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Abstract—The maturity of the smartphone and the World
Wide Web (www) technologies have driven many social net-
work applications which have facilitated people to share text
and multimedia contents. The social networks that facilitate
users to share the check-in (location visit) information are
known as the location-based social networks (LBSN)s and
provide various information for a recommendation problem
that spans beyond the user-location ratings, and comments.
For instance, the time of the check-in, the category of the POI,
the distance of POI from the user’s home, the user’s friends’
visit to that place, and so forth. It’s worthwhile to explore and
efficiently integrate such information for the desired purpose.
A Point of Interest (POI) recommendation system uses a user’s
historical check-in information from LBSNs and recommends
the list of places that are potential for future visits.
Many of the existing POI recommendation systems have
focused on either of the temporal (time of the check-in), the
geographical/spatial (distance between check-in locations), or
the social (friendship, and trust based) aspects. Incorporation
of all the major aspects (the categorical, the geographical, the
social, and the temporal) of check-ins into a single model
is barely explored by other studies. In this paper, we pro-
pose a fused model termed GeoTeCS (Geographical Temporal
Categorical and Social) for personalized location recommen-
dation. GeoTeCS uses the matrix factorization technique to
fuse the major check-in aspects into a recommendation model.
The contributions of this paper are: (i) it proposes a matrix
factorization based location recommender that incorporates
all the major aspects -the categorical, the geographical, the
social, and the temporal aspects into a single model and (ii)
it extensively evaluates the proposed model against two real-
world datasets - the Gowalla, and the Weeplaces, to illustrate
its effectiveness.

Keywords-Information Retrieval; Recommendation system;
Matrix Factorization; Point of Interest Recommendation

I. INTRODUCTION

The LBSNs, such as, the Facebook1, the Foursquare2, the
Gowalla3, and so forth have facilitated the users to share
their check-in behavior accompanied by the multimedia
contents. The analysis of such check-in information has

1https://www.facebook.com
2https://www.foursquare.com
3https://www.gowalla.com

been an interest for effective prediction in the location
recommendation domain. Though some success has been
achieved using the check-in frequency and the generic rec-
ommendation approaches, the better results of recent studies
have motivated the community towards the incorporation of
the major aspects of the check-in behaviors.
The role of multiple aspects makes the POI recommendation
domain special than other domains. Unlike the traditional

Figure 1: Impact of different aspects in check-in trends

recommendation problems, the visit frequency can vary
across different users and places, resulting in the sparsity
of the user-location frequency matrix. The user’s affinity
towards the nearby locations adds the constraint of the
spatial aspect in this domain.
Although most of our daily activities are highly influenced
by our society, its impact on the check-in trends is not
always reliable. For instance, the research [1] has shown
that only ∼ 96% of people share < 10% of the commonly
visited places and ∼ 87% of people share nothing at all.
This unreliability of check-in information diffusion piles up
the challenge for the social aspect incorporation. Similarly,
the temporal popularity (time of the check-in) of a place is
also another major aspect. For instance, the bars are more
popular in the evenings and the nights. So, relying on just
one or two major factors might not be enough for an efficient
recommendation.
The Figure-1 illustrates the influence of the categorical, the



social, the spatial and the temporal influences in the check-
in trend of the users. The figure shows a friendship relation
between the users u1 and u2. The social aspect can influence
the user u1 to visit the places that were already visited
(or recommended) by his friend (u2). The user (u1) has
check-in(s) at the coffee shop at 1 pm. The temporal aspect
may influence the user to visit the same (or other) coffee
shop(s) at the same time (of a day). The categorical aspect is
reflected if the user visits other places that serve coffee. For
instance, most of the shops that serve a breakfast serve the
coffee too. The users have preference to the nearest locations
[2]. There are many shops that serve coffee in the afternoon,
but the user prefers the nearest one (spatial influence) (for
instance, the shop at distance d1 is preferred than the farthest
ones (at distance d2, and d3)).
There are many other relevant factors, such as, (i) the utility
of a POI, (ii) the popularity of the POI (due to the social
or other impacts), (iii) the trend of visiting new places,
and so forth, which can influence the check-in trend. For
instance, users might plan to visit popular places regardless
of their distance. The utility of a service is defined in terms
of preference of attributes of a service. For instance, if a user
is a hiking enthusiast, then she may hike places that are far
from her house. The trend to visit new places can influence
a user to visit places that might be far, might not have been
visited by her friends, and might be of different location
type than her past visits. An efficient incorporation of all
such major aspects can be challenging as well as beneficial
for a good POI recommendation system.
Though the POI recommendation problem is a special area,
the techniques used in generic recommendation systems
have been explored for POI domain too. For instance, many
of them are based on the popular concepts such as, the
Collaborative Filtering (CF) ([3], [4]), the Content Based
Filtering ([5]), and the Hybrid ([6]) approaches. Albeit, the
POI recommendation is a well explored topic (temporal ([7],
[8], [9], [10], [11]), geographical ([2], [12], [9], [13], [14],
[15], [16], [17], [11]), social ([2], [18], [13], [9], [17], [11]),
categorical ([12], [16], [19], [20], [17], [11]), sentiment ([6]),
popularity ([19], [20] )), to our knowledge, the incorporation
of all the major aspects (the categorical, the social, the
spatial, and the temporal) into a single model is not well
explored. The main beauty of GeoTeCS is the fusion of all
those major aspects into a single efficient recommendation
model.
The rest of the paper is organized as follows: the section
(II) describes the relevant studies in this area, the section
(III) describes the methodology of GeoTeCS, the section
(IV) presents the evaluation of the proposed model, and the
section (V) concludes the paper.

II. RELATED RESEARCH

A. Simple similarity based approaches

The spatial aspect has been defined in Tobler’s First Law
of Geography [21], (”everything is related to everything
else, but the near things are more related than the distant
things”). Based on this, Yuan et al. [7] designed a model
with the spatial and the temporal aspect. They used the
cosine similarity measure to identify the users’ with similar
check-in profiles. They defined the recommendation score
for a user-location tuple in terms of the aggregate of the
visits count on that location over all the users in the dataset.
This was further time constrained by considering only the
check-ins that were made in the same location and at the
same check-in time. They experimentally claimed that the
willingness of a user to visit a location has an inverse relation
to the distance from the user’s current location. Though their
evaluation favored their model, their research didn’t address
the social, and the categorical aspects.
The social and the spatial aspects were fused in the study
from Ye et al. [2]. They also used the willingness factor
and the weighted cosine similarity measure to compare the
user profiles for the recommendation. The categorical and
the temporal aspects were not explored in their proposed
model.

B. Graph based approaches

The usage of link analysis has been proposed by Jin et al.
[8] in their personalized PageRank [22] based model. They
realized the LBSN as a graph with the users as the nodes,
and the users’ following/followers link as the directed edges.
The model used the personalized PageRank algorithm to
compute the rank of the users with respect to a location
and a time range. The personalized factor for the (user,
location (p), time (t1 : t2)) tuple was defined as the ratio
of the number of check-ins for the tuple to the number of
check-ins for the (location (p), time (t1 : t2)) tuple across all
the users. They also used similar approach to define the rank
of a location within a time range. Though they incorporated
the temporal aspect, they left the space for the geographical,
categorical and the social aspects.
Wang et al. [9] defined the problem as a graph with the
users and the locations as the graph nodes, the friendship
relation as the user-user edges, and the user-location relation
as the user-location check-in edges. The friendship based
similarity was computed by starting from the target user
and by ranking all the users (that formed the user-user link).
This was followed by the ranking of all the places visited
by those users. The locations with the highest rank value
and within a given distance from the past visits of the users
were recommended. Their model also had no provision for
the location category aspect.



C. Matrix Approximation based approaches

Ding et al. [23] explored the user-item recommendation
problem using the label information propagation. The
label propagation is similar to the random walk [24].
They proposed a learning framework based on the Green’s
function and applied that to estimate the missing ratings
in the user-item rating matrix. In the case of a graph of
pairwise similarities, the Green’s function can be realized as
the inverse of the combinatorial Laplacian. Given the item
similarity matrix W, the propagation takes from the labeled
data (i.e., items with ratings) to the unlabeled data. The
computation of the missing rating was realized as the linear
influence propagation. For instance, given the rating from a
user as yT

0 = (1, 4, ?, ?, ?, 7), the estimation of the missing
values was made using the influence propagation and was
defined as y = Gy0, where the term G was the Green’s
function that was obtained from the user-item graph. The
rating prediction was then defined as RT = GRT

0 , where
R0, is the incomplete user-item rating matrix.
Shao et al. [25] also used the Green’s function as the basis
for the linear influence propagation to compute the missing
values in the user-music preference matrix for their music
recommendation system.
Recently, the matrix factorization models have caught
considerable attention due to their scalability and accuracy,
which was demonstrated in the seminal research from
Koren et al. [26]. Generally, such models learn the low-rank
representations (also referred as latent factors) of the users
and the items from the user-item rating matrix, which are
further used to predict new scores between the users and
the items. The non-negative matrix factorization (NMF)
approach has attracted the attention of many research areas.
Li et al. [27] have defined the usage of NMF methods
for clustering (for instance, co-clustering, semi-supervised
clustering, consensus clustering) and have explained the
potential directions of NMF.
Recently, some notable studies in POI recommendation
have exploited the fused matrix factorization. Cheng et al.
[18] proposed FMMGM (fused matrix factorization with
MultiCenter Gaussian model) that used the Multi-center
Gaussian model (MGM) to fuse the geographical and the
social aspects of POI recommendation. The MGM relied on
the following assumptions: (i) the check-in locations usually
clutter around several centers, and (ii) the probability of
a user’s visit to a location is inversely proportional to the
distance from its nearest center. The FMMGM adopted the
Gaussian distribution to model the users’ check-in behavior.
The users’ check-ins to a location were sorted based on
the check-in frequency and then clustered into centers
or regions. All other visited locations within a threshold
distance from such centers were considered in the model.
If the ratio of the total check-ins (by all the users) in such
a region to the total check-ins (from all users to all the

places) was greater than a threshold, then those check-ins
locations were assumed as a valid region. The likelihood of
a user visiting a location was then defined in terms of the
aggregated normalized check-in frequency in each center
and the normalized probability of the location belonging to
that center.
Their fusion framework was a combination of the
likelihood of a location belonging to a center (region), and
the preference of the user (u) to that location (l). This
was defined as: Pul = P (Ful).P (l | Cu), where the term
P (Ful) ∝ UT

u Ll was obtained by using the user topic
matrix U and the location topic matrix L obtained from
the factorization of the user-location frequency matrix.
Though the experimental results were in favor of the fused
social and spatial aspects, the model didn’t incorporate the
categorical and the temporal aspects.
Lian et al. [15] proposed the GeoMF which used the
factorization model along with the spatial clustering
with the two-dimensional kernel density estimation. The
locations were divided into grids and the influence of the
users and the locations on those grids were computed. A
user’s activity or influence area was determined by the grid
locations l ∈ L where the user had check-ins. The POI
influence area was defined in terms of the collection of
locations in the grid l ∈ L to which the influence of this
POI could be propagated. The prediction model used the
factorized user topic matrix, the location topic matrix, the
user activity matrix and the location influence matrix. The
fused model was claimed efficient but the impact of the
categorical, the temporal and the social aspects remained
unexplored.
The GeoMFTD [28] extended the GeoMF [15] to fuse
the spatial and the temporal influence but still didn’t
incorporate other major aspects for the recommendation.
For the temporal aspect, on each POI i, they computed the
average time spent by each user to reach the POI j (j ∈ gl,
where gl is the lth geographical grid/region) from the POI
i. This was computed for every user who had at least
one check-in at POI i and another (more recent) check-in
at the POI j into gl. The average of such time (tgli ) for
the POI i and all the collocated POIs in the grid gl for
each of the users was computed. The temporal aspect was
addressed by incorporating the temporal coefficients to the
POI influence.
Although this model outperformed the traditional ones,
it also didn’t incorporate the social and the categorical
aspects. Furthermore, we think that the check-in time
to a POI is as important and relevant as the time that
one spends traveling to that POI or the time that was
spent in that particular POI. So, GeoTeCS defines the
temporal aspect as the check-in time to a location and
uses this as the basis of the temporal popularity of a location.



III. METHODOLOGY

The matrix factorization method is one of the most
popular methods in the recommender systems. It
characterizes both items and users by vectors of factors
inferred from the user-item rating matrix. The high
correspondence between the item and the user factors
leads to a recommendation. The basic idea is to map both
the users and the items to a joint latent factor space of
dimensionality f, which gives the way to model or define
the user-item interactions in terms of the inner products
in that space. The factor matrices are approximated (for
instance by using the gradient descent or by other relevant
approaches) to have minimal reconstruction error.
Given the user factor matrix U =[u1,u2...,um]
∈ R

lxm, and the item factor matrix V= [v1, v2...., vn]
∈ Rlxn, the approximation of the rating matrix R can be
achieved by the multiplication of the low rank factors and
can be defined as: R ≈ UT V. Due to the sparseness of the
rating matrix R, only the observed ratings in the matrix
R can be factorized to define the objective function of the
form:

min
U,V

1

2

m∑
i=1

n∑
j=1

Iij(Rij − UT
i Vj)

2 (1)

where the term Iij ∈ [0, 1] is an indicator function where
Iij = 1 only if the user ui has a rating for the item vj .
The problem of overfitting can be addressed by regularizing
Eqn. (1) as:

min
U, V

1

2

m∑
i=1

n∑
j=1

Iij(Rij−UT
i Vj)

2+
λ1
2
‖ U ‖2F +

λ2
2
‖ V ‖2F

(2)
where the constants λ1>0, λ2>0 and ‖ . ‖F is the Frobenius
norm.
According to this concept, each item i is associated with
a vector qi ∈ R

f and each user u is associated with
a vector pu ∈ R

f . The resulting dot product (qT
i .pu)

defines the preference of the user u to the item i. This
gives the approximation of the user u’s rating on the item
i, which is denoted by rui, and the estimate is defined
as: r̂ui = qT

i .pu. Often, such model is related to the
singular value decomposition (SVD), whose conventional
variant is undefined when the knowledge about the matrix
is incomplete and is highly prone to over-fitting, if only few
known entries are incorporated. Usually, the factor vectors
(pu and qi) are learned from some objective function by
minimizing the regularized squared error on the set of the
known ratings. The generic objective function can then be
defined as:

min
q, p

∑
(u,i)∈k

(rui − qT
i pu)

2 + λ(‖ qi ‖2 + ‖ pu ‖2) (3)

where, k is the set of the user-item (u,i) pairs for which the
rating/score (rui) is known and the constant λ is used to

Terms Definition

R user-location checkin frequency matrix R∈ RM×N

P user’s latent matrix, P∈ RMxK

Q location’s latent matrix Q∈ RNxK

AT the transpose of the matrix A

‖ . ‖F Frobenius norm

gl a location grid

Fu the friends of the user u

ru,i rating from user u to item i

xltu,i
activity/influence of the user u in the location i at

time t, given the grid gl

Pu the set of locations visited by the user u

Put the set of locations visited by the user u at time t

Lu
the POIs Pu mapped to the visited areas on the grids;

Lu ∈ L

yli the influence of the location i to the grid gl

ylti
the influence of the location i to the grid gl

at time t

nlt
u

the visit frequency of the user u to the grid gl
at time t

σ the standard deviation

K(.) the standard normal distribution

d(l1, l2)
the geographical distance function between the two

locations l1 and l2

λ the regularization constant

α, β tuning parameters

Table I: Terms used in the paper

control the extent of the regularization.
Many recommendation systems have used the matrix fac-
torization on top of the collaborative filtering because the
matrix factorization provides flexibility in terms of bias (for
instance, the various data aspects and other application-
specific requirements). This facilitates GeoTeCS to incor-
porate this approach to fuse the major aspects into a single
recommendation model.
GeoTeCS is a weighted matrix factorization based model and
is inspired from the relevant studies ([15], [26], [28], [29],
[30]). The incorporation of major aspects makes our model
advanced than the studies from Lian et al. [15] and Griesner
et al. [28]. The terms used in this paper are defined in the
Table- I. Given a user-location check-in frequency matrix
(R) of dimension M×N , it maps the users and the locations



into a joint latent space of dimension K � min(M,N) in
a way that a user’s preference to a location can be defined
as the inner product between them in the latent space. The
approximation of the frequency matrix can be achieved by
solving the following optimization problem:

min
P,Q
‖ R− PQT ‖2F (4)

, where the terms P and Q are the user and location latent
matrices. The generalization error can be reduced by using
the following variant of the optimization function:

min
P,Q
‖W� (R− PQT ) ‖2F +λ(‖ P ‖2F + ‖ Q ‖2F ) (5)

where the Hadamard operator (�) represents the element
wise matrix multiplication and W is a binary weighted
matrix with wui ∈ {0, 1}, and is 1 only if there is at least
one check-in by the user u to the location i.
The basic idea behind GeoTeCS is to divide the check-
in locations into L grids or regions (gl such that L =
{g1, g2, ...., gL }). The division can be done either by
using the Haversine Formula (which gives the great circle
distances between two points using their geo-co-ordinates)
or simply by dividing the distance into equal regions (based
on the latitude value or based on the density of the check-
ins). GeoTeCS realizes the locations as the sequential grids
of equal area ensuring each area has location with some
check-ins. Along with the two-factor matrices, the users’
influence and the POIs’ influence are also incorporated into
the grids. The user’s influence area or activity area is defined
as the region/area which depicts high possibility of the
appearance of the user. The POI influence area is defined
as the popularity of a POI within a grid.
We assume that the influence areas of the POIs have the
normal distribution centered at them. The POI influence area
is represented by a non-negative vector y ∈ RL

+, where the
term yli is the influence of the location i to the grid gl and
is defined as:

yli =
1

σ
K(

d(i, l)

σ
) (6)

where K(.) is the standard normal distribution and the term
σ is the standard deviation of the distance between the
locations in the grid.
There can be some locations with the same category as the
location i and still not explored in the past. This may not
necessarily indicate the negative preference to this location.
As already explained in the Figure -1, the locations with
the same category might have potential visits. Similarly, if
there are some locations in the vicinity that have a check-in
time similar to the location i, then their temporal popularity
might make them potential POIs too. Such temporal and the
categorical bias can be incorporated by extending the POI
influence relation (of Eqn. (6)) and can be defined as:

ylti = yli +
1

| gl |
∑
l′∈gl

(Cα ∗ yl
′

i + T β ∗ yl
′

i ) (7)

where C ∈ {1, 0} and is 1 only if the two locations (l, l’) are
of the same category, T ∈ {1, 0} and is 1 only if the check-
in time of the two locations are within some threshold (4T ,
we assume the same hour of a day). When none of these
is satisfied, we have ylti = yli (only the spatial aspect). The
terms α and β are tuning parameters. This relation defines
the integration of the categorical and the temporal aspect in
the popularity of a location. The location’s influence area can
then be defined in terms of a non-negative vector y ∈ RL

+,
where the term yl,ti ∈ y is the influence of a location i at
the time t, to the location grid gl ∈ L.
Similarly, the activity of a user in a given location can be
defined using the location grids. The basic idea is to dissipate
the check-in history among the grids and to find the activity
of the user in those grids. The estimated density of a user u
at a POI i can be defined as:

1

| Pu | σ
∑
j∈Pu

K(
d(i, j)

σ
) (8)

where, Pu is the set of locations visited by the user u and
the σ is the standard deviation of the distances previously
visited by the user.
The user’s activity can then be defined in terms of a non-
negative vector x ∈ RL

+, where the term xl,tu,i ∈ x is the
influence of a user u to the location i at the time t, with
respect to the locations belonging to the grid/region gl ∈ L.
As the user’s visit is influenced by the social aspect, we
integrate the influence of all the friends while computing
the influence of a user. The user’s activity vector x can then
be defined as:

xtu,i =
1

| Put |
∑
l∈Lu

nltu
σ
K(

d(i, l)

σ
)

+
∑

u′∈Fu

1

| Pu′t |
∑
l′∈L′

u

nltu′

σ′
K(

d(i, l′)

σ′
)

(9)

Using the POI influence area and the user’s influence area,
the optimization problem can be redefined as:

min
P,Q, X

‖W� (R− PQT )− XYT ‖2F

+λ(‖ P ‖2F + ‖ Q ‖2F ) + γ ‖ X ‖2F
(10)

The term γ is used to control the sparsity across the
user-location-grids. The dimension of X and Y matrices is
dependent on the number of location grids L� min(M,N),
so we have X ∈ RM×L and Y ∈ RN×L. We have | T |
copies of X and Y matrices, where each copy represents
one of the time slot t ∈ T .
The preference matrix can then be defined by integrating
these factor matrices and can be defined as:

R̂ = PQT + XYT (11)

where P and Q are the user topic and the location topic
matrices, and X and Y are the user’s activity and the location



Attributes Gowalla Weeplaces

Checkins 36,001,959 7,658,368

Users 319,063 15,799

Locations 2,844,076 971,309

Social links (undirected) 337,545 59,970

Location Categories 629 96

Table II: Statistics of the dataset

Gowalla Weeplaces

Corporate Office (1,750,707) Home / Work / Other:
Corporate / Office (437,824)

Coffee Shop (1,063,961) Home / Work /
Other:Home (306,126)

Mall (958,285) Food:Coffee Shop (267,589)

Grocery (884,557) Nightlife:Bar (248,565)

Gas & Automotive (863,199) Shops:Food & Drink:Grocery
Supermarket (161,016)

Table III: Top -5 visited location categories (and their check-
ins count)

influence matrices respectively.
Using the factorized matrices P, Q and the influential
matrices X and Y, the estimated preference of a user u,
to the location i at the time t is then defined as:

pu,i,t = PuQT
i + Xu,tYT

i,t (12)

IV. EVALUATION

A. DataSet

The Weeplaces and the Gowalla dataset [20], which
was collected from the popular LBSNs - Gowalla and the
Weeplaces was used for evaluation. These datasets are well
defined and had all the attributes (the location category,
the geo-spatial co-ordinates, the friendship information, and
the check-in time) relevant to the model. The incomplete
records were eliminated in the evaluation. The statistics of
the dataset is defined in the Table -II. The Gowalla dataset
had only 7 main location categories, so we used the well
defined subcategories instead.
The 5 most checked-in location categories are listed in Table
-III. The work or home related category (Home / Work /
Other: Corporate / Office) was popular from 6 am to 6 pm,
with the highest check-ins (42,019) made at 1 pm. Similarly,
the bars had highest of 21,806 check-ins at 2 am and the
lowest check-ins (15,209) at 5 am. Most of the check-ins
were at 12 pm to 6 pm and were in either Home or Work
related categories.

Figure 2: Impact of distance to check-in trend in Weeplaces
dataset

Models Precision Recall F-Score
Weeplaces Dataset

Ye et al. [2] 0.02417 0.00095 0.00183
LBSNRank [8] 0.08496 0.00063 0.00125
Wang et al. [9] 0.01818 0.00052 0.00100

FMFMGM 0.06549 0.00487 0.00906
GeoMFTD 0.09415 0.00676 0.01261
GeoTeCS 0.29800 0.01546 0.02939∗

Gowalla Dataset
Ye et al. [2] 0.03000 0.00120 0.00230

LBSNRank [8] 0.40900 0.00300 0.00600
Wang et al. [9] 0.10600 0.00200 0.00392

FMFMGM 0.07220 0.00800 0.01440
GeoMFTD 0.09900 0.01570 0.02710
GeoTeCS 0.38477 0.03410 0.06264∗

Table IV: Average Performance of GeoTeCS and other
models

We also analyzed the impact of distance on the check-in
behavior. For every user, the check-ins were chronologically
sorted and the distance between consecutive check-ins of
each user was computed. The likelihood of a user to check-
in at particular distance (for convenience, the distance was
arbitrarily rounded to four decimals) was estimated by her
visit history. The Figure -2 illustrates the inverse relation
of check-in trend to the distance of the POI in Weeplaces
dataset 4. We can see that most of the users’ check-ins are
centralized within some distance (the dense patches within
0.5 km indicate that most of the users’ had the check-ins
in the near places). The figure shows that the willingness
of check-in decreases with the increasing distance of the
location.

B. Results

GeoTeCS was evaluated using 5-fold cross-validation.
The precision (P), the recall (R) and the F-score
(2*P*R/(P+R))) metrics for the top N recommended items
(we considered four cases, (i) top 5, (ii) top 10, (iii) top
15, and (iv) top 20 items with the highest recommendation
score) were used. The process was repeated with three
sets of values for α:β (0.25:0.75, 0.5:0.5, 0.75:0.25). When
computing the POI influence region (refer Eqn. (7)), the best

4though the trend on Gowalla dataset is not shown, it also had similar
trend



Models Precision@N Recall@N

Ye et al. [2]
@5= 0.03030
@10= 0.02300
@15= 0.01910

@5= 0.00080
@10= 0.00090
@15= 0.00100

LBSNRank [8]
@5= 0.08530
@10= 0.08480
@15= 0.40900

@5= 0.00060
@10= 0.00060
@15= 0.00300

Wang et al. [9]
@5= 0.04490
@10= 0.04140
@15= 0.04070

@5= 0.00140
@10= 0.00207
@15= 0.00220

FMFMGM
@5= 0.05900
@10= 0.06800
@15= 0.08700

@5= 0.00489
@10= 0.00687
@15= 0.00873

GeoMFTD
@5= 0.07719
@10= 0.08947
@15= 0.11578

@5= 0.00641
@10= 0.00824
@15= 0.00924

GeoTeCS
@5= 0.28400
@10= 0.36500
@15= 0.38800

@5= 0.00950
@10= 0.00920
@15= 0.02770

Table V: Precision@N, Recall@N of GeoTeCS against other
studies

result was achieved when the categorical factor (α) was set
to 0.25 and the temporal factor (β) was set to 0.75. The
hourly time slot was used to compare the check-in hours.
We compared the performance of the following fused mod-
els: (i) model from Ye et al. [2], (ii) LBSNRank [8] (iii) the
model from Wang et al. [9], (iv) FMMGM, (v) GeoMFTD,
and (vi) GeoTeCS. The comparative performance of the dif-
ferent models is illustrated in the Table -IV. The comparison
of average precision, recall measure across top 5, 10, 15
recommendation scores for Weeplaces dataset is illustrated
in Table -V.
From the evaluation, we can see that GeoTeCS consistently
outperforms the relevant models. Based on this evaluation,
we claim that the efficient integration of the major aspects
of check-in behavior results in a more accurate recommen-
dation.

V. CONCLUSION AND FUTURE WORK

We explored the check-in data based on (a) the geograph-
ical/spatial, (b) the categorical, (c) the temporal and (d) the
social aspects and applied the fused matrix factorization
model for the POI recommendation. The evaluation results
illustrate the efficiency of the proposed model against the
relevant models. There are many future directions that can
be followed from this study. One direction can be the fusion
of other aspects in the recommendation model. The another
direction can be to use such fused model for the context (for
instance weather, traffic status, and so forth) based location
and event recommendation. Similarly, the models can be
analyzed against different problem domains.
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