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Abstract At the era of digital revolution, social media data are growing at an explo-
sive speed. Thanks to the prevailing popularity of mobile devices with cheap costs and
high resolutions as well as the ubiquitous Internet access provided by mobile carriers,
Wi-Fi, etc., numerous numbers of videos and pictures are generated and uploaded to
social media websites such as Facebook, Flickr, and Twitter everyday. To efficiently
and effectively search and retrieve information from the large amounts of multime-
dia data (structured, semi-structured, or unstructured), lots of algorithms and tools
have been developed. Among them, a variety of data mining and machine learning
methods have been explored and proposed and have shown their effectiveness and po-
tentials in handling the growing requests to retrieve semantic information from those
large-scale multimedia data. However, it is well-acknowledged that the performance
of such multimedia semantic information retrieval is far from satisfactory, due to the
challenges like rare events, data imbalance, etc. In this paper, a novel weighted sub-
space modeling framework is proposed that is based on the Gaussian Mixture Model
(GMM) and is able to effectively retrieve semantic concepts, even from the highly
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imbalanced datasets. Experimental results performed on two public-available bench-
mark datasets against our previous GMM-based subspace modeling method and the
other prevailing counterparts demonstrate the effectiveness of the proposed weighted
GMM-based subspace modeling framework with the improved retrieval performance
in terms of the mean average precision (MAP) values.

Keywords Weighted Subspace Modeling · Gaussian Mixture Model · Semantic
Concept Retrieval

1 Introduction

Huge amounts of multimedia data are generated and uploaded to the Internet across
the world every minute. At such a digital era, we are overwhelmed by the explosive
growth of these multimedia data which can be structured, semi-structured, or unstruc-
tured. On the other hand, the availability of these multimedia data makes it possible
to discover interesting patterns, perform multi-modal analysis, as well as search and
index multimedia semantic information. In particular, the unstructured multimedia
data are by nature different from traditional alpha-numerical data and text documents.
One of the biggest differences is the so-called semantic gap issue [16][51]. That is,
the content of the multimedia data such as images is composed of pixels that lack
semantic meanings. Thus, there is a huge gap between the features extracted from
the pixel information (like color, shape, texture, etc.) and the semantic concepts (like
sky, people, biking, etc.). To address the challenges, many content-based retrieval
methods have been developed [6][8][12][17][19][30][45][51]. In addition, numerous
novel approaches to bridge the semantic gaps and to enhance the retrieval perfor-
mance in multimedia research have been proposed [14][26][35][36][37][57]. These
methods have demonstrated their effectiveness and efficiency of semantic concept
detection and retrieval [7][9][11][21][34][56].

Among all the efforts within the content-based image/video retrieval areas, the
keyword-based mapping and relevance feedback are the two commonly used ap-
proaches. The keyword-based mapping approaches aim to map the low-level features
to the keywords or visual words so that these keywords can be used as the higher
level features with certain semantic meanings [17][29][31][39]. The semantic gaps
between these generated keywords and the high-level semantic concepts are usually
smaller than those between the original low-level features and high-level semantic
concepts.

On the other hand, relevance feedback [23][24][27][46][55] is another popular
approach that can effectively bridge the semantic gap. Relevance feedback takes
users’ feedback as a way to refine the learning models. The initial results returned
by the primitive learning model are sent back to the users for their opinions. The
users then choose the relevant results and return them back to the learning model. It
will take a number of iterations to refine learning model based on users’ feedback
before the final model generating satisfactory results.

The most prevailing and dominating content-based image/video retrieval approaches
definitely belong to those methods based on data mining and machine learning algo-
rithms [10][13][33][47][48]. In these approaches, a positive data instance within an
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image/video dataset means an image or a video shot containing a particular target
concept. For example, an image or video shot in which you can find a “house” is a
positive data instance related to a target concept called “house”. Likewise, an image
or video shot without a “house” is regarded as a negative data instance of the concept
“house”. It is obvious that there is a huge semantic gap between the concept “house”
and the features that can be extracted from an image or a video shot. Therefore, the
role that data mining and/or machine learning plays is to build a relationship be-
tween the features and the concepts to bridge such semantic gaps. Researchers have
been greatly encouraged by some early success of using data mining and machine
learning-based approaches. However, the research road leading to a satisfactory so-
lution is winding and by no means flat. There remains a lot of scenarios where it
is difficult for the machine learning and data mining-based approaches to be able to
effectively retrieve relevant images or video shots accurately.

There are a few factors that contribute to the difficulties of retrieving accurate
results for the aforementioned approaches. First of all, sometimes the (positive) data
instances containing the target concept are so rare in the training set, making it im-
possible to build a good model to identify the target concept. In other cases, although
there are enough positive data instances to build a data model, they are still far much
less than the negative ones. Considering that an accuracy-based learning model tends
to regard all data instances as negative when the negative data instances dominate the
whole training dataset, it is really challenging for the learning model to be able to
retrieve the positive instances containing the target concept. A simple example would
be building a learning model based on a 1000-instance dataset where only 2 of them
are positives and the rest are negatives. The model with the highest accuracy would
be the one that predicts every data instance as negative when the correct prediction of
one positive data instance is at the cost of misclassifying two or more negative data
instances. Therefore, we can easily notice that the data mining and machine learning-
based approaches fail to work appropriately in such cases due to the fact that they
are often built on the assumption that the underlying dataset is roughly balanced. In
other words, the positive-to-negative ratio, which stands for the ratio between the
number of positive data instances and the number of negative data instances within a
dataset, is neither too large nor too small. However, it is not uncommon to encounter
imbalanced datasets where the positive-to-negative ratios are very close to zero. As
mentioned in the previous example, such data imbalance issue makes the model built
on a training set with significantly more negative data instances dominate the model
built on a training set with very few positive data instances, and most of the predic-
tions of the new data instances will be biased towards the negative one. Therefore, it
is challenging for the data mining and machine learning-based approaches to render
good retrieval results on imbalanced datasets [41].

In this paper, a new weighted Gaussian mixture model-based subspace modeling
method is proposed to improve the retrieval performance of those semantic concepts
on imbalanced datasets. The proposed method is an extended research effort based on
our previous Gaussian mixture model-based subspace modeling method [5]. First of
all, the positive training data instances containing the target concept are decomposed
into K disjoint Gaussian components. A Gaussian component is a Gaussian distribu-
tion derived from a subset of the original data. All Gaussian components belong to
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the same parametric family of Gaussian distributions but usually with different pa-
rameters. Each positive data instance is then assigned to one and only one Gaussian
component. Each Gaussian component is combined with the original positive train-
ing set and later the combined data are fed into a positive learning model. Compared
with the simple oversampling of a positive training set, we only duplicate the positive
instances belonging to one Gaussian component at one time for each positive training
model. Another consideration is that the core assumption of the subspace modeling
is that the underlying data instances loosely satisfy the Gaussian distribution. There-
fore, the influence of positive data instances belonging to a Gaussian component is
strengthened (because of the duplication), which makes the training model on the new
combined data set favor those data instances belonging to this Gaussian component.
Since K Gaussian components are generated, there will be K positive learning models
to capture the diverse data characteristics within the positive training set. We further
extend our previous Gaussian mixture model-based subspace modeling method by
proposing a new weighted ranking score generation method that combines the K pos-
itive learning models and the negative learning models to produce a final ranking
score.

The organization of this paper is as follows. Section 2 lists and discusses the
related work. The overall framework is elaborated in Section 2. Section 4 presents
the experimental setup and demonstrates the results with discussions. Finally, the
paper is concluded in Section 5.

2 Related Work

Resampling would be the most straightforward technique to address the data imbal-
ance issue in semantic concept retrieval [22]. It directly manipulates the positive-
to-negative ratio by adding data instances (oversampling) or deleting data instances
(undersampling) from the imbalanced dataset. Oversampling generates extra positive
data instances by either simply duplicating the existing positive data instances or by
using a synthetic method like SMOTE [20] to balance the positive-to-negative ratio.
Undersampling balances the positive-to-negative ratio by sampling a portion of the
negative data instances from the whole negative dataset. Both methods apply data
manipulations to change the positive-to-negative ratio directly.

Another way to address the data imbalance problem is to apply boosting [18].
Boosting methods are developed to further improve the results from the weak learn-
ers. For an imbalanced dataset, the learning model usually renders very poor perfor-
mance. Boosting methods are able to improve the performance by assigning different
weights to the positive and negative data instances through an iterative process. Such
an iterative process is sometimes rather time-consuming but it makes the retrieval ac-
curacy much better. That is, the boosting methods improve the learning model trained
from an imbalance dataset at the cost of the additional training time.

Cost-sensitive learning approaches [38][53] attack the data imbalances problem
in a different way. It introduces a cost matrix to add different penalties for misclassi-
fying a positive or a negative data instance. Intuitively, misclassifying a positive data
instance is much worse than misclassifying a negative one, as positive data instances
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are considered to be more important than the negative ones in an imbalanced dataset.
Thus, when assigning the penalty values in the cost matrix, the values related to the
positive data instances are therefore larger than those of the negative ones.

In addition, the kernel-based learning methods are also reported to be useful when
learning from the imbalanced datasets [25][54]. It may be impossible or extremely
difficult to separate the positive data instances from the negative ones in the original
space. However, according to Mercer’s theorem [42], such a separation may exist
within a kernel space if the dimensionality of such space is large enough. Compared
with the linear learning method, the kernel-based learning method is able to build a
more robust learning model [28]. Furthermore, the kernel-based learning method can
also be easily plugged into the aforementioned methods like cost-sensitive learning
or sampling methods to further enhance the retrieval accuracy on the imbalanced
datasets. However, how to choose an appropriate kernel space and its corresponding
parameters can be very complicated.

The subspace modeling method is able to handle the data imbalanced problem
in its own way. The subspace modeling method trains a positive model and a nega-
tive model separately. For a group of data instances (positive or negative), they are
first projected onto their corresponding principal component subspaces, where the
chi-square distance is used to measure the dissimilarity of a data instance towards
the center of a learning model. The final ranking scores are calculated by integrat-
ing both the ranking scores from the positive training data instances and the negative
training data instances. The data imbalance problem could have little impacts towards
such models as each model is built on either positive data instances or negative ones.
Therefore, the positive-to-negative ratio is irrelevant to the quality of the model built
using subspace modeling. Our previous work shows that subspace modeling methods
are effective in semantic concept detection and retrieval from the image and video
datasets [2][3][4][32][44][49][50]. Besides, these subspace modeling methods are
very efficient, thanks to the dimension reduction after applying principal component
projection within our methods. In all the previous approaches, the positive training
data instances are always trained as a whole to form a positive learning model. In a
recent study [5], motivated by the consideration that some useful patterns in a cer-
tain subset of the positive training data instances may be shadowed by the dominant
patterns reflected by the whole positive training set, we decompose the whole posi-
tive training set into smaller Gaussian-distributed subsets and combine each of them
with the original positive dataset to build a list of positive learning models. Since in
the combined positive data, a portion of the positive data instances that are dupli-
cated have more influence than those that are not duplicated, it is beneficial for the
subspace modeling to build the models that favor these oversampled positive data
instances. Such an idea has been validated by our experimental results, showing the
performance improvement over the subspace modeling with only one positive model
and one negative model. In this paper, we deepen our previous research by propos-
ing a new weighted ranking score generation method that considers a data instance’s
distance towards different positive learning models, when integrating the scores from
both positive and negative learning models into a final ranking score.
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Fig. 1 GMM-based subspace modeling framework

3 Framework

The weighted Gaussian mixture model-based subspace modeling framework is shown
in Fig. 1. The solid arrows are for the training phase and the dashed arrows are for
the testing phase. In the training phase, all positive training data instances are first de-
composed into K disjoint subsets P1, . . . , PK using Gaussian mixture models (GMM),
each of which has its own mean and variance. The selection of the number of K will
be discussed in Section 3.1. Since each subset Pi (i=1 . . . K) only reflects the patterns
of a part of the positive training sets, we combine each Pi with a copy of the whole
positive training set P so that all positive training sets will participate in the sub-
space modeling training phase. This is equivalent to duplicating Pi on each copy of
the whole positive training set. The idea behind this is because subspace modeling re-
gards the mean of the input data instances as the center of the model, where a distance
will be calculated based on this center to measure the dissimilarity of a data instance
towards the model. The duplication of the data instances belonging to a particular
GMM component will shift the center of the learning model towards the mean value
of the selected GMM component. On the other hand, the subspace modeling method
works well on the Gaussian-like data distribution, as its core assumption is that the
underlying data generally satisfies the normal distribution. Hence, this is a good fit
to integrate GMM with subspace modeling to train the models that favor a group of
positive data instances within one GMM component. Afterward, subspace modeling
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takes the assembled data (P+Pi, i=1 . . . K) as its input and trains a subspace model in
the principal component subspace. For a testing data instance, each subspace model
will give a ranking score using the chi-square distance calculated from the subspace
model (to be shown in Section 3.2). Through a ranking score generation module, all
ranking scores from the subspace models for a testing data instance are consolidated
into one final ranking score, where the best parameters that can render the best per-
formance during the training phase are passed to the ranking score generation module
in the testing phase.

3.1 Gaussian mixture models for dataset decomposition

Gaussian mixture model (GMM) is used in our framework to decompose the whole
positive dataset into K disjointed components, where each positive training data in-
stance is assigned to one and only one Gaussian component. For simplicity, the max-
imum number of Gaussian components allowed by the data is used, denoted by K.
Please note that the details of how to select K can be found in [5]). From the data
characteristics perspective, two merits of decomposing the data into different Gaus-
sian components are two folds: 1) the distribution of the data within each compo-
nent is more obvious than what they seem to be in the original dataset, where they
are mixed with other data; 2) the dominant patterns are presented better inside each
Gaussian component, which has better estimated mean and standard deviation values,
and therefore better modeling fitting.

Xnorm =
X −µ

σ
; (1)

CovX = UΣV ∗; (2)
Yi = Xnorm ·PCi, i ∈ [1,numP]; (3)

χp =
1

numP

√
∑

i

Y p
i ·Y p

i
λ p

i
, i ∈ [1,numP]. (4)

3.2 Subspace modeling

In our previous work, the subspace modeling methods have been successfully used
for semantic concept detection and retrieval [2][3][4][32][44][50]. The whole sub-
space modeling can be decomposed into three major steps: normalization (see Equa-
tion (1)), principal component space projection (see Equation (3)), and ranking score
generation (see Equation (4)), where µ and σ are the sample mean and standard devi-
ation values of the positive training set X , {λ ,PC} is the parameter set derived from
the covariance matrix CovX of the normalized positive data instances Xnorm using
singular value decomposition (SVD, see Equation (2)), in which λ are the diagonal
values in Σ that are greater than a threshold (i.e., 0.001 in our experiment), and PC
are the principal components that correspond to those retained eigenvalues in V . The
projection on each principal component is later used to calculate the chi-square dis-
tance (shown in Equation (4)) to measure the dissimilarity of a data instance towards
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the positive (or negative) learning model, which also serves as the ranking scores
generated by the learning model for X . More details of subspace modeling can be
found in [5].

3.3 Generation of final weighted ranking scores

The Gaussian mixture model generates a number of Gaussian components on all
positive training data instances, each of which is combined with the whole positive
training set to train a positive learning model. From the aforementioned subspace
modeling process, a testing data instance Ts will have a ranking score vector RSp gen-
erated by all positive learning models, represented by RSp = {RSp

1 , . . . ,RSp
K}, where

K is the number of Gaussian components dynamically derived (as presented in Sec-
tion 3.1). Likewise, Ts has a ranking score RSn generated from the negative learning
model, as indicated in Fig. 1. In our previous paper [5], the mean value of the scores
from all positive models is used to generate the final ranking score, which is equiva-
lent to assigning an equal weight to each learning model. However, this does not take
into consideration that the distance of a data instance towards each learning model’s
center is different. Therefore, we introduce a weight factor α when consolidating the
ranking scores from all positive learning models, and the final ranking score RS f inal
of Ts is now calculated using Equation (5), which further considers the weights of the
distances to the center of the positive learning models.

RS f inal =
RSn −µ p

RSn +µ p , where µ p =
1
K

K

∑
i=1

RSp
i ∗αdi . (5)

Here, di is the distance of Ts towards the center of the i-th positive training set that
is used to build the i-th positive training model. The parameter α used in the testing
phase is searched from 1 to 5 with a step of 0.2 during the training phase where the
α value that reaches the maximum performance in term of mean average precision
(MAP) values is passed as the best parameter. Intuitively, a small distance di means a
data instance is closer to the i-th positive training set and thus the ranking score RSp

i
is more reliable and should be assigned a larger weight. Therefore, this requires the
lowest boundary of alpha should be at least 1. Otherwise, such property would not
hold. A large RSn or a small µ p indicates that Ts is more likely to be a positive data
instance than a negative one. µ p shows how dissimilar the testing data instance Ts is
towards all positive learning models as a whole, which is expected to better depict
the possibility of Ts as a positive instance than using any RSp

i alone.
The new weighted ranking score generation can be regarded as an extension of

the one used in [5]. First of all, let’s take a look at the final ranking score RS f inal =
RSn−µ p

RSn+µ p =−1+ 2RSn

RSn+µ p , which indicates the smaller µ p is, the higher RS f inal will be,
as RSn from the negative model is fixed. Assuming there are two Gaussian compo-
nents Gb and Gs built from the training set, with distance db and ds to the center of
all positive training set, where db > ds. So, considering CASE 1: a negative data in-
stance x in Gb and a positive data instance y in Gs are tied in their ranking score or the
ranking score of the negative data instance is higher than the positive data instance
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by using the ranking score generation method in [5], meaning RS(x)f inal ≥ RS(y)f inal . It
should be easy to see that the previous method is a special case (α = 1) of Equation
(5). However, by including α and searching for its optimal value during the modeling
training phase, we might be able to break this tie and/or correct the wrong ranking or-
der. This is because it now can be observed that µ p(y)< µ p(x) as a result of including
ds < db into the ranking score calculation when α > 1, where µ p(y) and µ p(x) are
the µ p values of the data instances x and y calculated from Equation (5), respectively.
Since µ p(y) < µ p(x), the ranking score of the positive data instance RS(y)f inal is thus

higher than the one of a negative data instance RS(y)f inal , which improves the ranking.
Please note that here we assume a negative data instance x is in Gb and a positive
data instance y is in Gs. It is possible that the opposite case (denoted by CASE 2)
could happen, in which the negative data instance x could be in Gs and a positive
data instance y could be in Gb. In such case, the weighted ranking will compromise
the result, which generates concerns about the performance degradation. However,
such concerns could be relieved by the following two aspects. First, the occurrences
of CASE 1 should be more than CASE 2 in reality. In addition, even if CASE 2 is
more than CASE 1, we have seen α = 1 is selected in our experiment, which uses the
previous ranking score generation method. Hence, the performance will be at least as
good as the previous method.

4 Experiments

In our experiments, two benchmark datasets for semantic concept retrieval are used
to evaluate the effectiveness of our proposed method by comparing it with several
other well-known methods including the support vector machines, decision trees, etc.

4.1 Experimental Setup

The first dataset used in the experiment is a light version of the NUS-WIDE dataset
called NUS-WIDE-LITE [15] which has a total of 55,615 images crawled from the
Flickr website. The training set contains 27,807 images and the testing set has another
27,808 images. The image dataset also includes some low-level features extracted
from those images like color histogram, wavelet texture, etc. In our experiment, our
proposed method is evaluated against LibSVM [1], Logistic Regression, and Deci-
sion Tree [43] on two feature sets (namely the 64-dimensional color histogram in
LAB color space and the 128-dimensional wavelet texture). There are 81 concepts in
the NUS-WIDE-LITE dataset. The positive-to-negative ratios of the training set and
testing set for all 81 concepts are given in Fig. 2 and Fig. 3 in a sorted order, respec-
tively. These figures show that the mean positive-to-negative ratio in the training set
is 0.023 and the median value is 0.009. Therefore, it is very difficult and challenging
to retrieve the semantic concepts in such an imbalanced dataset.

The second dataset used in this paper is from the MediaMill Challenge Problem
[52]. The dataset is composed of 85 hours of news video data [40]. There are five
challenge problems in this dataset and the first experiment in MediaMill Challenge
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Fig. 2 Positive-to-Negative (P2N) ratios in the NUS-WIDE-LITE training set

Fig. 3 Positive-to-Negative (P2N) ratios in the NUS-WIDE-LITE testing set

Problem is considered in our experiment, where the low-level features and the cor-
responding class labels are represented by the sparse vectors. The training data set
has a total of 30,993 data instances with 120 attributes; while the testing set contains
12,914 data instances. The positive-to-negative ratios related to these concepts in the
training set and the testing set are shown in Fig. 4 and Fig. 5, respectively. As can be
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Fig. 4 Positive-to-Negative (P2N) ratios in the MediaMill training set

Fig. 5 Positive-to-Negative (P2N) ratios in the MediaMill testing set

seen from this figure, for 73 out of the 101 concepts, the sizes of their positive train-
ing data instances are less than 2% of the whole training set. The positive-to-negative
ratios of the training and testing sets shown in Fig. 4 and Fig. 5 also show that it is
highly imbalanced. Therefore, the dataset is very suitable to evaluate the effectiveness
of the proposed method.
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We evaluate the performance of semantic concept retrieval via the mean average
precision (MAP) values, which can be calculated using Equation (6).

MAP =
1
C

C

∑
i=1

APi; where (6)

APi =
1

∥Pi∥

N

∑
ω=1

rω · 1
ω

ω

∑
j=1

r j; and (7)

r j =

{
1, if the instance j is relevant;
0, otherwise. (8)

– C: the number of concepts in the dataset;
– APi: the average precision of Concept i (defined in Equation (7));
– ∥Pi∥: the number of positive data instances of Concept i;
– N: the number of retrieved data instances;
– r j: an indicator value; it has the value 1 if the retrieved data instance at rank j is

positive, and 0 otherwise (defined in Equation (8)).

4.2 Experimental Results and Analyses

Table 1 shows the experimental results on the NUS-WIDE-LITE data set, compar-
ing the new weighted GMM-based subspace modeling method (WGMM) with our
previous GMM-based subspace modeling (GMM) and several peer methods such as
LibSVM with RBF-kernel (LibSVM), Logistic Regression (LR), and Decision Tree
(DTree) in terms of the mean average precision (MAP) values on the two feature
sets. The default parameters of these peer methods are used, since these parameters
are suggested to generate reasonably good results. The MAP evaluated on two fea-
tures and the relative performance gain of our proposed method against peer methods
are shown in Table 1 as well.

For example, WGMM can render at least as good performance as GMM. For the
evaluation on the color histogram feature set (called CH64), WGMM is 2.7% better
than GMM, 18.1% better than LibSVM, 12.4% better than logistic regression, and
51.8% better than Decision Tree, in terms of relative percentage improvement. On
the other hand, for the evaluation on the wavelet texture feature set (called WT128),
WGMM is 13.8% better than LibSVM, 33.7% betther than logistic regression, and
54.7% better than Decision Tree also in terms of relative percentage improvement.
Furthermore, by comparing our proposed WGMM method towards the best peer
methods, we found that WGMM renders the best average precision on 57 out of
81 semantic concepts in the NUS-WIDE-LITE dataset, with a ratio of 70.4%. This
clearly shows that WGMM has made a promising improvement over the previous
GMM method by considering the weights of the distances between each testing data
instance towards all the positive training models.

In the NUS-WIDE-LITE dataset, the number of Gaussian components that are
dynamically generated for each concept is shown in Fig. 6. On average, about 8
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Table 1 MAP evaluated on all 81 concepts of NUS-WIDE-LITE on Color Histogram (CH64) and Wavelet
Texture (WT128)

CH64 Relative Gain WT128 Relative Gain
WGMM 4.25% − 4.44% −
GMM 4.14% 2.7% 4.44% −

LibSVM 3.60% 18.1% 3.90% 13.8%
LR 3.78% 12.4% 3.32% 33.7%

DTree 2.80% 51.8% 2.87% 54.7%

Gaussian components are generated per concept and the median value of the gen-
erated Gaussian components for each concept is 4. To show the retrieval performance
on the color histogram and wavelet texture feature sets in details, we evaluated the
concept “snow” and the concept “flowers”, and draw their ROC curves in Fig. 7 and
Fig. 8, respectively. In Fig. 7, the WGMM-based subspace modeling method clearly
shows at least as good performance as other peer methods on the color histogram fea-
ture set, even in the case where LibSVM is slightly better than GMM-bases subspace
modeling where the false positive rates range from 0.7 to 0.9. It is obvious to see that
the area under curve (AUC) of the proposed WGMM-based subspace modeling is
larger than that of LibSVM, meaning that the overall performance of WGMM-based
subspace modeling is better. Fig. 8 shows that the curves of WGMM and GMM are
exactly the same, rendering better performance than any other comparative methods
since the AUC of the proposed WGMM-based method and GMM-based methods are
larger. This observation is in line with the experimental results that the WGMM and
GMM report the same MAP values for the wavelet texture feature set. One thing that
is worth pointing out is that although the data is so imbalanced that the decision tree
model is totally dominated by the negative data instances (predicting every data in-
stance as negative), causing the ROC curve of Decision Tree being a diagonal line.
On the other hand, our method still shows its effectiveness to retrieve concepts from
such an imbalanced dataset.

Fig. 6 Numbers of Gaussian components generated for 81 concepts
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Table 2 MAP evaluated on all 101 concepts of MediaMill Challenge Problem

MediaMill Challenge 1 Relative Gain
WGMM 24.70% −
GMM 24.63% 0.28%
SVM 21.64% 14.14%
LR 7.13% 246.42%

DTree 10.74% 129.98%

Fig. 7 ROC Curve of Concept “snow” using the color histogram features

The experimental results on MediaMill are shown in Table 2. WGMM gives
slightly better MAP values than GMM and outperforms the SVM results reported
in [40] by 14.14%. We further evaluate on those concepts with positive-to-negative
ratios less than 0.01 in Table 3. The results demonstrate that WGMM and GMM can
still render better performance, outperforming the SVM results reported in [40] by
17.76%. However, WGMM now renders almost the same MAP values as GMM. On
one hand, it means that the advantages of WGMM over GMM become smaller and
smaller when the positive-to-negative ratios keep increasing. On the other hand, this
also implies that WGMM is able to extend GMM to work in a more balanced dataset,
i.e., for those concepts that are not picked up in Table 3. Thus, WGMM becomes a
more generalized GMM-based subspace modeling method. This is because when the
data is extremely imbalanced, the alpha value selected in the training phase is usually
close or equal to 1, which makes the weights to the center of each learning model the
same. This is exactly the final ranking score generation strategy adopted by GMM.
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Fig. 8 ROC Curve of Concept “flowers” using the wavelet texture features

Table 3 MAP evaluated on selected concepts of MediaMill Challenge Problem with Positive to Negative
ratio < 0.01

MediaMill Challenge 1 Relative Gain
WGMM 17.90% −
GMM 17.89% 0.06%
SVM 15.20% 17.76%
LR 1.24% 1343.55%

DTree 3.8% 371.05%

5 Conclusions

In this paper, a weighted Gaussian mixture model-based subspace modeling method
is proposed, which uses the Gaussian mixture model to dynamically generate a num-
ber of Gaussian components on the positive training set. Later, the positive data in-
stances assigned to the nearest Gaussian component are merged with the whole pos-
itive training set to train a positive subspace learning model. Here, GMM serves a
role to divide the whole positive training set with mixed patterns to several Gaussian-
distributed subsets. It is expected that some patterns within the Gaussian subsets are
revealed and strengthened in the newly combined dataset. We further proposed a new
weighted ranking score generation strategy to combine the ranking score from the
positive learning models as well as the negative model by considering the distances
between a testing data instance towards all the positive learning models, which ex-
tends our previous GMM-based subspace modeling method. Experimental results
on two benchmark datasets show that our newly proposed WGMM method is able
to improve our previous GMM-based subspace modeling method and provides an
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even better retrieval performance than the other comparative methods in terms of the
mean average precision (MAP) values. In summary, our WGMM subspace model-
ing method can be viewed as a more generalized form of the previous GMM-based
subspace modeling method.
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