
Efficient Content-based Multimedia Retrieval Using Novel Indexing Structure in
PostgreSQL

Fausto C. Fleites and Shu-Ching Chen
School of Computing and Information Sciences

Florida International University
Miami, FL, USA

{fflei001,chens}@cs.fiu.edu

Abstract—This demo paper presents a system based on
PostgreSQL and the AH-Tree that supports Content-Based
Image Retrieval (CBIR) through similarity queries. The AH-
Tree is a balanced, tree-based index structure that utilizes high-
level semantic information to address the well-known problems
of semantic gap and user perception subjectivity. The proposed
system implements the AH-Tree inside PostgreSQL’s kernel by
internally modifying PostgreSQL’s GiST access mechanism and
thus provides a DBMS with a viable and efficient content-based
multimedia retrieval functionality.

Keywords-databases, multimedia indexing, content-based re-
trieval;

I. INTRODUCTION

The importance of efficiently indexing multimedia data
has been exalted in recent years by the explosive growth
of social networks and mobile devices. The problem of
CBIR has been actively studied by the research community,
but no solution has been able to provide both an efficient
access method for large multimedia datasets and an effective
multimedia content-based retrieval mechanism. For text-
based information, traditional database management systems
(DBMSs) have provided tools for storage and retrieval via
index methods, e.g., B+-tree, but have been unable to do
the same for multimedia retrieval due to the well-known
problems of (a) the semantic gap between low-level features
and high-level concepts and (b) the subjectivity in the users’
perception.

This demo paper presents a system based on PostgreSQL
[1] that utilizes the AH-Tree [2] as index method to ef-
ficiently support CBIR. The AH-Tree allows multimedia
retrieval through similarity queries (i.e., range and nearest
neighbor queries) utilizing high-level semantic information
during the retrieval process to address the semantic gap
and user perception subjectivity problems. The high-level
semantic information used by the AH-Tree during the re-
trieval queries is obtained from the Markov Model Mediator
(MMM) mechanism [3] as affinity relationships, which pro-
vide a way to model the users perspective toward the seman-
tic relationships between the multimedia data. To efficiently
implement the AH-Tree and eliminate the I/O overhead it
incurs when populating the affinity information through the

tree structure for each query, the presented system only
utilizes the affinity information at the leafs of the tree,
making possible its implementation in PostgreSQL while
still providing the same level of functionality. Consequently,
the presented system combines the benefits provided by
traditional DBMSs with those of a meaningful and efficient
content-based retrieval mechanism.

II. SYSTEM ARCHITECTURE

The proposed system consists of a PostgreSQL DBMS
whose kernel-level indexing mechanism has been extended
to support the AH-Tree. The incorporation of the AH-Tree
was achieved via modifying PostgreSQL’s internal GiST
mechanism [4], which serves as a template framework for
implementing balanced, tree-based index structures such as
the B-tree. Figure 1 depicts the implementation of the AH-
Tree in PostgreSQL. Given a user query, the query processor
in the DBMS kernel parses the query, finds the optimal
execution plan, and executes the plan by interacting with
the access method, i.e., the AH-Tree.

The GiST-based implementation of an index method
requires several user-implemented index support functions,
which are utilized by GiST in its insert, search, and delete
core functions. Figure 1 shows the support functions in
a blue font. For example, for an insert query, the insert
algorithm descends the tree by selecting at each level the
node with minimum insertion penalty (Penalty function),
and when it reaches a leaf node, the insertion of the new
key is attempted. If there is space in the selected leaf,
the key is inserted; otherwise, the node is split (PickSplit
function), and changes are propagated upward in the tree
using the Union support function. For a search query, the
Consistent function is utilized to determine the tree nodes
that have to be visited. GiST’s delete algorithm searches the
key to be deleted, removes the key from its leaf node, and
if the deletion causes an underflow, changes are propagated
upward in the tree. Furthermore, during the insert, search,
and delete processes, the access method needs to interact
with the storage manager to access persistent data and
guarantee concurrent executions via locking mechanisms.



Figure 1. AH-Tree’s implementation in PostgreSQL

One key feature of the AH-Tree is that it uses the
triangular inequality property to avoid making unnecessary
distance computations. This feature is partially implemented
by having tree entries store the distances to their parents,
which are updated during node splits. However, the Union
function, which is used to create parent keys when a
node is split, does not support such updates as it does
not distinguish between parent and child keys. For this
reason, the proposed system modifies PostgreSQL’s core
GiST insert, search, and delete functions to use an extended
set of support functions that replaces the Union function
by the functions UpdateAncestor and UpdateDescendant
and adds the KnnConsistent function for nearest neighbor
queries. The updated set of support functions is shown in a
read font in Figure 1. The functions UpdateAncestor and
UpdateDescendant allow the update of the parent entry
based on its child entries and a child entry based on its
parent entry, respectively. These two functions are invoked
during a node split.

III. DEMONSTRATION

The presented system will be demonstrated via a web
application that allows users to browse an image database
and submit similarity queries. The main goal of the demon-
stration is to allow users compare the results of the AH-
Tree and the M-tree (a popular index method) [5] and visu-
ally evaluate the effect of high-level semantic relationships
on the relevance of the results. For the purpose of the
demonstration, an image dataset consisting of 10,000 images
is utilized, where images are represented using 12 color
features extracted from the HSV color space. The affinity
information was derived from the MMM model by users
with no knowledge of the presented system.

Labeled for description purposes, figures 2 and 3 depict
the interface presented by the demo application. Shown in
figure 2, the interface has four important visual regions. On
the left region (labeled as 1), users can browse the image
dataset and select a desired query image; on the top-center
region (labeled as 2), users can select either the M-tree or
AH-Tree as the index mechanism; on the top-right region

Figure 2. Web interface

Figure 3. Zoomed view of the web interface

(labeled as 3), users can input the query parameters and
submit range or nearest neighbor queries; and on the center
region (labeled as 4), users can see the query results. The
first image shown in region 4 is the query image. Figure 3
provides a zoomed view of the regions labeled 2 and 3. The
presented web application permits users to easily interact
with the proposed system and evaluate the results from both
relevance and efficiency perspectives.

ACKNOWLEDGMENT

This research was supported in part by the U.S. Depart-
ment of Homeland Security under grant Award Number
2010-ST-062-000039, the U.S. Department of Homeland
Securitys VACCINE Center under Award Number 2009-ST-
061-CI0001, and NSF HRD-0833093.

REFERENCES

[1] The PostgreSQL Global Development Group, “Post-
gresql 8.4.3 documentation,” http://www.postgresql.org/files/
documentation/pdf/8.4/postgresql-8.4.3-A4.pdf, May 2010.

[2] K. Chatterjee and S.-C. Chen, “Affinity hybrid tree: An index-
ing technique for content-based image retrieval in multimedia
databases,” in Proceedings of ISM 2006, Dec. 2006, pp. 47–54.

[3] M.-L. Shyu, S.-C. Chen, M. Chen, C. Zhang, , and C.-M. Shu,
“MMM: A stochastic mechanism for image database queries,”
in Proceedings of the IEEE Fifth International Symposium on
Multimedia Software Engineering, Dec. 2003, pp. 188–195.

[4] J. M. Hellerstein and J. F. Naughton, “Generalized search trees
for database systems,” in Proceedings of VLDB 1995, 1995,
pp. 562–573.

[5] P. Ciaccia, M. Patella, and P.l Zezula, “M-tree: An efficient
access method for similarity search in metric spaces,” in
Proceedings of VLDB 1997, 1997, pp. 47–54.


