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Abstract—The price of an airline ticket is affected by a
number of factors, such as flight distance, purchasing time,
fuel price, etc. Each carrier has its own proprietary rules
and algorithms to set the price accordingly. Recent advance in
Artificial Intelligence (AI) and Machine Learning (ML) makes
it possible to infer such rules and model the price variation.
This paper proposes a novel application based on two public
data sources in the domain of air transportation: the Airline
Origin and Destination Survey (DB1B) and the Air Carrier
Statistics database (T-100). The proposed framework combines
the two databases, together with macroeconomic data, and uses
machine learning algorithms to model the quarterly average
ticket price based on different origin and destination pairs, as
known as the market segment. The framework achieves a high
prediction accuracy with 0.869 adjusted R squared score on
the testing dataset.

Keywords-machine learning; airfare price; DB1B; T-100; pre-
diction model;

I. INTRODUCTION

Since the deregulation of the airline industry, airfare
pricing strategy has developed into a complex structure
of sophisticated rules and mathematical models that drive
the pricing strategies of airfare [1] [2] [3]. Although still
largely held in secret, studies have found that these rules are
widely known to be affected by a variety of factors [4] [5].
Traditional variables such as distance, although still playing
a significant role, are no longer the sole factor that dictate the
pricing strategy. Elements related to economic, marketing
and societal trends have played increasing roles in dictating
the airfare prices.

Most studies on airfare price prediction have focused on
either the national level or a specific market. Research at
the market segment level, however, is still very limited. We
define the term market segment as the market/airport pair
between the flight origin and the destination. Being able to
predict the airfare trend at the specific market segment level
is crucial for airlines to adjust strategy and resources for a
specific route. However, existing studies on market segment
price prediction use heuristic-based conventional statistical
models, such as linear regression [6] [7], and are based on
the assumption that there exists a linear relationship between

the dependent and independent variables, which in many
cases, may not be true.

Recent advances in Artificial Intelligence (AI) and Ma-
chine Learning (ML) make it possible to infer rules and
model variations on airfare price based on a large number
of features, often uncovering hidden relationships amongst
the features automatically. To the best of our knowledge, all
existing work leveraging machine learning approaches for
airfare price prediction are based on: 1) proprietary datasets
that are not publicly available [8] [9] and 2) transaction
records data crawled from online travel booking sites like
Kayak.com [10] [11] [12]. The problem of the former lies
in the difficulty of gaining access to the data, making repro-
ducing the results and extending the work nearly impossible.
The issue with the later is that the transaction records from
each online booking site are a small fraction of the total
ticket sales from the entire market, making the acquired data
likely to be skewed, and thus, not representing the true nature
of the entire market.

In this paper, we address the problem of market segment
level airfare price prediction by using publicly available
datasets and a novel machine learning framework to predict
market segment level airfare price. More specifically, our
proposed framework extracts information from two specific
public datasets, the DB1B and the T-100 datasets that are
collected and maintained by the Office of Airline Infor-
mation within the United States Bureau of Transportation
Statistics (BTS). The DB1B dataset has been utilized in
various studies that assess the determinants of aircraft char-
acteristics and frequency of flights [13], analyses for the
structure and dynamics of O-D for the core of the air
travel market [14], and demand-prediction [15]. The T-100
dataset includes air passenger volumes for U.S. domestic and
international markets and covers large certified carriers that
hold Certificates of Public Convenience and Necessity. The
goal of our proposed framework is to draw a comprehensive
profile of each market and uses machine learning techniques
to predict the average airfare on market segment level.

The remainder of this paper is organized as follows. Sec-
tion II reviews existing work that utilized either conventional



statistical or machine learning algorithms for airfare price
prediction. Section III provides a detailed description of
the two datasets and the proposed framework. Section IV
describes the experimental setup and presents the results of
applying our proposed framework, as well as a comparison
with several baseline methods. In section V, we conclude
the paper with a discussion of our contribution and several
potential directions for future work.

II. RELATED WORK

Air ticket price prediction is a challenging task since
the factors involved in pricing dynamically change over
time and make the price fluctuate. In the last decade,
researchers have incorporated machine learning algorithms
and data mining strategies to better model observed prices.
Among them, regression models, such as Linear Regression
(LR), Support Vector Machines (SVMs), Random Forests
(RF), are frequently used in predicting accurate airfare
price [10][16][17].

Early work also considered using classification models to
predict the trends of the itineraries. Ren et al. [17] proposed
using LR, Naive Bayes, Softmax regression, and SVMs to
build a prediction model and classify the ticket price into five
bins (60% to 80%, 80% to 100%, 100% to 120%, and etc.)
to compare the relative values with the overall average price.
More than nine thousand data points, including six features
(e.g., the departure week begin, price quote date, the number
of stops in the itinerary, etc.), were used to build the models.
The authors reported the best training error rate close to
22.9% using LR model. Their SVM regression model failed
to produce a satisfying result. Instead, an SVM classification
model was used to classify the prices into either “higher” or
“lower” than the average.

In [16], four LR models were compared to obtain the best
fit model, which aims to provide an unbiased information to
the passenger whether to buy the ticket or wait longer for
a better price. The authors suggested using linear quantile
mixed models to predict the lowest ticket prices, which are
called the “real bargains”. However, this work is limited
to only one class of tickets, economy, and only on one
direction single leg flights from San Francisco Airport to
John F. Kennedy Airport. Wohlfarth et al. [18] integrated
clustering as a preliminary stage with multiple state-of-
the-art supervised learning algorithms (classification tree
(CART) and RF) to assist the customers’ decision making
process. Their framework uses the K-Means algorithm to
group flights with similar behavior in the price series. They
then use CART to interpret meaningful rules, and RF to
provide information about the importance of each feature.
Also, the authors pointed out that one element, the number
of seats left, is a key freature for ticket price prediction.

Aside from flight-specific features, many other attributes
affect the competitive market. Accurately predicting the
market demand, for example, can reduce a travel agency’s

accumulated costs, which are caused by over purchasing
or lost orders. In [19], the author applied Artificial Neural
Network (ANN) and Genetic Algorithms (GA) to predict
air ticket sales revenue for the travel agency. The input fea-
tures included international oil price, Taiwan stock market-
weighted index, Taiwan’s monthly unemployment rate, and
so on. Specifically, the GA selects the optimum input fea-
tures to improve the performance of the ANNs. The model
showed good performance with a 9.11% Mean Absolute
Percentage Error.

Starting from 2017, more advanced machine learning
models have been considered to improve airfare price pre-
diction [10][20]. Tziridis et al. [10] applied eight machine
learning models, which included ANNs, RF, SVM, and LR,
to predict tickets prices and compared their performance.
The best regression model achieved an accuracy of 88%.
In their comparison, Bagging Regression Tree is identified
as the best model, which is robust and not affected by
using different input feature sets. In [20], Deep Regressor
Stacking was proposed to reach more accurate predictions.
The proposed method is a novel multi-target approach with
RF and SVM as the regressors and can be easily applied to
other similar problem domains.

As airline ticket data is not well organized and ready for
direct analysis, collecting and processing those data always
requires a great deal of effort. For most analyses found in the
literature, researchers evaluate their models’ performance on
different datasets by either crawling the data from the web or
requesting private data from collaborative organizations. As
a result, it is difficult to replicate the research and conduct
comparisons of the models’ performance. For U.S. airlines,
the fare data is publicly available in the T100 and DB1A/1B
databases. However, due to the limited association between
the prices and specific flights information, these datasets are
seldom used independently to generate scientific research
outcomes [21]. However, researchers who are interested
in analyzing the price dispersion, for example, are more
likely to consider investigating the information from those
datasets [22]. In Rama-Murthy’s dissertation [7], the Official
Airline Guide (OAG) and DB1B data are used to model
the airfare prices. The author also incorporates the Sabre
AirPrice data, which was provided by SABRE, but they only
provide the information of their online users. As this online
user data does not represent the whole consumer market, it
can bias the results obtained from the data.

Compared to the current and recent work, our proposed
framework manages to handle the price prediction task only
using public data sources with minimal features. Also, not
restricted by any specific market segment that usually limits
the existing work, this proposed framework can be applied
to predict the airfare price for any market.



Table I
SUMMARY OF DATA IN DB1B AND T-100 USED IN THE PROPOSED FRAMEWORK

Entity Availability Data
Ticket DB1B fare price, total distance, and total number of passengers

Coupon DB1B market segment, time of the itinerary, carrier, and seat class
Market segment DB1B&T-100 original airport, destination airport, and segment distance

Market segment by carrier T-100 number of passengers, and number of available seats by aircraft type

III. MATERIALS AND METHOD

A. Datasets

In order to build the airline ticket price model at the
market segment level, information about both the airline
traffic and passenger volume for each market segment is
required. Therefore, two public datasets (DB1B and T-100)
are used in our proposed framework. Data collected during
2018 are used to train and evaluate the proposed model.
Table I summarizes the information of these two datasets.

The United States Department of Transportation regularly
updates both the DB1B and the T-100. The DB1B dataset
provides quarterly-aggregated information about the airline
tickets in the United States from reporting carriers and
consists of 10% randomly sampled ticket data from each
reporting carrier. The information in DB1B is organized in
three parts, namely “Coupon”, “Market”, and “Ticket”. A
“Coupon” is an atomic unit of an airline ticket, indicating
one itinerary of a passenger that is directly transported
from one airport to another, while each ticket could con-
tain multiple coupons and multiple passengers. Therefore,
“Coupon” in the DB1B includes information about each leg,
“Market” provides information on the market segment, such
as the distance between two airports, and “Ticket” provides
additional information at ticket level, such as airfare price.
All the records in “Coupon” are bounded to a “Market”
record and a “Ticket” record. For our proposed framework,
a subset of most related data are used, including the origin
airport (ORIGIN), the destination airport (DEST), time of
the itinerary (QUARTER), carrier information (REPORT-
ING CARRIER), seat class (SEAT CLASS) (e.g., first,
business, economic, etc.), total flight distance for a ticket
(DISTANCE), airfare price (ITIN FARE), and the number
of passengers in a ticket (PAX).

Different from DB1B, T-100 provides monthly domestic
non-stop segment data reported by both the domestic and
international carriers. It presents the number of passengers
of each airline and each market segment by aircraft type.

B. Proposed Framework

Our proposed framework utilizes both the DB1B and T-
100 datasets, in combination with macroeconomic data to
predict the quarterly average airfare at the market segment
level. Figure 1 shows an overview of the major compo-
nents of the proposed framework. In the data preprocessing
step, all datasets are cleaned to exclude possible erroneous
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Figure 1. Proposed framework for airfare price prediction using public
data sources

samples, transformed and combined based on the market
segment. The feature extraction module serves to extract and
generate handcrafted features that aim to characterize the
market segment. The goal of the feature selection module
is to optimize the performance of the prediction model by
analyzing the effectiveness of the features and remove any
irrelevant features. Finally, we use the selected features to
build our prediction model, which generates the output value
as the predicted air ticket price.

1) Data Preprocessing: In the DB1B and T-100 datasets,
many attributes contain the same information. Directly merg-
ing the tables creates many duplicate fields. Also, the data
reported by the airlines may include erroneous values caused
by human error, currency conversion error, etc. Therefore, a
properly designed data preprocessing workflow is crucial to
generate accurate input data in order to build the machine
learning model.

Table II shows the layout of the ticket and coupon
database tables and the sample records with the same
itinerary ID (ITIN ID) in the DB1B dataset. First, the
DB1B ticket and coupon tables are merged based on the
ITIN ID. The ITIN ID is the primary key for the ticket
table. In the coupon table, all of the entries that belong to
the same ticket share the same ITIN ID. Samples in the
DB1B ticket table with the itinerary value (ITIN FARE) less
than $50, or distance field (DISTANCE) less than 100 miles
in the Coupon table are removed because those samples in
practice, are considered reporting errors. Samples with price
credibility field (DOLLAR CRED) equal to 0 are unreliable



Table II
STRUCTURE OF THE DB1B TICKET AND COUPON TABLE WITH SAMPLE RECORDS

DB1B Ticket Table
ITIN ID QUARTER ORIGIN ITIN FARE DISTANCE PAX DOLLAR CRED -
2018112 1 ABE 340 1384 1 1 -

... ... ... ... ... .. ... -
DB1B Coupon Table

ITIN ID QUARTER ORIGIN DEST REPORTING CARRIER PAX SEAT CLASS DISTANCE
2018112 1 ABE ATL 9E 1 X 692
2018112 1 ATL ABE 9E 1 X 692

... ... ... ... ... ... ... ...

Table III
STRUCTURE OF THE T-100 DATASET WITH A SAMPLE RECORD

SEATS PAX CARRIER ORIGIN DEST QUARTER
150 140 9E ABE ATL 1
... ... ... ... ... ...

carrier reports, which are also disregarded. Since only the
ticket table contains the ticket price, the price for each
market segment is calculated based on the ITIN FARE in
the ticket table and the distance ratio. The distance ratio
measures the proportion between the distance of each leg in
the coupon table and the full length of the itinerary in the
ticket table. Finally, the quarterly average fare value for each
SEAT CLASS on each specific market segment is generated.

Table III shows an example record in the T-100 database.
Similar to the DB1B, the “SEATS” and “PAX” fields in
T-100 are aggregated based on the origin and destination
airports pair for each quarter. In the final stage, the two data
sources consisting of the cleaned attributes are merged based
on the market segment and on a quarterly basis.

2) Feature Extraction: Several features have been ex-
tracted from the DB1B and T-100 dataset to represent
a specific aspect of the market segment. Furthermore, to
exploit the relationship between the airline industry and
the overall economic conditions, several macroeconomic
features are also added to the feature set. Table IV describes
all the features that are identified during feature extraction.

Table IV
THE LIST OF FEATURES GENERATED DURING FEATURE EXTRACTION

STAGE WITH EXPLANATIONS

Feature Name Description

Distance Market distance between the origin and
destination airports

Seat Class Indicator for economy or premium
seat type

Passenger Volume Total number of passengers traveled
between the origin and destination airports

Load Factor The ratio of the total number of passenger
to the total number of seat in a market

Competition Factor The market HHI
LCC Presence Indicator of LCC operating in the market

Crude Oil Price Quarterly average of crude oil price
CPI Quarterly average of Consumer Price Index

Quarter Indicates the three month period of the year

The Load Factor (LF) is a primary metric used in the
transportation industry. It represents the supply and demand
relationship in a given market, which strongly influences
an airline’s pricing strategy. The T-100 dataset includes two
features, the number of available seats and the number of
actual passengers carried, that allow us to calculate the LF
of a market by dividing the total passenger volume (P ) by
the total number of Available Seats (AS) in that market
segment:

LF =
P

AS
(1)

The effect of competition among airlines in a given market
segment has been shown to affect the pricing strategy of the
airlines [23]. In a less competitive market, the market power
of a given airline is stronger, and thus, it is more likely to
engage in price discrimination. On the other hand, the higher
the level of competition, the weaker of the market power of
an airline, and then the less likely the chance of the airline
fare increases. The competition factor in the proposed model
is based on the Herfindahl-Hirschman Index (HHI) [24],
which measures the level of competition in a given market.
It is the sum of the squared fraction of the market share of
each top company:

HHI =

C∑
a=1

sa, (2)

sa =
va

P
, (3)

where C is the total number of companies, sa is the market
share of company a, va is the number of passenger carried
by company a, and P is the total number of passenger
in the market. We used the T-100 dataset to extract the
market share of each airline in a specific market segment
by calculating the ratio of the number of passengers carried
by that airline to the total passenger volume of the market
segment.

The emergence of Low-Cost Carrier (LCC) has revolu-
tionized the entire operating model of the airline industry.
The presence of LCC in a market has had a substantial
impact on the total passenger volume and the air ticket
price [25]. A “LCC Presence” field is added to indicate
whether the “Carrier” field in the DB1B coupon table



contains the International Air Transport Association (IATA)
code [26] related to one of the LCCs operating in the U.S.
domestic markets. The six LCCs are Allegiant Air, Frontier
Airlines, JetBlue, Southwest Airlines, Spirit Airlines, and
Sun Country Airlines.

Macroeconomic data, such as crude oil price and Con-
sumer Price Index (CPI), can also be utilized to uncover
the hidden trend in airline fares. Fuel costs can take up to
50% of the total operating cost of an airline [27]. Hence, the
level of crude oil price plays an essential rule of formulating
the airline’s pricing strategy. It is a common practice for
airlines to pass the cost of aviation fuel to the customer
by adjusting the fare to compensate for the fluctuation of
crude oil price. In this paper, we used the West Texas
Intermediate (WTI) crude oil price data and calculated its
quarterly average value. Furthermore, the CPI measures the
weighted average prices of various types of consumer goods
and services, which include the prices in the transportation
industry [28]. Therefore, we exploit its potential to measure
the current level of air travel cost. The monthly CPI data is
acquired from the Organization for Economic Co-operation
and Development. Similar to the crude oil price, we calculate
the quarterly averaged value. Figure 2 depicts the quarterly
value trend of crude oil price, CPI, and airfare from 2006 to
2017. It demonstrates a clear relationship between the three
types of data.

Figure 2. A comparison between the crude oil price, CPI and the quarterly
averaged airfare from 2006 to 2017

3) Feature Selection: A feature selection technique is
applied to improve the model performance by investigating
the degree of impact of each feature on the prediction result.
We utilize RF to construct an automated feature selection
module. RF is a tree-based ensemble learning algorithm that
builds multiple decision tree classifier during the training
phase and outputs the predicted results based on either the
majority vote (classification) or the average (regression) of
the predictions of all decision trees. After training the RF
model with the entire feature set, it ranks all the features

by their importance. A feature’s importance is measured by
the average decrease in impurity. It is the total decrease in
the node’s impurity caused by the corresponding feature,
weighted by the chance that the decision path includes
this node. There are several ways of choosing the impurity
metric, and because our target is a continuous value, Sum
of Squared Errors (SSE) is chosen as the impurity metric.
The SSE for node o can be calculated as:

SSEo =

S∑
j=1

ε2j , (4)

where S is the number of splits from the node, and ε is the
error between the true value and predicted value. The Node
Importance (NI) for node o can be calculated as (assuming
the parent node splits into two child nodes):

NIo = woSSEo − wlSSEl − wrSSEr, (5)

where wo, wl and wr are the weighted number of samples
pass through node o and it’s left and right child node. Then,
the Feature Importance (FI) for feature x can be calculated
as

FIx =

∑
b,b∈nodes split on feature xNIb∑

k,k∈ all nodesNIk
. (6)

Generally, a feature gains more importance when it has a
greater effect of reducing the prediction error.

In the next step, the feature selection module applies Re-
cursive Elimination (RE) to select the best set of features for
the prediction model. More specifically, for each iteration,
the feature with the lowest feature importance is eliminated,
and the model will be retrained on the updated input. This
process terminates when the act of removing more feature
does not improve the model’s performance.

4) Machine learning model: When developing the ML
model, we chose RF as the learner for the airfare price
prediction task. Based on our empirical study, the RF model
demonstrates the best performance on the data as compared
to several ML techniques including LR, SVM, and neural
networks. Comparison results are explained in Section IV.

IV. EXPERIMENTS AND ANALYSIS

A. Experimental Setup

For our experiments, we collected 16,577,497 and
41,360,566 samples from the 2018 DB1B ticket table
and coupon table, respectively. The T-100 dataset contains
329,426 samples. We tested several well-known machine
learning models as baselines to compare with the RF model.
In particular, LR, SVM, Multilayer Perceptrons (MLPs), and
XGBoost Tree were used for the evaluation. For the SVM
model, the radial basis function kernel is used, the tolerance
for stopping criterion is set to 0.001, the penalty parameter
for the error term is set to 0.1. For the MLPs, three hidden
layers are used with 30 neurons per layer. The Rectified
Linear Unit (ReLU) [29] is used as the activation function
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Figure 3. Importance score value for each feature generated by RF

and Adam is the optimization function [30]. The learning
rate is set to 0.0001 with momentum enabled set to 0.9.
For the XGBoost model, the number of estimators is set to
100 with a learning rate as 0.1, and max depth equals to
5. For the RF model, the number of estimators is also set
to 100 with the minimum number of samples to split set
to 2. To evaluate the proposed price prediction model, two
popular metrics for regression analysis are used: the Root
Mean Square Error (RMSE) and the Adjusted R Squared.

RMSE calculates the differences between the observed
values, y, and predicted values, ŷ. This difference for each
data point is also called the residual. Thus, RMSE is
calculated as follows:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (7)

where N is the total sample size. The lower the RMSE value
is, the higher performance the regression model has.

The Adjusted R Squared, (R2
adj), is usually used to explain

how well the independent variables fit a curve or line.
Adjusted R2 also adjusts for the number of variables in a
model. The higher the Adjusted R Squared is, the better the
result of regression is. It is calculated as follows:

R2
adj = 1−

[
(1−R2)(N − 1)

N − p− 1

]
(8)

where p is the number of predictors and R2 is:

R2 = 1−
∑N

i=1(yi − ŷi)2∑N
i=1(yi − ȳ)2

(9)

here ȳ is the mean value of y.

Table V
PERFORMANCE COMPARISON FOR DIFFERENT REGRESSION MODELS

WITH AND WITHOUT FEATURE SELECTION

Method without feature selection with feature selection
RMSE R2

adj RMSE R2
adj

LR 111.000 0.612 110.284 0.618
SVM 112.963 0.587 108.358 0.626
MLP 88.447 0.754 85.832 0.766

XGBoost 83.481 0.778 80.447 0.797
RF 66.584 0.858 62.753 0.869

B. Experimental Results

In order to demonstrate the importance of each feature
for airfare price prediction, we extracted the importance
scores generated by the feature selection module. Figure 3
depicts the importance value for each feature. As shown
in the figure, “Distance” and “Seat Class” (Economy or
business) are the most important factors for airfare price
estimation followed by “Passenger Volume”, “Load factor”,
and “Competition Factor”. Although the “CPI” and “Crude
Oil Price” do not have very high importance scores, they
can still help the model predict a more accurate estimation
of the airfare price. However, based on our experiments,
“Quarter” does not help the regression model. Including
the variable “Quarter” does not reduce the error during the
training phase. Thus, it is automatically removed by the RF
feature selection module. The goal is to identify the features
that improve the model’s performance and adding irrelevant
features deteriorates the model’s performance, as the model
learns an irrelevant pattern.

The results comparing various regression models with
feature selection and without feature selection are shown in
Table V. As can be seen from this table, LR and SVM have
the lowest performance compared to other ML methods with
respect to the RMSE and R2

adj metrics. The performance of
all of the models improves after applying feature selection,



Table VI
PERFORMANCE COMPARISON FOR DIFFERENT REGRESSION MODELS
WITHOUT LOAD FACTOR, COMPETITION FACTOR, CPI, AND CRUDE

OIL PRICE FEATURES

Method RMSE R2
adj

LR 112.039 0.599
SVM 109.914 0.615
MLP 94.569 0.715

XGBoost 90.419 0.739
RF 70.575 0.804

which illustrates the importance of this module. XGBoost
performs better than MLP, SVM, and LR, but does not
outperform RF for airfare price prediction. Therefore, we
utilize RF in the proposed framework, which achieves the
highest performance compared to other baselines for this
dataset. Specifically, it reaches 62.753 and 0.869 RMSE and
R2

adj , respectively. In other words, it improves the R2
adj by

40% compared to the LR model, which is extensively used
in the previous studies for airfare price prediction.

To show the importance of features specifically employed
for our regression model, another experiment was conducted.
In this experiment, we only used common features with
very high importance scores such as “Distance”, “Seat
Class”, and “Passenger Volume”. The results are presented
in Table VI. Again, we find that LR and SVM have lower
performance compared to other models, and RF reaches the
highest performance with respect to both RMSE and R2

adj .
However, the performance (R2

adj) dropped by almost 7% for
the RF model when the less important factors are removed.
Similarly, the performance for other models dropped as
well. Although the less important factors may not contribute
significantly to the performance, these results show that to
achieve the best performing model, one should include the
“Load factor”, “Competition Factor”, “CPI”, and “Crude Oil
Price” as features. Consequently, the proposed framework
utilizes all of these features to achieve the highest airfare
price prediction performance.

V. CONCLUSION AND FUTURE WORK

In this study, a machine learning framework was de-
veloped to predict the quarterly average airfare price on
the market segment level. We combined the U.S. domestic
airline tickets sales data and non-stop segment data from
two public datasets (DB1B and T-100). Several features
were extracted from the datasets and combined together
with macroeconomic data, to model the air travel market
segments. With the help of the feature selection techniques,
our proposed model is able to predict the quarterly average
airfare price with an adjusted R squared score of 0.869.

To the best of our knowledge, most of previous studies on
airfare price prediction using the DB1B dataset have focused
on conventional statistical approaches, which have their own
limitations of problem estimations and assumptions. Also,
to our knowledge, no other studies have integrated the

information from DB1B, T-100, and macroeconomic data to
model the air travel market segment. Thus, our study demon-
strates the effectiveness of machine learning algorithms and
techniques, as well as compares the performance of various
machine learning classifiers and finds the best one for the
airfare price prediction task by leveraging the information
from the DB1B and T-100 datasets.

However, there are several limitations with the techniques
caused by the nature of the DB1B and T-100 datasets that are
worth noting. For example, none of the datasets have detailed
information related to the ticket sales such as the time and
day of the week for departure and arrival. Also, because of
the frequency of the dataset release, the fare prediction can
only be calculated on a quarterly base.

In the future, our framework can be extended to include air
ticket transaction information, which can provide more detail
about a specific itinerary, such as time and date of departure
and arrival, seat location, covered ancillary products, etc.
By combining such data with the existing market segment
and macroeconomic features in the current framework, it
is possible to build a more powerful and comprehensive
airfare price prediction model on the daily or even hourly
level. Furthermore, airfare price in a market segment can be
affected by a sudden influx of large volume of passengers
caused by some special events. Thus, events information
will also be collected from various sources, which include
social platforms and news agencies, as to complement our
prediction model. Additionally, we will investigate other
advanced ML models, such as Deep Learning models, while
working to improve the existing models by tuning their
hyper-parameters to reach the best architecture for airfare
price prediction.
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