
Affinity Hybrid Tree: An Indexing Technique for Content-Based Image Retrieval
in Multimedia Databases

Kasturi Chatterjee and Shu-Ching Chen
Florida International University

Distributed Multimedia Information System Laboratory
School of Computing and Information Sciences

Miami, FL 33199, USA
�kchat001, chens�@cs.fiu.edu

Abstract

A novel indexing and access method, called Affinity Hy-
brid Tree (AH-Tree), is proposed to organize large image
data sets efficiently and to support popular image access
mechanisms like Content-Based Image Retrieval (CBIR) by
embedding the high-level semantic image-relationship in
the access mechanism as it is. AH-Tree combines Space-
Based and Distance-Based indexing techniques to form a
hybrid structure which is efficient in terms of computational
overhead and fairly accurate in producing query results
close to human perception. Algorithms for similarity (range
and k-nearest neighbor) queries are implemented. Results
from elaborate experiments are reported which depict a low
computational overhead in terms of the number of I/O and
distance computations and a high relevance of query re-
sults. The proposed index structure solves the existing prob-
lems of introducing high-level image relationships in a re-
trieval mechanism without going through the pain of trans-
lating the content-similarity measurement into feature-level
equivalence and yet maintaining an efficient structure to or-
ganize the large sets of images.

1. Introduction

Owing to the recent advancement of hardware, storing a
large amount of image, video, and audio data, or a combi-
nation of them has become quite common, which empha-
sizes the growing needs of developing efficient multime-
dia organization and retrieval systems. The huge size of
multimedia data makes indexing a crucial component for
fast and efficient retrieval processes. Content Based Im-
age Retrieval (CBIR) with Relevance Feedback (RF) has
been a popular method for image retrieval [4][6][9][11][15].
Hence, the need of an efficient index structure for images

supporting popular access mechanisms like CBIR arises.
The main challenge of implementing such an index struc-
ture is to make it capable of handling high-level image rela-
tionships easily and efficiently during access. The existing
multidimensional index structures support CBIR by trans-
lating the content-similarity measurement into feature-level
equivalence, which is a very difficult job and can result in
erroneous interpretation of user’s perception of similarity.

There are several multidimensional indexing techniques
for capturing the low-level features like feature based or dis-
tance based techniques, each of which can be further classi-
fied as a data-partitioned [1][5][8][19] or space-partitioned
[10][13] based algorithm. Feature based indexing tech-
niques project an image as a feature vector in a feature space
and index the space. The basic feature based index struc-
tures are KDB-tree [13], R-tree [8], etc. The KDB-tree is
a space partitioning based indexing structure; whereas the
R-tree is a data partitioning based indexing structure. Later,
the Hybrid Tree [3] made an attempt to combine these two
structures together and overcome the drawbacks of each.
It splits the node based on a single dimension, making the
fan-out independent of the dimensionality. It also allows
overlapping whenever a clean split makes the tree cascade
down, thus solving the utilization problem. Distance based
indexing structures are built based on the distances or sim-
ilarities between two data objects. Some famous distance
based indexing structures are SS-tree [17], M-Tree [5][19],
vp-tree [18], etc. Among them, only the M-Tree guarantees
a balanced structure as it is built in a bottom-up manner. In
the M-Tree, the objects are partitioned on the basis of their
relative distances, measured by specific distance functions
(which are metric in nature), and these objects are stored
in fixed sized nodes [5][19]. The leaf nodes store all the in-
dexed objects represented by their keys or features; whereas
the internal nodes store the routing objects.

However, none of the above discussed indexing struc-

tures considers the incorporation of the high level image
concepts as perceived by the user into their framework ef-
ficiently without translating those concepts into their low-
level equivalence like in [4][6][11]. They either ask the user
to attach weights to the features during the query or generate
a feature weight model by interpreting the images selected
by the user as the most related ones to the user’s similarity
perception. Such a technique is highly complicated as it is
difficult and error-prone to attempt to translate user’s per-
ception of content-similarity into feature-level equivalence.
In this paper, a novel indexing and access technique called
the Affinity-Hybrid tree (AH-Tree) is proposed which aims
to overcome the above stated problem by combining the
low-level feature and the high-level image relationship as
it is in the index structure. AH-Tree is designed to combine
the feature based and distance based indexing techniques
and uses the high level image relationship to provide se-
mantically related query results.

The novelty of the AH-Tree is in devising a way to
combine Spatial and Metric Access methods to support a
content-based retrieval mechanism which cannot be imple-
mented efficiently by any one method individually. The
high-level image relationship cannot be used by space based
indexing structures independently and efficiently because
the Spatial Access Methods [1][3][8][10][14] require the
distances between objects to be strictly related to the ob-
ject position in a low dimensional vector space. Hence, any
high level image relationship needs to be translated across
different dimensions, which is a very difficult mapping and
often results in inefficient low level translation of the high
level relationship. Though a distance based index can in-
troduce the high-level image relationship, the computation
overhead is very high when the pair-wise distances and high
level relationships among all the data points in the database
need to be computed. The proposed index structure makes
an attempt to solve the above problems by combining the
space based and distance based indexing structure to incor-
porate the high level relationship efficiently without involv-
ing high computation overheads. The distance based index-
ing structure is used to actually incorporate the affinity re-
lationship, and the space based indexing technique filters
the metric space, thus reducing the (dis)similarity calcula-
tion manifold. Hence, the AH-Tree efficiently improves the
query result by capturing the user perception into the im-
age index structure without incurring the overhead of high
computation.

The high level image relationship used in AH-Tree is
captured using the concept of affinity relationship, a param-
eter of the Markov Model Mediator (MMM) mechanism,
that maps the low level features and high level concepts in
CBIR [16] by capturing the image relationship as perceived
by the user. The MMM mechanism builds an index vector
for each image in the database and considers the relation-

ship between the query image and the target image. The
main idea is the more frequent two images are accessed to-
gether, the more related they are. The relative affinity mea-
surement (������) between two images� and � is defined
as follows:

������ �

��

���

������ � ������ � �������

Here, ������ denotes the usage pattern of image � with
respect to query �� per time period, and ������� denotes
the access frequency of query �� per time period. Any high
level image relationship capturing mechanism similar to the
affinity relationship can be used in the proposed index struc-
ture without major changes.

The remainder of this paper is organized as follows. The
actual representation of the proposed AH-Tree structure is
discussed in details in Section 2. Section 3 introduces the
algorithms to implement the range queries as well as the k-
NN queries. Section 4 presents the implementation of the
AH-Tree. A brief conclusion and scope for future work are
presented in Section 5.

2. The Affinity Hybrid Tree

The Affinity Hybrid Tree (AH-Tree) is an indexing
technique which supports content-based image retrieval by
mapping the low level features with high level concepts.
This index structure has a space indexing technique to in-
dex the data spaces and form the subspaces containing the
actual data points. For each subspace thus formed, a met-
ric tree is built using the metric distance functions among
the data points. For range and nearest neighbor queries, the
AH-Tree uses affinity relationship, a value determining how
frequently two images are accessed together during CBIR,
to prune the metric tree. The AH-Tree is a balanced struc-
ture as it uses a bottom-up technique to be built.

The affinity value is promoted from the leaf nodes to the
parent nodes till the root node of the metric tree to incor-
porate the high-level image relationship at all levels of the
AH-Tree structure and to maintain the metric distance func-
tion at the same time. Thus, the routing objects at the inter-
mediate nodes get an affinity value. The details is discusses
in Section �	�.

���� ������� 	
���
���

A schematic representation of the tree structure is pre-
sented in Figure 1. Instead of storing the pointer to the
data objects, the Data Nodes of the space-based index struc-
ture store the pointers to the root of the distance-based in-
dex structure built with these data points. If the number of

data objects in a particular Data Node of the space index-
ing structure is less than some threshold value (depending
upon the total number of image objects indexed), the sib-
ling data nodes are merged together and the distance based
index structure is built with the data points of the merged
leaves. This is a logical merge and the actual structure of
the Hybrid Tree remains the same so as to keep it balanced.
The affinity and maximum affinity values are stored in the
leaf nodes and promoted at the non-leaf nodes of the dis-
tance based index structure for utilization during similarity
searches. The algorithm to build an AH-Tree from a set of
feature vectors is described in Table 1.

Table 1. Implementation of the AH-Tree
Feed the data points in the form of Feature Vectors and
build the Space Index;
if (� data points in any particular Data Node
� � �) �

//where � = Threshold Value.
Merge sibling Data Nodes
� and
�;
Set Pointer of both
� and
� to Ptr (�);

�
else �

Set Pointer of
� to Ptr (�);
Build metric tree � for each Data Node
�;
Set Root of the AH-Tree=Root of the Space

Index Tree;
Set Leaf=Ground Nodes of the metric tree;
Set Intermediate Nodes =[Index Nodes of
Space Index Tree, Data Nodes of Space Index
Tree, Routing Nodes of metric tree];

�

���� ��������
��� �� �Æ��
� ������

AH-Tree uses a metric tree to embed the high level im-
age relationship in the index structure. A metric tree indexes
a metric space formed by points which are related to each
other by a metric distance function. A distance function is
called metric if it obeys the laws of symmetry, positivity
and triangular inequality. In the proposed AH-Tree, while
building the M-Tree for each subspace of the space based
index structure, the affinity relationship could not be incor-
porated within the distance function in order to keep the dis-
tance function between the data points metric. If the affinity
relationships between the data points are used as a factor to
scale the distance between them (higher the affinity value,
lower is the computed distance), the triangular inequality
of the distance function demands the factor to be the same.
The affinity value is a high level concept depicting the sim-
ilarity between each pair of images as perceived by the user
and hence cannot be equal to each other. If the affinity, or in
other words the user concept of similarity, could have been

Figure 1. Structure and Component of AH-
Tree

projected in the feature level, the distance function could
have been scaled using them by attaching different weights
to the feature values as discussed in [4]. However, the main
motive of this index structure is to incorporate the user per-
ception in its high level form and not to translate it. Hence,
the affinity relationship is incorporated after the index struc-
ture is formed during each query for pruning the tree by a
method called affinity promotion. The detailed derivation
of the above claim is described in Lemma 1.

Lemma 1 The affinity relationship cannot be involved
while constructing the metric tree as it no longer keeps the
search space metric.

Proof : Let ��, �� and �� be three objects in a metric
space. Let ���, ���, and ��� be the original distances
computed before the introduction of the affinity values. Let
���, ��� and��� be the affinity factors used to scale down
the distance and ���, ��� and ��� be the newly computed
distance functions. Therefore,

��� �
���

���

� ��� �
���

���

� ��� �
���

���

(1)

Thus,

��� � ������� ��� � ������� ��� � ������ (2)

According to triangular inequality,

��� � ��� ����� ��� � ��� ����� ��� � ��� ����

(3)
Thus,

��� � �
���

���

���� � �
���

���

���� (4)

��� � �
���

���

���� � �
���

���

���� (5)

��� � �
���

���

���� � �
���

���

���� (6)

Hence, to maintain the triangular inequality of the
weighted distance function, we gather from equations (4,
5 and 6),

���

���

� ��
���

���

� � (7)

The above proves that the affinity factor should be the same
to maintain the triangular inequality.

���� �����
��� �� �Æ��
� ������

In order to incorporate the affinity relationship in the
AH-Tree, they should be promoted from the leaf level to
each internal node level up to the root of the metric tree dur-
ing a query. Before starting the query, for each query object
(Oq), the affinity values of the data points at the leaf level
with respect to Oq are promoted as discussed in Definition
1. The affinity value of a leaf node along with the affinity
value of its sibling is used to compute the affinity value of
their parents. The process continues till the root of the met-
ric tree is reached. Such a promotion ensures that if any of
the child nodes has an affinity value greater than or equal
to the required affinity value with the query image, the cor-
responding parent node should be visited to avoid any false
dismissal. It also ensures that if none of the children of a
particular parent has an affinity value greater than or equal
to the supplied query affinity value, the parent along with
all its children need not be visited which saves the distance
computations overhead during similarity search. The pro-
motion of the affinity value is implemented in the Similar-
ity Queries using the function Affinity Promotion() which
follows the technique discussed in Definition 1.

Definition 1 Let �� and�� be the leaf nodes of an M-Tree
containing the indexed objects �� and �� respectively rep-
resented by their keys or features, and �� be the parent of
�� and ��. Let ������ and ������ be the precomputed
affinity values between the query object and the objects at
the leaf level. Hence, the affinity value of the parent of ��

and �� (i.e., ��) with respect to the query �� is equal to
max(������, ������).

Table 2. Implementation of Range Query in
AH-Tree

AH Range Query(R(Q):query region,
r(Q):search radius, Q:query object, aff:affinity value,
N:node) �

if (N is Null) �terminate;�
else
�

Let page=root page;
�	
=BR corresponding to N;
Space Search(R(Q), N, �	
);
//space search sub-routine.

� //end of space search.
Set �����=Root Metric;
Metric Search(Q, �����, r(Q), aff);

//metric search.
�//end of AH Range Search.

Table 3. Implementation of Space Search in
AH-Tree

Space Search(R(Q), N, �	
)� //Space Search.
if (N �� Space Data Node)
�

I = �	
� R(Q);
if (I �� �)
�
� child nodes in N �

Compute ����� from �	
 ;
Set �	
=�����;
Space Search(R(Q), �����, �	
);

�
�

�
� //end of Space Search Subroutine.

3. Similarity Queries

The proposed AH-Tree supports both the range queries
and the k-NN queries. Before going into the detailed algo-
rithms, the tree traversal and the node information process-
ing are discussed in each case. A query is represented as a
collection of features Q(F), where F is the same set as the
image feature vector and is extracted in the same manner
as the image objects. Once the feature vector of the query
image is obtained, the AH-Tree is traversed from its root
to the subspaces of the feature space containing data points
related to the query object. The metric trees corresponding
to subspaces having the maximum number of data points
are merged and the affinity relationships of all the nodes

in the metric tree are computed by affinity value promotion
technique. By computing the distance and the affinity be-
tween the query object and the tree objects of the metric
tree, the query result is obtained. A detailed pseudo-code of
the range and k-NN queries for the AH-Tree is presented in
the following subsections.

���� ����� �������

A range query (Q, r(Q)) traverses through the AH-Tree
and selects all the appropriate database objects (��) which
satisfy the following condition:

� ��, d(��, Q) � r(Q)	

The AH Range Query as discussed in Table 2 for the
AH-Tree was developed so as to implement the range query
in the feature space as well as in the metric space. Since
the space-based indexing technique requires a search range
and a metric-based indexing technique requires a search ra-
dius to implement the range search, both the values are pro-
vided while initializing the range search algorithm for the
AH-Tree. The algorithm for the range query is described
in details in Table 2, 3 and 4. The AH Range Query first
performs range search on the feature space to get the fea-
ture sub-spaces within the supplied range of the query us-
ing the function Space Search(R(Q), N, �	
) as discussed
in Table 3. Once the feature subspaces are obtained, in or-
der to increase the metric search space, neighboring feature
subspaces are combined in a step-wise manner depending
upon the user input starting with just the original result ob-
tained from the space search. The metric search method
includes the introduction of the affinity concept. For the
router objects i.e. the intermediate objects, the similarity
distance is first evaluated against the search radius. If sat-
isfied, the affinity of the routing object with the query ob-
ject is checked against the required supplied affinity value.
Upon satisfying both the conditions, the metric search is
iterated for the subtree of the routing object. The met-
ric search is implemented in the function Metric Search(Q,
�����, r(Q), aff) discussed in Table 4. In many cases, pro-
viding appropriate search radius with the query is rather dif-
ficult and do not result in satisfactory query output. Such
a scenario is taken care by maintaining a second parallel
result set formed depending upon only the affinity require-
ment fulfillment even when the similarity distance do not
fall within the search radius. This result set is used if the
user is not satisfied with the earlier result set. This gives
the high level image relationship a greater importance in
determining the query result when the low level feature re-
lationships fails to produce a satisfactory result set. For data
objects residing at the leaf nodes, similar evaluation is per-
formed except that the image objects are added to the result

set directly when evaluation is successful instead of initi-
ating an iterative metric search. For image objects without
affinity values (possible if a new image object is introduced
whose affinity value is not available), simple metric search
is performed depending upon the classical similarity evalu-
ation.

Table 4. Implementation of Metric Search in
AH-Tree

Metric Search(Q, �����, r(Q), aff) � //Metric Search.
Affinity Promotion(); //promotion of affinity value.
if (aff(��, Q) �� 0) � //affinity value available.

if (�� is a routing object)�
� �� in ����� do: �

if (� d(�� , Q) - d(��, ��)� � r(Q)+r(��)) �
Compute d(��, Q) and aff(��, Q);
if ((d(��, Q) � r(Q)+r(��)) ��

(aff(��, Q) 	 aff)) �
Metric Search(ptr(T(��)), Q, aff);
//T(��): pointer to the subtree.

�
elseif (aff(��, Q) 	 aff)�

//giving affinity relationship greater
//priority over similarity distance.
Metric Search(ptr(T(��)), Q, aff);
//T(��): pointer to the subtree.
�

�//end of search for ��

//satisfying metric condition.
�//end of search for all �� in �����.

�//end of internal node search of the
//metric tree.

elseif (�� is a leaf object)�
If the object qualifies the distance function
and the affinity, add to the result set;

�
� //end of search for query object with affinity.

else �
Metric Search with the absence of the affinity
comparison;
� //end of search for query object without affinity.

� //end of Metric Search Subroutine.

���� ���� �������

The AH k-NN Search algorithm as discussed in Table 5
retrieves k nearest neighbors from the AH-Tree for a query
object Q. The AH-Tree uses a branch-and-bound technique
similar to the one designed for the R-Tree [8]. The algo-
rithm proposed here to implement the k-NN query on the
AH-Tree first determines the k-nearest subspaces to a given

query point. Then it merges the metric tree correspond-
ing to each space ultimately performing k-NN search on
the combined metric tree thus formed to get the k nearest
neighbor objects. The search algorithm implements an or-
dered depth-first-search on its feature space using the func-
tion Space Nearest Search(N, nearest, Q) discussed in Ta-
ble 5. During traversal, at each non-leaf node, the met-
ric bounds are calculated between the query point and all
its Minimum Bounding Regions (MBRs) and stored in an
ordered list. The list is pruned depending on the similar-
ity measure and the search iterates upon this list until it is
empty. In each iteration, the next branch belonging to the
particular MBR is selected. On reaching the data nodes of
the feature based index structure, the value of the nearest
distance is updated and the iteration continues until k fea-
ture subspaces are obtained. The metric tree corresponding
to each feature subspace thus obtained is then combined.
The affinity values of the combined metric tree is promoted
from the leaf levels. A priority queue is maintained which
points to the active sub-trees of the metric tree. The function
Metric Nearest Search(N, k, Q) discussed in Table 5 imple-
ments the metric search in the metric space. The search ra-
dius and the affinity value now become dynamic in nature
and are defined in Definitions 2 and 3 respectively.

Definition 2 The search radius is defined as the distance
between the query point and the current k-th nearest neigh-
bor.

Definition 3 The affinity value is defined as the affinity be-
tween the query point and the current k-th nearest neighbor.

For an iteration of the priority queue, the sub-tree with the
minimum distance and maximum affinity with the query
point is chosen. The minimum distance and the maxi-
mum affinity thus obtained become the search radius and
the affinity value for the next iteration. The pseudo-code is
described in Table 5.

4. Implementation of the AH-Tree

In this section, we provide the detailed implementation
of the AH-Tree and an analysis of the experimental results.
The H-Tree and M-Tree packages [2][12]were used as a
framework upon which the AH-Tree application was built
using C++ in an Linux environment. A node size of 4
Kbytes was used. The image database used has 10,000 color
images of 72 semantic categories. The feature matrix is de-
veloped by obtaining the color information for each image
from its HSV color space. Twelve color features are consid-
ered which makes the feature matrix 12-dimensional. An
affinity relationship matrix of dimension 10,000 X 10,000
is used which is precomputed from a training set capturing
the user perception. We performed extensive experiments

Table 5. Implementation of k-NN Search in
AH-Tree

AH k-NN Search(N:node, nearest:distance,
Q:query point, k:number of nearest neighbors)�

if (N is Null) �terminate;�
else
�

Space Nearest Search(N, nearest, Q);
//Returns k nearest space, searching
//the Space Indexing Tree by generating
//Available Node List and Sorting them
//based on the similarity measure iteratively.

//Combine the metric trees corresponding to
//k Spaces.

//Search on the corresponding metric tree.
Affinity Promotion();//promotion of the

//affinity value.
//Perform the metric search as explained in
//range search with the difference of making
//the search radius dynamic by making it the
//distance between Q and the current kth
//nearest neighbor and storing all the non
//leaf nodes with the required similarity
//measurement in a priority queue.
Metric Nearest Search(N, k, Q);
�

�//end of k-NN search.

to evaluate the performance of the AH-Tree during its con-
struction and during queries. The implemented AH-Tree is
compared with the performance of M-Tree both during con-
struction and during queries. The AH-Tree structure is not
compared with the Hybrid Tree or any other Space-Based
indexing structure as it has already been discussed that the
high-level image relationship introduced in the AH-Tree
cannot be utilized in any Space-based indexing technique
without translating it to its low level equivalence.

The experimental results imply that AH-Tree is capable
of overcoming the problems discussed above by combining
the space-based and distance-based indexing structure. Fig-
ure 2(a) depicts the distance computation and number of I/O
vs number of objects for M-Tree and AH-Tree. It clearly in-
dicates that by using the space based indexing structure to
filter the feature space prior to building the M-Tree for each
subspace, there has been a drastic reduction in computation
overheads.

Experiments are carried to implement both range as well
as k-NN queries using 10 query images each for both AH-
Tree and M-Tree with k=10. The distance computations and

number of I/O averaged over 10 queries of the range and k-
NN query is plotted in Figure 2(b) and Figure 2(c) . This
also demonstrates that the AH-Tree performs far better as
far as overhead is concerned.

Figure 2. Distance Computation and Number
of I/O during (a) building the Index Trees, (b)
Range Queries, and (c) k-NN Queries

Since the novelty of the paper is the introduction of the
high level image relationship in the index structure to fa-
cilitate getting semantically related query results without
translating them into their low-level equivalence, hence the
query results obtained from the AH-Tree as well as those
obtained from M-Tree are checked for accuracy against im-
ages annotated manually. The accuracy is defined as the
percentage of the retrieved images that are semantically re-
lated to the query image. It is noted that the results obtained
from the M-Tree do not exhibit any regular pattern of se-
mantic relationship and has an accuracy as low as �	
 on
an average. AH-Tree on the other hand has an average accu-
racy over �	
 which is depicted in Figure 3 for an example
10-NN query where the query image is at the top left-most
corner. It can be seen that about 8 among the 10 retrieved
images have a close semantic relationship (animals in natu-
ral surroundings) and hence possess an accuracy of �	
 for
this example. The result is ranked in an order of decreas-

ing similarity from left to right and top to bottom. Such
stark difference in the accuracy of obtained query results is
clearly due to the introduction of high level image relation-
ship.

Figure 3. Query Results for 10-NN Query

The above analysis of the experimental results help us to
conclude that the proposed AH-Tree indeed performs bet-
ter both in terms of computation overhead and relevance of
the query results. Thus, it achieves the two essential goals
of any multimedia indexing structures. First, it reduces the
computation time in retrieving multimedia objects and sec-
ond, it makes the retrieved result as close to human percep-
tion as possible.

5. Conclusion and Future Work

In this paper, an efficient indexing and accessing
technique, called the AH-Tree, is proposed. The AH-Tree
combines low level features and high level image relation-
ship and supports CBIR by integrating feature based and
distance based indexing. To the best of our knowledge, the
AH-Tree is the first attempt to combine the feature based
and distance based multidimensional indexing techniques
to introduce high level image relationships, making the
query results more semantically related in an efficient way.
The experimental results demonstrate that the proposed
AH-Tree is a promising indexing mechanism to bridge
the gap between the low level features and the high level
relationship among the images, and has a lot of potentials
for future research and development. Presently, the affinity
relationship is calculated offline. As a part of our future
work, a learning technique to determine the affinity re-
lationship in real time will be investigated to extend the
capability of the indexing mechanism in capturing the high
level image relationships efficiently.

Acknowledgment
For Shu-Ching Chen, this research was supported in part
by NSF EIA-0220562 and HRD-0317692. We would like
to thank Dr. Marco Patella, who is a researcher at DEIS,
University of Bologna, Italy for his invaluable discussions
and suggestions while understanding the basic framework
of M-Tree.

References

[1] S. Berchtold, D. A. Keim, and H. Kriegel. The x-tree:
an index structure for high dimensional data. In Proceed-
ings of the 22nd International Conference on Very Large
Databases, pages 28–39, Bombay, India, September 1996.

[2] K. Chakrabarti. Hybrid tree code.
//www.ics.uci.edu/ kaushik/research/htree.html, 2005.

[3] K. Chakrabarti and S. Mehrotra. The hybrid tree: An index
structure for high-dimensional feature spaces. In Proceed-
ings of the IEEE International Conference on Data Engi-
neering, pages 440–447, Sydney, Australia, March 1999.

[4] K. Chakrabarti, K. Porkaew, M. Ortega, and S. Mehrotra.
Evaluating refined queries in top-k retrieval systems. IEEE
Transactions on Knowledge and Data Engineering (TKDE),
16(2):256–270, February 2004.

[5] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient
access method for similarity search in metric spaces. In Pro-
ceedings of the 23rd VLDB International Conference, pages
426–435, Athens, Greece, August 1997.

[6] R. Fagin. Fuzzy queries in multimedia database systems. In
PODS ’98: Proceedings of the seventeenth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database
systems, pages 1–10, Seattle, Washington, United States,
June 1998.

[7] D. Greene. An implementation and performance analysis of
spatial data access methods. In Proceedings of ICDE, pages
606–615, Los Angeles, California, United States, February
1989.

[8] A. Guttman. R-trees: A dynamic index structure for spatial
searching. In Proceedings of the 1984 ACM SIGMOD Inter-
national Conference on Management of Data, pages 47–57,
Boston, Massachusetts, Unites States, June 1984.

[9] R. Krishnapuram, S. Medasani, J. Hwan, C. Y. Sik, and
R. Balasubramaniam. Content based image retrieval based
on fuzzy approach. IEEE Transactions on Knowledge and
Data Engineering (TKDE), 16(10):1185–1199, 2004.

[10] D. B. Lomet and B. Salzberg. The hb-tree: A multiattribute
indexing method with good guaranteed performance. ACM
Transactions on Database Systems, 15(4):625–658, 1990.

[11] A. Motro. Vague: A user interface to relational databases
that permits vague queries. ACM Transactions on Office In-
formation Systems, 6(3):187–214, 1988.

[12] M. Patella. M-tree code. http://www-db.deis.unibo.it/Mtree,
2005.

[13] J. Robinson. The k-d-b-tree: A search structure for large
multidimensional dynamic indexes. In Proceedings of the
1981 ACM SIGMOD International Conference on Manage-
ment of Data, pages 10–18, Ann Arbor, Michigan, United
States, April 1981.

[14] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neigh-
bor queries. In Proceedings of the 1995 ACM SIGMOD in-
ternational conference on Management of Data, pages 71–
79, San Jose, California, United States, May 1995.

[15] Y. Rui, T. Huang, and S. Mehrotra. Content based image
retrieval with image retrieval in mars. In Proceedings of
International Conference on Image Processing, pages 815–
818, Santa Barbara, California, United States, October 1997.

[16] M.-L. Shyu, S.-C. Chen, M. Chen, C. Zhang, and C.-M.
Shu. MMM: A stochastic mechanism for image database
queries. In Proceedings of the IEEE Fifth International Sym-
posium on Multimedia Software Engineering (MSE2003),
pages 188–195, Taichung, Taiwan, ROC, December 2003.

[17] D. A. White and R. Jain. Similarity indexing with ss-
tree. In Proceedings of the 12th International Conference
on Data Engineering, pages 516–523, New Orleans, LA,
United States, February 1996.

[18] P. N. Yianilos. Data structures and algorithms for nearest
neighbor search in general metric spaces. In Proceedings
of the 3rd Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pages 311–321, Philadelphia, PA, United States,
January 1993.

[19] P. Zezula, P. Ciaccia, and F. Rabitti. M-tree: A dynamic in-
dex for similarity queries in multimedia databases. In Tech-
nical Report 7, HERMES ESPRIT LTR Projects, 1996.

