can be
used in the AH+-tree as the source for high-level affinity
relationships. Other methodologies that make use of mining
approaches to identify relationships between multimedia
data, such as [8][9][10], can be also utilized in the pro-
posed retrieval routine of the AH-Tree without any loss of
generality.

III. THE AH-TREE

The AH+-tree is a balanced, distance-based tree struc-
ture that improves the performance of the AH-Tree while
still providing the same accuracy and functionality. The
difference lies in the structure of the tree and how the
affinity relationship is utilized during the retrieval process.
The following sub-sections describe the representation of
multimedia objects, the storage of the affinity relationship,
and the structure of the tree.

A. Multimedia Object Representation

The AH+-tree requires multimedia objects to be identified
via id’s which are integer values that begin at one and
increase incrementally by one. This requirement by no
means limits the type of multimedia objects that can be
indexed by the tree, as these id values function as a primary
key on top of any any attributes the multimedia objects
may contain. Since the AH+-tree is a distance-based index
structure, it only indexes the distances between pairs of
objects, and thus multimedia objects can be represented
using any suitable mechanism.

B. Storage for Affinity Relationship

The data structure used to store the affinity relationship
is critical to the overhead in memory consumption as well
as the performance of the tree. The affinity relationship
provides an affinity value between two multimedia objects;
therefore, the natural method of storing this relationship is
via a matrix, which will be called affinity matrix. However,
in a large data set of multimedia objects, the affinity matrix
will most likely be a sparse matrix, since it is not feasible
for users to provide enough information to generate affinity
values for every possible pair of multimedia objects. Con-
sequently, using the traditional data structure used to store
sparse matrices, the AH+-tree makes use of linked lists
to store the affinity relationship in a way that enables the
tree’s retrieval algorithms to efficiently use this information.



The affinity relationship is stored in an array of pointers,
where each array index corresponds to an object id, and each
pointer points to a sorted linked list ordered decreasingly by
affinity. In subsequent sections, for a given query object Q,
its corresponding affinity list if denoted alist(Q).

C. Structure

The AH+-tree is composed to two types of nodes: leaf
nodes and internal nodes. Leaf nodes store pointers to the
indexed multimedia objects (i.e., tuples of the database table)
which are represented by a vector of low-level features,
and internal nodes store pointers to routing objects. Internal
nodes consist of a set of entries, and each entry contains
a routing object and a pointer to the root of a sub-tree.
All objects accessed through the sub-tree are within a
distance r from the routing object; this distance is called
the covering radius of the routing object. In addition, each
routing object has an associated distance to its parent object.
The entries of an internal node are six-tuples consisting of
the routing object, the id of the routing object, a pointer to
the corresponding sub-tree, the covering radius, the distance
to the parent object, and the id of the node referenced by
the entry. The entries of leaf nodes are similar to those of
internal nodes but without a covering radius and contain
the actual object identifier (oid) instead of a pointer to the
sub-tree. Figure 1 depicts the structure of the AH-Tree. L1,
..., L3 represent leaf nodes; O1, O20, and O3 are indexed
objects; and N is an internal node, whose first entry, E1, is
composed of a routing object O whose id is idO, a covering
radius r, a distance d to its parent object, a pointer to a sub-
tree ptr(T (O)), and the id (idnode) of the node referenced
by E1.

Moreover, the AH+-tree contains two globally-accessible
arrays, namely ObjectToNode and NodeTrack, which
store integer numbers. The former is of length T and the
latter of length M . T is the number of objects, and M
is the expected number of nodes necessary to index the
T multimedia objects. The value of M can be computed
as

∑logb T
i=1 bi−1, where b is the minimum node-utilization

parameter that is given when the tree is constructed.
Each index i of ObjectToNode corresponds to the multi-

media object Oi, and ObjectToNode[i] stores the id of the
leave node that holds the reference to Oi. When the object
Oi is inserted in some leave node Lk, ObjectToNode[i]
is assigned the id of node Lk. Every time a new node is
created in the tree, the node is assigned an id equal to the
number of nodes in the tree plus one. Consequently, all
nodes in the tree are numbered consecutively given their
order of insertion. On the same token, each index k of
NodeTrack corresponds to the node with id k, denoted as
Nk. NodeTrack[k] stores the id of the parent node of Nk.
To summarize, ObjectToNode allows, for each multimedia
object, the identification of the leave node where the former
is located (object-to-node relationship), and NodeTrack

allows, for every node in the tree, the identification of its
parent node (node-to-node relationship).

It is worth noticing that the sizes in bytes of
ObjectToNode and NodeTrack are “negligible” when
compared to the size consumed by the T multimedia objects
in the database. For example, a database of 1,000,000
images, each represented by an id and a 100-dimensional
feature vector, will consume 1, 000, 000 × (4 + 8 × 100)
= 804,000,000 bytes which is approximately 767 MB; this
calculation assumed id’s are stored using 4-byte integers
and feature values with 8-byte floating-point numbers. For
such database of images, ObjectToNode will consume
1, 000, 000 × 4 = 4,000,000 bytes which is approximately
4 MB, and NodeTrack, assuming a minimum node uti-
lization of 50, will consume

∑log50 1,000,000
i=1 50i−1 which is

approximately 0.5 MB.

Constructed in a way similar to that of the R-Tree, the
AH-Tree is kept balanced (i.e., all leaves are at the same
level) by inserting new keys at the leaves, splitting nodes
that overflow, and propagating changes upward in the tree
[4]. ObjectToNode is updated appropriately when an object
is inserted in a leaf node. When there is an split in the tree
due to a node overflow, NodeTrack is updated accordingly
to keep track of the parent node of the nodes being modified.
Tree construction and node insertion are not covered in this
paper in more detail due to space limitations.

Figure 1. Structure of the AH+-tree

In the rest of the paper, for notational purposes, the
entry for object O is denoted as e(O), and the entry’s
values are denoted as e(O).r, e(O).d, e(O).ptr, e(O).id,
and e(O).idnode. In addition, e(O).idnode is also denoted
as id(N), where N is the node pointed by ptr(T (O)).



IV. RANGE QUERIES

Range queries usually receive as parameters the query
object Q and a radius r and retrieve the objects that lie
within a distance less or equal than r from Q. However,
in the AH+-tree, the range query algorithm additionally
receives the parameter aff which denotes the minimum
affinity value the result objects have to comply with.

The range query algorithm works on the basis that
alist(Q) dictates the object id’s the algorithm has to look
for. ObjectToNode tells the algorithm in which leave nodes
the object id’s are stored, and NodeTrack how to traverse
the tree to reach the desired leave nodes. Going down the
tree, the algorithm only visits routing objects that both
comply with the query Q and whose id’s lead to leaf nodes
that contain objects listed in alist(Q). As in the AH-Tree
[4], a node complies with Q if the distance between the
node and Q is less or equal that the sum of the radius
of Q and the radius of the node. Upon reaching a leave
node, all the entries are checked and those that lie within
the query’s required minimum radius and have an affinity
higher or equal that specified by the query are added to
the result set. The algorithm for range queries is shown in
Algorithms 1, 2, and 3.

The algorithm for range search starts in Algorithm 1,
which begins by setting the current node to the root node
(step 1) and locating the affinity list that corresponds to
the query parameter Q (step 2). If Q does not have an
affinity with any object in the database (step 3), the search is
defaulted to the range algorithm of the M-tree [6] (step 4);
otherwise, the array NP is obtained by invoking Algorithm
2 (step 8) and the search process is delegated to Algorithm
3 (step 9). The array NP serves to identify the id’s of the
nodes in the tree that lead to objects that comply with the
query’s affinity requirement.

Algorithm 1 RangeSearch
1: Set N = ROOT // set the root node as the starting

point
2: Locate alist(Q)
3: if |alist(Q)| == 0 then // the list is empty
4: Perform search as in the M-tree
5: return Result
6: end if
7: if |alist(Q)| ≥ 0 then // the list is non-empty
8: NP = ObtainNodePath(alist(Q)) // mark in NP

the nodes that will be visited
9: return InternalSearch(N,Q, r(Q), aff,NP ) //

begin range search on the root node
10: end if

Algorithm 2 returns an array NP with size M (refer to
Section III-C for the value of M ). The array NP is con-
structed from alist(Q), ObjectToNode, and NodeTrack

and serves to identify the nodes that lead to objects listed
in alist(Q). Holding the highest affinity with respect to Q,
Oq (the first object in alist(Q)) is obtained in step 2, and
steps 3-5 mark in NP the id of the leave node that contains
Oq . Steps 7-10 utilize NodeTrack to mark in NP all the
nodes that make up the path from the root node to the leave
node containing Oq . Then, for all the remaining objects in
alist(Q) that comply with the affinity requirement (steps
11-14), the nodes in the tree that lead to such objects are
marked in NP . Step 15 obtains the id of each object, and
steps 16-19 check that the leave node has not been already
marked in NP . Steps 21-28 mark in NP the nodes that lead
to the currently selected object in alist(Q), but to avoid re-
marking nodes, steps 23-25 stop the marking process for the
current node if the latter has already been marked. When all
the nodes in the tree that lead to all the objects in alist(Q)
that comply with the query’s affinity requirement have been
marked, NP is returned in step 30.

With regards to number of iterations, the cost of Algo-
rithm 2 is negligible as it only makes use of small arrays
that are easily loaded into memory. It marks NP as many
times as nodes need to be searched in the tree in order to
find the objects listed in alist(Q); only needs to work with
ObjectToNode and NodeTrack, which only need to be
created when the tree is constructed; and returns an array of
size M , which is 0.5 MB for 1,000,000 images.

Once all the nodes the tree that lead to objects that comply
with the query’s affinity requirement are marked in NP ,
Algorithm 3 carries out the range search starting at the root
node. If the current node is an internal node (step 1), the
algorithm loops through the node’s entries (step 2) and only
selects the entries that both comply with Q and point to a
node that has been marked in NP (step 3). The algorithm
is called recursively on the selected nodes (step 4). If the
current node is a leaf node (step 7), the algorithm loops
through all the objects contained in the node and only selects
those that both comply with the query Q and have an affinity
with Q higher or equal than aff (step 9). Selected objects
are added to the result set (step 10).

Compared with the AH-Tree’s range query without affin-
ity promotion, the extra cost added by the AH+-tree’s algo-
rithms for range search consists of Algorithm 2. However,
Algorithm 2 still has the same asymptotic cost of the AH-
Tree because the former makes as many iterations as the
minimum number of nodes that must be visited in the tree
in order to retrieve all the objects that comply with the query,
and these iterations are carried out every efficiently.

V. NEAREST NEIGHBOR QUERIES

Nearest neighbor queries, also named kNN, usually re-
ceive as parameters a query object Q and a value k and
retrieve the k objects in the database closest to the query
object. Closeness is defined by a given distance function.
As with range queries, the kNN queries of the AH+-tree



Algorithm 2 ObtainNodePath
1: Create NP with |NP | = M and all values = false
2: Let Oq be the object at the top of alist(Q)
3: Let i be the id of Oq

4: Set id = ObjectToNode[i] // id is the id of the leaf
node that holds Oq

5: Set NP [id] = true// mark id in NP
6: Set id = NodeTrack[id] // id now is the id of the

parent node of the leaf node that holds Oq

7: while id 6= 0 do // loop through NodeTrack to mark
all the nodes that lead to the leaf node holding Oq

8: NP [id] = true
9: id = NodeTrack[id]

10: end while
11: for all (affi, idi) ∈ alist(Q) do // iterate through the

remaining elements
12: Break the loop if affi < aff
13: id = ObjectToNode[id]
14: if NP [id] == false then
15: NP [id] = true
16: else // if node was already marked, then continue to

next element in the list
17: continue
18: end if
19: id = NodeTrack[id]
20: while id 6= 0 do // mark the nodes that lead to

the current element in alist(Q), stop if a node has
already been marked

21: Break the loop if NP [id] == true
22: NP [id] = true
23: id = NP [id]
24: end while
25: end for
26: return NP

also receive the parameter aff . Moreover, alist(Q) has the
same purpose as in with range queries. The algorithm for
kNN queries is shown in Algorithms 4 and 5. It utilizes a
branch-and-bound technique [4] that makes use of a priority
queue PR and a k-element array NN . PR holds pointers
to sub-trees where qualifying objects can be found, and NN
holds nearest neighbors obtained from the visited sub-trees
and at the end of execution contains the k nearest neighbors
of Q.

In Algorithm 4, initially PR is initialized with the root
node of the tree (step 1), and the search radius is ∞ (step
2). The affinity linked list for Q is obtained in step 3,
and ObtainNodePath (Algorithm 2) is called on step 4
to generate the array NP . Then, while there are nodes in
the tree where nearest neighbors can be found (step 5), the
node N in PR such that N has the smallest dmin (which is
defined as the minimum distance from any object in the sub-

Algorithm 3 InternalSearch
1: if N is an internal node then
2: for all Or ∈ N do // loop through N ’s entries
3: if d(Or, Q) ≤ r(Q) + r(Or) and

NP [e(Or).idnode] == true then // the entry
complies with the query’s radius and has been
marked in NP

4: InternalSearch(e(Or).ptr,Q, r(Q), aff,NP )
// make recursive call

5: end if
6: end for
7: else // the node is a leaf node
8: for all O ∈ N do // loop through the objects in N
9: if d(O,Q) ≤ r(Q) and aff(O,Q) ≥ aff then

// the object complies with both the query’s radius
and affinity requirements

10: Result = Result
⋃

oid(O) // add object to the
result set

11: end if
12: end for
13: end if

tree to Q) is selected (step 6) and removed from PR (step
7). The chosen N is passed as a parameter to Algorithm 5
(step 8) which performs the kNN search on N .

Algorithm 4 kNNSearch
1: Initialize PR with the root node
2: Set r(Q) =∞ // the search radius
3: Locate alist(Q)
4: NP = ObtainNodePath(alist(Q), aff) // mark in

NP the nodes that will be visited
5: while PR is not empty do // there are nodes where

nearest neighbors can be found
6: NextNode ← choose node N such that N is the

node from PR that has the minimum dmin (i.e. the
first node in PR)

7: Remove NextNode from PR
8: NodeSearch(NextNode,Q, k, aff,NP ) // dele-

gate the search to NodeSearch
9: end while

Algorithm 5 performs the search on the given node N
and updates the queue PR and the array NN . For internal
an internal node (step 2), the algorithm loops through the
node’s entries (step 3) and only selects (step 4) the entries
that comply with Q and point nodes that are marked in NP .
Step 5 utilizes the triangular inequality property of the metric
space to avoid making unnecessary distance computations;
if |d(Op, Q)− d(Or, Op)| is not less than ≤ r(Q) + r(Or),
then there is not need to compute the distance between Or

and Q. It is important to clarify that d(Or, Op) is stored in
e(Or) as e(Or).d. Step 13 also makes use of this property.



For leave nodes (step 11), objects that comply with Q and
have an affinity with Q higher or equal than aff (step 13)
are orderly inserted in NN (step 15). The current minimum
search distance is updated in step 16.

Algorithm 5 NodeSearch
1: Let Op be the parent key of N // needed to avoid

computing unnecessary distance computations
2: if N is an internal node then
3: for all Or in N do // loop through N ’s entries
4: if |d(Op, Q) − d(Or, Op)| ≤ r(Q) + r(Or) and

NP [e(Op).idnode] == true then // the entry is
within the current search radius and has been
marked in NP

5: Compute d(Or, Q)
6: if dmin(e(Or).ptr) ≤ dk then
7: Add the node e(Or).ptr to PR // add node

referenced by e(Or) to PR so that it is later
used in the search

8: end if
9: end if

10: end for
11: else
12: for all O in N do // loop through the objects of N
13: if |d(Op,Q) − d(O,Op)| ≤ r(Q) and

aff(O,Q) ≥ aff then // the object complies
with both the current search radius and the query’s
affinity requirement

14: Compute d(O,Q)
15: Orderly insert (O, d(O,Q), oid(O)) into NN
16: Set r(Q) = kth distance in NN // update current

search radius
17: end if
18: end for
19: end if

VI. EXPERIMENTS

This section provides experiments for the proposed AH+-
tree index structure. The work in [4] already presented
several experiments on the accuracy of the AH-Tree and
proved it is superior to other distance-based index methods.
Therefore, this section focuses on experiments that address
the improved efficiency of the AH+-tree. The experiments
compare the AH+-tree, the AH-Tree, and the M-tree with
regards to number of I/O read operations during range and
kNN queries. The M-tree is included in the experiments as
the AH-Tree stems from the M-tree.

Two data sets were utilized in the experiments: set D1

and set D2. Set D1 consists of 10,000 images from the
Corel data set, which is the same set of images utilized
in [4]. The elements consist of feature vectors in a 12-
dimensional feature space. Extracted from the HSV color

space, the features are are “black”, “white”, “red”, “red-
yellow”, “yellow”, “yellow-green”, “green”, “green-blue”,
“blue”, “blue-purple”, “purple”, and “purple-red”. Set D2

consists of 1,000,000 elements, but, since an image data set
so large was not available, the 12-dimensional vectors of
D2 were generated randomly. The affinity relationship for
D1 was obtained using a CBIR system that captures user
perception using the MMM model, and for D2 the affinity
relationships was generated randomly. It is worth pointing
out that the chosen number of features is irrelevant in these
experiments since a larger or lower number of features would
have exactly the same impact on the AH+-tree and the AH-
Tree as their difference lies solely in the handling of the
affinity relationship.

The environment on which the experiments were carried
out was an iMac system running Mac OS X 10.6.8 with a
2.7 GHz Inter Core i5 and 8 GB of main memory. With
regards to implementation, the same framework employed
in [4] was utilized to develop the AH+-tree.

A. Experimental Results on Dataset D1

Figure 2 depicts the number of I/O reads performed on
set D1 for a range query using 0.3 as minimum radius and
0.005 minimum affinity. These two values were chosen at
random. As can be seen in the figure, the AH+-tree carries
out significantly less number of I/O reads. The AH-Tree
performs a constant amount of I/O reads more than the
AH+-tree as the former visits the same number of nodes
as the latter plus the total number of nodes in the tree due
to affinity propagation. The M-tree performs better than the
AH-Tree as the former does not have to traverse the entire
tree for the chosen query parameters.
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Figure 2. Number of I/O read operations using range queries with radius
0.3 and affinity 0.005

Figure 3 depicts the number of I/O reads for set D1 for
kNN queries with minimum affinity 0.005 and k = 10. The
value for the affinity was chosen at random. Overall, the
AH+-tree performs better than the M-tree. For some queries,



e.g., 64 and 67, both the M-tree and the AH+-tree perform
the same number of I/O reads; and for queries 2, 55, 71, and
87, the AH+-tree performed slightly more I/O reads than the
M-tree. The reason for these two cases is that these queries
have mostly zeroes in their feature values except for two
or three features with values higher than zero, and having
so few features with values higher than zero causes these
queries to have their closest objects in the same node or
nearby. These cases are outliers.
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Figure 3. Number of I/O read operations using kNN queries with affinity
0.005 and k = 10

B. Experimental Results on Dataset D2

On a logarithmic scale, Figure 4 shows the number of I/O
reads for range queries on set D2 using minimum affinity
0.005 and search radius 0.5. Both values were selected at
random. The AH+-tree performs significantly better than
both the AH-Tree and the M-tree. Over the 100 queries,
the average number of I/O reads to the AH-Tree was 19.3,
for the AH-Tree 7,719.3, and for the M-tree 3,101.18.
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Figure 4. Number of I/O read operations using range queries with radius
0.5 and affinity 0.005

On the same scale, Figure 5 depicts the number of I/O
reads performed on set D2 for kNN queries using 0.005

minimum affinity and k = 10. Echoing the results of the
range query, the AH+-tree outperformed both the AH-Tree
and the M-tree. Over the 100 queries, the average number
of I/O reads for the AH+-tree was 54.83, for the M-tree
2,210.79, and for the AH-Tree 7,754.83.

On both figures, the AH+-tree’s huge reduction in I/O
reads is driven by the proposed utilization of the affinity
relationship during the retrieval process. The values for the
AH-Tree appear to be constant only because the number of
nodes in the tree is much larger than the tree for set D1.
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Figure 5. Number of I/O read operations using kNN queries with affinity
0.005 and k = 10

The increased relevance in the results obtained when
using the high-level image relationships during the retrieval
process has been demonstrated in [4]. The affinity relation-
ship helps tackle the problems of semantic gap and user
subjectivity, and thus, helps produce results more relevant
to the users.

VII. RELATED WORK

Multimedia data require multidimensional index struc-
tures for effective organization and subsequent retrieval.
Multidimensional index structures can be categorized into
feature-based and index-based. For feature-based index
structures, the feature space is partitioned based on the
values of the feature vectors along each dimension. Popular
feature-based index structures are KDB-tree [11] and R-tree
[12]. For distance-based index structures, the feature space is
partitioned based on the distances (similarity) between pairs
of data points. Thus, only the relative distances between data
objects are considered.

Each type of index structure can be further sub-divided as
data-partitioned or space-partitioned. For space-partitioned,
the multidimensional feature space is recursively partitioned
into disjoint sub-spaces which are represented as a hierar-
chical tree structure. Some common space-partitioned index
structures are [13][6]. For data-partitioned index structures,
the bounding regions are arranged in a spatial hierarchy
in a containment relation. The common data-partitioned



index structures are [14][11], etc. As pointed out earlier in
this paper, the feature-based index structures have a severe
drawback when it comes to handling multimedia data. To
introduce data object-level similarity information into the
index structure, feature-level index structures require that
such similarity be translated into individual feature-level
weights. Such approach is quite difficult, given the two
important characteristics of multimedia data: namely the
semantic gap and the perception subjectivity. Thus, distance-
based index structures can be considered as a more natural
choice when multimedia data are concerned. They allow the
utilization of any representation between data objects during
accessing the index structure. Some popular distance-based
index structures are the M-Index [15], M-tree [6], and the
vp-tree [5]. Nevertheless, none of these distance-based index
structures addresses the problems of semantic gap and user
subjectivity as they only rely on the distance function which
may not map well to high-level concepts.

VIII. CONCLUSION

This paper has presented the AH+-tree, a distance-based,
balanced tree structure that allows CBIR for multimedia
objects through similarity searches. The AH+-tree addresses
the issues of semantic gap and user subjectivity during
the retrieval process by incorporating high-level affinity
relationships between multimedia objects. The AH+-tree
utilizes the high-level affinity in a novel way to address the
AH-Tree’s I/O overhead and provide a significantly more
efficient indexing mechanism. The structure of the AH+-
tree efficiently stores the high-level affinity information and
provides a mechanism to keep track of object-to-node and
node-to-node relationships, which, along with the affinity
information, allow the retrieval algorithms to efficiently
prune nodes in the tree that do not lead to relevant objects
in the leaves. Supporting the rationale behind the AH+-tree,
the improved efficiency of the AH+-tree over the AH-Tree
and the M-Tree is demonstrated in the experiments. The
ability of the AH+-tree to incorporate high-level affinity
information from different models to tackle the problems
inherent to multimedia retrieval while maintaining I/O effi-
ciency make the AH+-tree a promising index mechanism for
large multimedia databases. For future work, the AH+-tree
will be extended to index both images and videos.
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