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Abstract

In this paper, a neural network based framework for se-
mantic event detection in soccer videos is proposed. The
framework provides a robust solution for soccer goal event
detection by combining the strength of multimodal analy-
sis and the ability of neural network ensembles to reduce
the generalization error. Due to the rareness of the goal
events, the bootstrapped sampling method on the training
set is utilized to enhance the recall of goal event detection.
Then a group of component networks are trained using all
the available training data. The precision of the detection
is greatly improved via the following two steps. First, a
pre-filtering step is employed on the test set to reduce the
noisy and inconsistent data, and then an advanced weight-
ing scheme is proposed to intelligently traverse and com-
bine the component network predictions by taking into con-
sideration the prediction performance of each network. A
set of experiments are designed to compare the performance
of different bootstrapped sampling schemes, to present the
strength of the proposed weighting scheme in event detec-
tion, and to demonstrate the effectiveness of our framework
for soccer goal event detection.

1 Introduction

The continuous explosion of video data in the current
era poses great needs in semantic indexing and querying
of the video databases. As an essential issue, the detec-
tion of semantic events from various types of videos, espe-
cially sports video, has attracted great research attentions.
However, it remains a challenge to infer the occurrences of
events from various video features due to the so-called se-
mantic gap. Moreover, the occurrence of interested events
in many applications is fairly scarce, which poses addi-
tional difficulties in capturing such rare events from the
huge amount of irrelevant data, especially with the presence

of noisy or inconsistent data introduced in the video produc-
tion process. To address these issues, many research stud-
ies have been carried out towards two directions for sports
event detection, i.e., to explore the representative features
and to capture the relations between the features and the
events.

Extensive researches have been devoted to explore the
representative features for sports event detection, where
the features are extracted at various levels (i.e., low-level,
middle-level, object-level, etc.) and via different channels
(i.e., visual, auditory, textual, etc.). Low-level features such
as dominant color, motion vectors, and audio volume are
acquired directly from the input videos by using simple fea-
ture extractions [2][26], which usually possess limited ca-
pabilities in presenting the semantic contents of the video
events. In contrast, object-related features are attributes of
the objects such as ball location and player shapes, which
greatly facilitate the high-level domain analysis. How-
ever, their extraction is usually difficult and computationally
costly for real-time implementation [10]. Middle-level fea-
tures (e.g., grass areas/audience areas [5], audio keywords
[29], etc.), on the other hand, offer a reasonable tradeoff
between the computational requirements and the resulting
semantics.

As for the problem of mapping the features to the seman-
tic events, the hard-wired procedures or heuristic methods
are adopted in most of the existing work [30], where the
temporal templates [25] or heuristic rules [24] are created
manually with the help of domain knowledge and/or data
investigation. These approaches are normally efficient in
the aspect of the computational cost, but they usually are not
very robust and require heavy human involvement. More-
over, in many cases, it is difficult to intuitively define the
relations between the features and the events. Alternatively,
learning-based algorithms are adopted to detect the events
via data mining and statistical analysis. For instance, Xie
et al. [28] applied the Hidden Markov Model (HMM) to
detect the play and break events from the soccer videos.



However, the limitation of HMM for sports video event de-
tection lies in the fact that it makes the so-called Markovian
assumption about the data, i.e., the emission and the tran-
sition probabilities depend only on the current state, which
does not fit well to the characteristics of the sports videos
given various production styles and post-production effects.
In addition, in [28], the framework was evaluated upon a
very small testing data set, which failed to justify its gener-
alization. Here, generalization means how well a trained de-
cision function performs to classify the unseen data points,
which is of great importance in evaluating a learning algo-
rithm [22]. In [18], a three-layer feed-forward neural net-
work was adopted to classify the shots into three semantic
categories: “non-hitting,” “in-field,” and “out-field.” The
desirable feature of this work is that the feed-forward neural
network is capable of carrying out data classification with
more than two classes of objects in one single run. How-
ever, the generalization of the neural network is highly lim-
ited in detecting rare events. In order to make such kind of
single neural network work in rare event detection, special
techniques have to be employed in the training algorithm
[1][9]. In [22], Support Vector Machine (SVM) was uti-
lized for event detection in field-sports videos because of
its promising generalization performance. However, SVMs
were originally designed for binary classification and it re-
mains an ongoing research issue regarding how to effec-
tively extend it for multi-class classification [13].

To tackle these issues, a novel learning-based event de-
tection framework is proposed in this paper, which incorpo-
rates both the strength of multimodal analysis and the ability
of neural network ensembles to enhance the generalization
capability. In addition, a bootstrapped sampling approach
is adopted for rare event detection. Furthermore, a data re-
duction process and a robust weighting scheme are applied
to further boost the classification performance.

The rest of paper is organized as follows. Section 2
gives an overview of the related work on the neural network
techniques in classification. The proposed learning-based
framework is discussed in Section 3. The experimental re-
sults are presented in Section 4, and Section 5 concludes the
paper.

2 Related Work

2.1 Neural Networks in Classification

Neural networks have been used in many classification
and event prediction problems due to their strength of iden-
tifying the relationship between predictor variables (inputs)
and predicted variables (outputs) even when the relation-
ship is far too complex to model with other mathematical
approaches such as correlation. However, neural network
based frameworks have rarely been applied in the domain

of semantic event detection in video documents. In [18],
the authors used a three-layer feed-forward neural network
for semantic classification of baseball sport videos, where a
back-propagation algorithm was used to train the network.
In their work, the video shots are divided into three seman-
tic categories as “Non-hitting,” “In-field,” and “Out-field”
which are in fact three balanced classes, i.e., the number of
instances in each class is comparably equal. For rare event
detection, the back-propagation algorithm performs poorly
in the sense that it converges very slowly for the classifi-
cation problems in which most of the exemplars belong to
one major class [1]. More specifically, the calculated initial
net gradient vector is dominated by the major class so that
the net error for the instances in the minor class (having
a smaller number of instances) increases significantly [1].
Therefore, the approach proposed in [18] is not applicable
for imbalanced event classification problems such as soccer
goal event detection.

Several researches have been carried out to optimize
the performance of neural networks in imbalanced classi-
fication problems. Among them, some studies focused on
studying and modifying the training algorithms to achieve
better performance. In [1], a modified training algo-
rithm was proposed by treating both classes with equal
importance, which eliminated the weaknesses in back-
propagation algorithm and converged fast for two-class
classification. However, such equality does not capture the
characteristics of the event detection problems, where the
focus is more leaned to identifying the event units rather
than classifying the shots into two classes. Alternatively,
[9] adopted the so-called “Stratifying coefficients” in the
training algorithm, which introduces a higher weight to the
minority class during the training process. More precisely,
during the back-propagation training, a weighted sum in-
stead of the summation of the derivatives was used, where
the “weight” was determined by the ratio of the instances
between the major and minor classes.

However, it is relatively complicated to modify the train-
ing algorithms. In contrast, a simpler approach was pre-
sented in [4], which generated multiple versions of a pre-
dictor and the final decision was reached by averaging the
outcome of each predictor (in the case of numerical out-
comes) or conducting a popularity vote when predicting a
class. Those multiple predictors were formed using boot-
strapped samples of the training data set, which is the idea
we utilize in our work to alleviate the problem caused by
the imbalanced training data set. That is, bootstrapped sam-
pling is employed upon the training set to create a set of
samples, where each sample contains a comparable amount
of instances from both classes and is in turn utilized to train
a neural network independently for the same task. This kind
of a predictor collection is called an “ensemble” [23].



2.2 Neural Network Ensembles

In early nineties, Hansen and Salmon [11] discussed the
applications of ensembles of similar multilayer neural net-
works and showed its strong capability in reducing the gen-
eralization error. Thereafter, this idea has been applied in
different domains [9].

A Neural network ensemble is constructed in two steps:
1) to train a number of component neural networks and
2) to combine the component predictions. Each of these
steps leaves ample opportunities and directions for the
researchers to investigate.

Component Neural Networks
Many aspects need to be considered in this step, includ-

ing the structure of the component networks (number of hid-
den layers and neurons, transfer function to be used in each
layer, etc.), the training algorithm, the training terminating
criteria, etc. As far as the neural network structure is con-
cerned, a simple three-layer structure was used in most of
the cases [16]. This is mainly because there is no estab-
lished theoretical approach to decide the appropriate struc-
ture for a given problem. It also follows the Hornik’s well-
known statement that the multilayer standard feed-forward
networks, even with as few as one hidden layer, possess the
capability of approximating any Borel measurable function
from one finite dimensional space to another to any desired
degree of accuracy, provided that sufficiently many neurons
are available [12].

Most of the other parameters are determined based on
the experimental observations and experience. Training
the neural network to avoid over-fitting the training set
is a topic under discussion in many studies [3][17][21].
However, as suggested in [23], over-fitting can actually
be useful in learning large neural network ensembles. In
their work, it was shown that it is advantageous to use
under-regularized component networks which overfit the
training data for learning in large ensembles [23]. This
constitutes the basic idea of our study in constructing the
component networks.

Combining Predictions
In combining the predictions of component neural net-

works, the most prevailing methods are popularity vot-
ing [11], simple averaging [20], and weighted averaging
[14][15][20]. For example, the weighted averaging meth-
ods in [15][20] assigned the weights to minimize the mean
square error of the classification; whereas Jimenez [14] used
dynamic weights determined by the confidence of the com-
ponent network output, and the weights are dynamic in the
sense that they are recalculated each time the ensemble out-
put is evaluated.

In [31], a different approach was proposed where a sub-

set instead of the entire set of component neural networks is
used to construct the ensemble. In brief, an initial weight for
each component network is assigned randomly and is then
evolved using the genetic algorithm, where the goodness of
the evolving population is evaluated using a validation data
set that is bootstrap sampled from the training set. Finally,
the component networks with weights greater than a pre-
set threshold are selected to form the ensemble. However,
it has three major drawbacks. First of all, it is extremely
time consuming. Secondly, the aforementioned ‘threshold’
has to be defined with the aid of domain knowledge. Fi-
nally, since the goodness of the weights are evaluated using
a random data set sampled from the training set, the con-
structed ensemble might be biased in the sense that the neu-
ral networks trained using these training instances could get
higher weights.

All of the above mentioned approaches treated each of
the predicted classes with equal importance. However, as
discussed earlier, for event detection, normally one class
(the event class) is of greater importance than the other
classes. In addition, in popularity voting, simple averaging,
and Jimenez’s approach, they failed to take into consider-
ation that the predictions of some neural networks may be
more accurate than others. To address these issues, a novel
weighting scheme is proposed for integrating the compo-
nent network outputs (to be detailed in Section 3).

3 Proposed Methodology

In this study, the soccer application domain is used since
soccer video analysis still remains a challenging task due to
its loose game structure [27]. For soccer goal event detec-
tion, the event unit is defined in the shot level as shots are
widely accepted as a self-contained unit. Therefore, the shot
boundary detection algorithm proposed in our earlier work
[6] consisting of the pixel-histogram comparison, segmen-
tation map comparison, and object tracking subcomponents
is first applied on the raw video data to obtain the shot units.
Thereafter, a set of low-level and middle-level visual/audio
features are extracted at the shot-level. More specifically,
one middle-level feature, called the grass area ratio, is ex-
tracted on the basis of object segmentation and histogram
analysis. In addition, the feature set also contains four low-
level visual features and ten low-level audio features, where
the visual features are obtained using pixel and histogram
analysis and the audio features are exploited in both time-
domain and frequency-domain. A complete list of all the
features and their feature descriptions was presented in [7].

The problem of soccer goal event detection falls into the
class of rare event detection. That is, the number of goal
shots generally accounts for a small portion of the total
shots in the soccer videos (e.g., less than 1% in our col-
lected videos). As discussed earlier, in this work, boot-



strapped sampling is applied to alleviate the learning prob-
lems caused by the imbalanced training data set. Then, a
group of neural networks is trained by each of the samples
and acts collectively as the predictor. This approach effi-
ciently uses all the available data for training and the pro-
posed weighting scheme effectively combines the outputs of
all the component networks in the ensemble. The proposed
framework is illustrated in Figure 1. As can be seen from
this figure, it consists of conducting bootstrapped sampling,
training the component neural networks, and combining the
prediction.
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Figure 1. The proposed framework

• Bootstrapped Sampling
The concern with bootstrapped sampling is that it im-

proves the classification accuracy of the minor-class (i.e.,
goals) at the cost of decreasing that of the major-class (i.e.,
non-goals), which could lead to the miss-classification of
non-goals and result in false-positives in the predicted goal
class. In other words, it adversely affects the precision of
goal event detection. Therefore, we have to come to a com-
promise between the recall and precision. For instance, if
we change the original 1:99 ratio between goal and non-
goal events to 50:50, the classification accuracy of the non-
goal events is decreased. On the other hand, incrementing
the goal ratio from 1% to 50% provides a big improvement
in its classification accuracy. That is, the improvement in
the recall value of the goal class will be larger compared
to the deduction in precision. To experimentally prove this
reasoning and to find a fair tradeoff point between the recall
and precision values, three sub-sampling schemes with 1:1,
1:2, and 1:3 goal to non-goal example ratios are considered.

Formally, bootstrapped sampling can be defined as fol-
lows. Let n and m be the numbers of non-goal and goal in-
stances in the training set, respectively. Let r be a constant
that determines the non-goal to goal instance ratio in the

bootstrapped sample, and N be the number of sub-samples
randomly divided from the non-goal set, where N is deter-
mined by Eq. (1).

N = �n/rm�. (1)

When n is not exactly divisible by N , any leftover non-goal
examples are ignored in the training process. It is worth
noting that if r is reasonably small, the instances being
ignored from the non-goal set is negligible compared to
the ones used in the training process. The goal instances
are then bootstrapped into each of the non-goal samples.
In other words, each of the resulting samples contains
(r + 1)m instances.

• Component Neural Networks
Following the Hornik’s [12] statement and based on the

experimental evaluations on the training data set, the 3-layer
feed-forward neural network structure is adopted for the
component networks. The radial bias transfer function is
used in the first two stages and the sigmoid transfer func-
tion is used in the output layer.

To fully utilize over-fitting for learning the large en-
sembles as suggested in [23], the component networks in
our work are trained using a back-propagation algorithm
to achieve maximum recall and precision for the training
set, which, as discussed in [12], can reach 100% accuracy
by properly adjusting the number of neurons in the neural
network. In addition, it is observed that the classification
performance varies with the initialization of the network
biases and weights. Therefore, a two-step procedure is
developed as follows to guarantee the 100% accuracy rate
for each of the component networks with regard to the
corresponding training samples. First, the experimental
analysis is conducted to explore the proper combination
of neurons in each of the layers, where the numbers of
neurons in the input, hidden, and output layer are assigned
to 10, 2, and 1, respectively for this study. Next, an iterative
training scheme is designed with random initial network
biases and weights such that each time the network is
initialized at a different point of the weight space. The pro-
cess continues until the maximum accuracy rate is achieved.

• Combining the Predictions
In order to effectively traverse and combine the predic-

tions of the component networks, a novel weighting scheme
is proposed in this study. The basic idea is stated as follows.

The N bootstrapped data sets constructed earlier are
used to train the N component neural networks indepen-
dently, which in turn form the neural network ensemble.
As mentioned earlier, each component network is trained
to achieve the maximum accuracy upon the corresponding
training subset, which might result in over-fitting and could
exhibit a lower performance on a different subset. To test



the performance of the component networks, each of them
can be tested upon all the training subsets, where the one
with a higher generalization ability gets a higher weight.
This idea is realized in the following algorithm and the ex-
perimental results prove the effectiveness of the approach.

Let Pji and Rji be the precision and recall rates obtained
by applying the jth (j = 1, 2, . . . , N ) network on the train-
ing subset i (i = 1, 2, . . . , N ). The following procedure cal-
culates the weights Wj for each of the component network
such that those networks who consistently yield higher pre-
cision and recall values will get a higher weight. Define σp,
σr as the deviation of precision and recall from 100%, re-
spectively. Let σp

j be the σp value of the jth network (as
given in Eq. (2)), and W p

j be the weight associated with the
precision of the jth network (as given in Eq. (3)).

σp
j =

√√√√√√
N∑

i=1

(1 − Pji)2

N
; (2)

W p
j =

1 − σp
j

N∑
j=1

(1 − σp
j )

. (3)

As can be observed from Eq. (3), if the deviation of the
precision from 100% is lower compared to the others (i.e.,
the precision is consistently close to 100%), that network
will get a higher weight. Similarly, σr

j and W r
j values can

be calculated using Eqs. (4) and (5). In addition, Eq. (6)
defines the final weight for the jth component network. It
is worth noting that the weights are normalized so that all
the weights sum to 1 for a certain ensemble.

Note that in our proposed framework, all the goal in-
stances were used in the training process to construct each
of the component networks. Therefore, the recall value
reaches 100% in all the cases and it will show an equal ef-
fect on all the component networks. In other words, the
weights are solely dependent on the precision value and are
targeted to improve the overall precision value of the com-
bined output. Nevertheless, the recall value is considered in
the equations so that the idea can be generalized into other
situations. This trained network ensemble is tested on the
pre-filtered testing data set. Here, pre-filtering is employed
to reduce the noisy and inconsistent data by using a limited
set of domain rules, which further improves the precision
of the detection. A detailed discussion regarding the pre-

filtering process can be found in [5].

σr
j =

√√√√√√
N∑

i=1

(1 − Rji)2

N
; (4)

W r
j =

1 − σr
j

N∑
j=1

(1 − σr
j )

; (5)

Wj =
W p

j W r
j

N∑
j=1

(W p
j W r

j )

. (6)

As mentioned earlier, each of the component networks
in the ensemble has the log-sigmoid transfer function at the
output layer. Therefore, the output produced by the net-
work could lie anywhere between 0 and 1. Let fj(x) be the
function computed by the jth component network, the final
results of the ensemble can be calculated as shown in Eq.
(7). Note that since the log sigmoid function is symmetrical
around coordinate (0, 0.5), intuitively the classification can
be conducted by setting the threshold of decision as 0.5.

output =
N∑

j=1

Wjfj(x). (7)

4 Empirical Study

In our experiments, 26 soccer videos were collected from
different broadcasters, with a total time duration of 8 hours
and 25 minutes. These videos are composed of 4,247 shots,
out of which 37 are goals which account for 0.87% of the
total shots.

4.1 Experiment Setup

The data set is randomly divided into a training set and
a testing set, where the training set constitutes about 2/3
of the data set and the rest goes to the testing set. Seven
such groups are formed randomly to employ 7-fold cross
validation. As discussed in Section 3, the non-goal shots
in the training set are randomly sub-sampled into N sets
and the goal shots are bootstrapped into each set. Given
m and n as the numbers of the goal and non-goal events,
respectively, in the training set, the number N is determined
by the required non-goal to goal ratio in the resulting sub-
samples, i.e., the parameter r in Eq. (1).

Three experiments are designed to test the effectiveness
of our proposed framework. In the first experiment, a sin-
gle three-layer feed-forward neural network is trained using



all the available data in the training set. In the second ex-
periment, three sub-sampling schemes with different goal
to non-goal ratios, namely 1:1, 1:2 and 1:3, are adopted and
the performance of each approach is evaluated. In the third
experiment, the component network predictions are com-
bined using the proposed weighting scheme, whose perfor-
mance is compared with the popularity voting method, Ba-
sic Ensemble method, and Dynamic Ensemble method. The
outputs of the Basic Ensemble method [20] and Dynamic
Ensemble method [14] are defined in Eq. (8) and Eq. (9),
respectively.

fBEM =
1

N

NX
j=1

fj(x). (8)

fDEM =

NX
j=1

wjfj(x), where wj =
c(fj(x))

NX
i=1

c(fi(x))

. (9)

Here, c(y) is the certainty of a neural network output and is
defined by:

c(y) =


y, if y ≥ 1/2;
1 − y, otherwise.

(10)

Note that in this method, the weights are dynamic in the
sense that they are recomputed each time the ensemble out-
put is evaluated. In addition, in Tables 1 to 6, “RC”, “PR”,
“Ident.” and “Mis-ident.” are used to denote “Recall”, “Pre-
cision”, “Identified” and “Mis-identified”, respectively.

Table 1. Cross validation results for the single
neural network

Data Total Ident. Missed Mis- RC PR
set ident. (%) (%)
1 12 9 3 0 75.00 100.00
2 12 10 2 1 83.33 90.91
3 16 12 4 1 75.00 92.31
4 10 8 2 0 80.00 100.00
5 10 8 2 1 80.00 88.89
6 13 8 5 4 61.54 66.67
7 17 14 3 1 82.35 93.33

Avg. 13 10 3 1 76.75 90.30

4.2 Result Analysis

Experiment 1: Single Neural Network
In the first experiment, the performance of a single three-

layer feed-forward neural network is evaluated. As shown
in Table 1, for each of the cross-validation sets, the recall
value is much lower than the precision value, which demon-
strates the weakness of using neural networks in rare event

detection where the influence of the rare event instances in
the training process is overshadowed by the much higher
number of the nonevent instances. However, as discussed
earlier, the recall value is a more important measurement
for event detection in the sense that it is desirable to detect
as many events as possible even at the expense of adding a
reasonable number of false positives. As can be observed in
the following two experiments, bootstrapped sampling can
greatly improve the recall of the detection.

Table 2. Cross validation results for 1:1 goal
to non-goal bootstrapped sampling

Data Total Ident. Missed Mis- RC PR
set ident. (%) (%)
1 12 12 0 1 100.00 92.31
2 12 12 0 2 100.00 85.71
3 16 16 0 2 100.00 88.89
4 10 10 0 2 100.00 83.33
5 10 10 0 2 100.00 83.33
6 13 12 1 9 92.31 57.14
7 17 17 0 9 100.00 65.38

Avg. 13 13 0 4 98.90 79.44

Table 3. Cross validation results for 1:2 goal
to non-goal bootstrapped sampling

Data Total Ident. Missed Mis- RC PR
set ident. (%) (%)
1 12 12 0 1 100.00 92.31
2 12 12 0 1 100.00 92.31
3 16 16 0 1 100.00 94.12
4 10 10 0 1 100.00 90.91
5 10 10 0 1 100.00 90.91
6 13 11 2 9 84.62 55.00
7 17 17 0 7 100.00 70.83

Avg. 13 13 0 3 97.80 83.77

Experiment 2: Bootstrapped Sampling
In the second experiment, three different sampling

schemes are adopted by changing the values of the parame-
ter r from 1 to 3 in Eq. (1), and the results are presented in
Tables 2, 3, and 4, respectively. As the purpose of this ex-
periment is to demonstrate the effect of bootstrapped sam-
pling, the popularity voting method, instead of our proposed
weighting scheme, is applied to combine the predictions.

Table 5 summarizes the average recall and precision val-
ues for the three sampling schemes. The results show that
the decrement of the goal to non-goal ratio in the samples
results in a decrease in the recall value and an increase in the
precision value. This observation follows our discussion in
Section 3 about bootstrapped sampling. In addition, the net-



Table 4. Cross validation results for 1:3 goal
to non-goal bootstrapped sampling

Data Total Ident. Missed Mis- RC PR
set ident. (%) (%)
1 12 11 1 1 91.67 91.67
2 12 11 1 1 91.67 91.67
3 16 16 0 1 100.00 94.12
4 10 10 0 1 100.00 90.91
5 10 10 0 1 100.00 90.91
6 13 11 2 8 84.62 57.89
7 17 17 0 6 100.00 73.91

Avg. 13 12 1 3 95.42 84.44

Table 5. Comparison of results between three
sub-sampling schemas

Sampling RC PR
1-to-1 98.90% 79.44%
1-to-2 97.80% 83.77%
1-to-3 95.42% 84.44%

work ensemble with bootstrapped sampling outperforms the
single neural network in all the cases in the sense that the
recall value improves dramatically with a small reduction in
the precision value.

Table 6. Comparison of results between pre-
diction combining techniques

Technique
Simple
Maj.

BEM DEM
Proposed
Method

1:1
bootstrap

RC (%) 98.90 98.90 98.90 98.90
PR (%) 79.44 79.82 79.44 82.73

1:2
bootstrap

RC (%) 97.80 97.80 97.80 98.90
PR (%) 83.77 83.77 83.77 84.92

1:3
bootstrap

RC (%) 95.42 96.52 96.52 95.42
PR (%) 84.44 84.74 84.74 85.41

Experiment 3: Combining Predictions
In the third experiment, the performance of the pro-

posed weighting scheme is compared with the popularity
voting method (denoted by “Simple Maj.”), Basic Ensem-
ble method (denoted by “BEM”), and Dynamic Ensemble
method (denoted by “DEM”) under the three different boot-
strapped sampling schemes in combining the component
network predictions. Table 6 and Figure 2 present the per-
formance comparison of the four methods when they are
applied on the same network ensembles, where the average
precision and recall values for 7-fold cross validation are
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Figure 2. Precision of goal detection of four
different prediction combining methods.

used. As can be seen from the results, the proposed weight-
ing scheme improves the precision of goal event detection
without causing much reduction in the recall value. More
precisely, the recall value only decreases in the case of 1:3
bootstrapped sampling, whereas it stays stable or even in-
creases in the other two cases. This demonstrates the effec-
tiveness of our proposed weighting scheme.

5 Conclusions and Future Work

In this paper, an advanced framework for goal event de-
tection in the soccer videos is proposed using multi-modal
processing and the classification power of neural network
ensembles. Bootstrapped sampling is adopted in our frame-
work to address the challenges caused by the rareness of
the events. In addition, the proposed weighting scheme
presents strong capabilities in traversing and combining the
predictions of all the component networks. The experi-
mental results from diverse video sources fully demonstrate
the viability and effectiveness of the proposed for semantic
event detection. Our future work is to extend the framework
for multiple event detection at different domains.
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