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Abstract—Data mining and machine learning methods have
been playing an important role in searching and retrieving mul-
timedia information from all kinds of multimedia repositories.
Although some of these methods have been proven to be useful,
it is still an interesting and active research area to effectively
and efficiently retrieve multimedia information under difficult
scenarios, i.e., detecting rare events or learning from imbalanced
datasets. In this paper, we propose a novel subspace modeling
framework that is able to effectively retrieve semantic concepts
from highly imbalanced datasets. The proposed framework builds
positive subspace models on a set of positive training sets, each
of which is generated by a Gaussian Mixture Model (GMM)
that partitions the data instances of a target concept (i.e., the
original positive set of the target concept) into several subsets
and later merges each subset with the original positive data
instances. Afterwards, a joint-scoring method is proposed to
fuse the final ranking scores from all such positive subspace
models and the negative subspace model. Experimental results
evaluated on a public-available benchmark dataset show that the
proposed subspace modeling framework is able to outperform
peer methods commonly used for semantic concept retrieval.

Keywords-Subspace Modeling; Gaussian Mixture Model
(GMM); Semantic Concept Retrieval

I. INTRODUCTION

The digital era brings us an explosive amount of data
in diverse forms. Nowadays, with the ubiquitous Internet
and the prosperity of social media, people upload numerous
images and videos to their personal online repositories to
share with their families and friends frequently. The content-
based retrieval methods [1][2][3][4][5][6][7][8] have achieved
great success for various applications in the past decades
though they still suffer from the so-called semantic gap issue
[8][9]. Researchers have proposed a lot of multimedia content-
based retrieval approaches to bridge the semantic gaps and
to enhance the retrieval performance in multimedia research
[10][11][12][13][14][15][16][17][18][19][20].

Generally speaking, those methods fall into three categories.
The first category extracts low-level features (like color, shape,
texture, etc.) from images or video frames at pixel, region,
and/or object levels and utilizes the keyword-based representa-
tion to map the low-level features to keywords or visual words
as intermediate features [4][21][22]. Usually, these keywords
hold semantic meanings and have a better descriptive ability
than those low-level features, and the semantic gaps between

high-level concepts and the intermediate features are much
smaller.

The second category is called relevance feedback
[23][24][25][26]. This category usually involves an interaction
between the users and the learning models. For a query issued
by a user, the initial results returned by the learning models
are sent back to the users to provide their relevance to the
query. The learning models can be refined based on the user’s
feedback to improve the accuracy of the returned results.
Usually, such an interactive process needs to undergo several
rounds until the results are satisfactory.

Data mining and machine learning-based methods fall into
the third category [27][28]. By definition, a positive data
instance denotes a data item (a feature vector extracted from
an image, a video frame, or a video shot) that contains the
target semantic concept and a negative data instance denotes
the data item that does not contain the target semantic concept.
Semantic concept detection models are built using data mining
and/or machine learning algorithms to establish the mapping
between the low-level features and the high-level semantic
concepts. Although the early success of adopting data mining
and machine learning-based methods has greatly encouraged
researchers to explore deeper into this area, there are still many
scenarios in which these methods find their difficulties in ren-
dering satisfactory retrieval performance. It is not uncommon
to see that some semantic concepts are too difficult to be
retrieved accurately. Sometimes, it is because the instances
of these semantic concepts are so rare in the training set,
which makes it (almost) impossible to build a sound model.
Under other circumstances, the imbalanced data characteristics
in the training set force the trained model to favor negative
data instances. In real-world scenarios, we usually encounter
imbalance data sets where the positive-to-negative (P2N) ratios
are very small, even close to zero. In those scenarios, a model
built on the negative training set usually dominates the one
trained by the positive training set. Such a data imbalance issue
makes it very difficult and challenging for the data mining and
machine learning-based methods to retrieve semantic concepts
on the imbalanced datasets.

In this paper, we propose a new subspace modeling method,
called Gaussian mixture model-based subspace modeling
(GMM-based subspace modeling), to attack the problem of



retrieving the highly imbalanced semantic concepts. The pro-
posed method employs the Gaussian mixture model (GMM) to
generate a number of Gaussian components from the positive
training data instances and subsequently assigns every positive
data instance to one Gaussian component. The learning models
are built on the combination of each Gaussian component
and the whole positive training data instances. The idea of
utilizing the Gaussian component to partition the data is
motivated by realizing the fact that the core idea of subspace
modeling is based on the assumption that the underlying data
instances loosely satisfy the Gaussian distribution. Therefore,
each trained model favors a certain Gaussian component. By
ranking an instance using these trained models, we expect
to build robust models that are able to capture diverse data
characteristics within the subsets of the whole training data.

The paper is organized as follows. The related work is
discussed in Section II. Section III elaborates the overall
framework and the details of our proposed method. Experi-
mental setup and results are presented in Section IV. Section V
concludes the whole paper and explores the future directions.

II. RELATED WORK

Generally speaking, there are a number of ways to address
the data imbalance issue in semantic concept retrieval [29].
It is very straightforward to use resampling techniques on
the data to manipulate the aforementioned P2N Ratio. The
commonly-seen resampling methods include undersampling
and oversampling. In an imbalanced dataset where the negative
data instances dominate the positive data instances (meaning
very small P2N ratio), the oversampling method can generate
extra positive data instances by either simply replicating some
positive data instances or using synthetic methods such as
SMOTE [30] to increase the P2N ratio. The undersampling
method increases the P2N ratio in a different way by sampling
a portion of the negative data instances from the whole
negative training data instances, while keeping all the positive
data instances in the dataset. Both methods are common in
term of data manipulation to change the P2N ratio of the
training data.

Another way to address the data imbalance problem is called
cost-sensitive learning [31][32]. Usually, machine learning
algorithms are adopted to build learning models, but a cost
matrix is introduced to add different penalties to the misclas-
sification of a positive or a negative data instance. Normally,
the cost to misclassify a positive data instance is much larger
than that of misclassifying a negative data instance. Thus, the
penalty values in the cost matrix are therefore larger for the
positive data instances than the negative ones.

Boosting can also help deal with the data imbalance prob-
lem [33]. Instead of manipulating the P2N ratio or adding
different costs inside of the trained learning models, the boost-
ing method is designed to improve the weak learning models.
Usually, the learning models trained on the imbalanced dataset
are far from satisfactory. By adopting the boosting method at
the cost of additional training time, the learning models are
expected to render better retrieval accuracy performance.

In addition, kernel-based learning methods are also very
popular when learning from imbalanced datasets [34][35].
Kernel-based learning can build more robust learning models
from the training set [36]. The idea behind the kernel-based
method is that the positive data instances and the negative
ones might not be separable in the original feature space.
However, they may be separable within a kernel space if such
a space is large enough, according to Mercer’s theorem [37].
The kernel-based learning method can also be integrated with
all aforementioned methods to further improve the retrieval
accuracy on imbalanced datasets.

Subspace modeling methods attack the data imbalanced
problem in a different way. In subspace modeling, the positive
and the negative learning models are trained separately. Each
model has its own principal component subspaces. The chi-
square distance is used to measure the dissimilarity of a data
instance towards the positive or the negative learning models.
With regard to ranking, where the learning models are trained
using either positive training data instances or the negative
training data instances, the data imbalance problem has little
impacts on building the subspace learning models.

Subspace modeling methods have shown their effectiveness
in semantic concept detection and retrieval, where the positive
learning model is built using the whole positive training set
[38][39][40][41][42][43][44]. However, the useful patterns in
certain subsets of the positive data instances may be shadowed
by the dominant patterns reflected by the training set as
a whole. This motivates us to improve subspace modeling
by constructing a number of positive learning models, each
of which is built on the combination of the whole positive
training set and a Gaussian-distributed subset derived from it,
to improve the retrieval accuracy. In this way, each combined
dataset has a portion of the oversampled training data that
satisfy some Gaussian distribution. Another way to look at
the combined positive data is that a portion of the whole
positive data have more weights than the rest of the data that
are not duplicated. From either angle, it is beneficial for the
subspace modeling method to build the models that favor these
oversampled positive data. There are many other methods,
such as K-means, that can be used in place of GMM. The
reason why GMM is chosen is because it is backed up by the
well-established probability theory and it is also a commonly-
used generalized solution to deal with real-world datasets.

III. FRAMEWORK

Figure 1 shows the proposed Gaussian mixture model-based
subspace modeling framework. During the training phase, the
positive data instances are decomposed into several subsets
using Gaussian mixture models (GMMs). Each GMM has its
own mean value and standard deviation. Afterwards, the input
to each subspace model includes the original positive training
set and the positive data instances of each GMM component.
Under such circumstances, the input to one subspace model
not only covers all positive training data instances but also has
the dominant patterns belonging to the selected GMM compo-
nent strengthened as well, as the data of the GMM component



Fig. 1. GMM-based subspace modeling framework

is duplicated and such a duplication makes the center of the
learning model move towards the mean value of the selected
GMM component. The subspace modeling method, which is
based on the assumption that the underlying data generally
satisfies the normal distribution, trains a subspace model in
the principal component subspace using the assembled input
data. For a testing data instance, each subspace model is
able to generate a ranking score using the chi-square distance
calculated from the subspace model (to be shown in Section
III-B). Finally, the ranking scores from all subspace models
are consolidated to the final ranking score for the testing data
instance. The next subsections attempt to answer the following
questions.

• How to dynamically generate the components of the
Gaussian mixture models? (To be shown in Section III-A)

• How does subspace modeling generate the ranking scores
for a data instance? (To be answered in Section III-B)

• How to consolidate the scores from each model to a final
score? (To be answered in Section III-C)

A. Dataset decomposition using Gaussian Mixture Models

For a data instance x ∈ Rd , Equation (1) shows the density
of the Gaussian mixture model (GMM) formed by M Gaussian
components. Each component satisfies a Gaussian distribution
with the density shown in Equation (2), where µi denotes the
mean and Σi is the covariance. The three parameters (wi,µi,Σi)
in a GMM can be estimated by the Expectation-Maximization
(EM) algorithms [45]. The EM algorithm requires a number
of iterations, each of which contains an expectation step and a
maximization step. The algorithm starts with a random initial
estimation of these parameters and keeps updating the values

of these parameters until it converges.

p(x|wi,µi,Σi) =
M

∑
i=1

wi ·G(x|µi,Σi), s.t.
M

∑
i=1

wi = 1; (1)

G(x|µi,Σi) =
1

(2π)d/2|Σi|1/2 e−
1
2 (x−µi)′Σ−1

i (x−µi). (2)

The GMM does not provide the estimation of the num-
ber of components within the data. In fact, the number of
Gaussian components (i.e., M) needs to be provided by the
users. Although there are some methods that can be used
to determine the number of Gaussian components, such as
Bayesian information criterion [46] and Akaike information
criterion [47], they usually require extra time and space. For
simplicity, we simply use the maximum number of Gaussian
components allowed by the data as M. In the actual im-
plementation, the Gaussian components cannot be derived if
the input matrix is singular. Therefore, we perform principal
component analysis on positive training data instances first and
keep only those principal components whose eigenvalues are
greater than 0.001. After dynamically decomposing the data
into M components based on the training data, we assign each
training data instance to one Gaussian component based on
the maximum probability criterion. In an extreme case where
the whole positive training set cannot be decomposed into
two or more components, the GMM-based subspace modeling
is simply the regular subspace modeling, which is to be
elaborated in Section III-B.

It is worth mentioning that the merits of decomposing the
data into different Gaussian components lie in two folds.
First, the data within each component tend to be similar and
the standard deviation in each component is much smaller.
Second, the dominant patterns are presented better inside each
Gaussian component.



B. Subspace modeling

The subspace modeling methods have been success-
fully applied in semantic concept detection and retrieval
[38][39][40][41][42][43]. The idea of subspace modeling is
to derive principal component subspaces separately for the
positive and the negative training data instances. Based on
the projection on a principal component subspace, the chi-
square distance is used to measure the dissimilarity of each
data instance towards a subspace model. By comparing the
distance towards the positive and the negative learning models,
the final ranking scores can be generated. Usually, the whole
process requires performing three major steps: normalization,
principal component space projection, and ranking score gen-
eration. Since the positive and the negative learning models are
generated in the same way, we just take the positive learning
model as an example here. Similarly, the same process can be
applied to the negative learning model.

The normalization step is shown in Equation (3), where µ
and σ are the sample mean and standard deviation of the posi-
tive training set X . The parameter set {λ ,PC} are derived from
the covariance matrix CovX of the normalized positive data
instances Xnorm using singular value decomposition (SVD) (see
Equation (4)), λ is the diagonal values in Σ that are greater
than a threshold (i.e., 0.001 in our experiment), and PC are
the principal components that correspond to those retained
eigenvalues in V .

Xnorm =
X−µ

σ
; (3)

CovX = UΣV ∗; (4)
Yi = Xnorm ·PCi, i ∈ [1,numP]; (5)

χp =
1

numP

√
∑

i

Y p
i ·Y p

i

λ p
i

, i ∈ [1,numP]. (6)

The projection of the normalized positive data instances
on its principal component subspace satisfies the Gaussian
distribution, where PCi is the i-th PC, Yi is the projection of
Xnorm on PCi, and numP is the number of principal components
derived from the positive training data instances (shown in
Equation (5)). Such a projection is later used to calculate the
chi-square distance (shown in Equation (6)) to measure the
dissimilarity between a data instance and the positive learning
model, which also serves as the ranking scores generated by
the learning model for X .

C. Generation of final ranking scores

The Gaussian mixture model may generate a number of
Gaussian components on all positive training data instances,
each of which is corresponding to a positive learning model.
Assume there is a testing data instance T s which has a ranking
score vector RSp generated by all positive learning models,
represented by RSp = {RSp

1 , . . . ,RSp
M}, where M is the number

of Gaussian components dynamically derived from Section
III-A. Likewise, T s has a ranking score RSn generated from
the negative learning model, as indicated in Figure 1. The final
ranking score RS f inal of T s is calculated using Equation (7),

which considers the ranking scores from all positive models
and the negative model. A large RSn or a small µ p indicates
that T s is more likely to be a positive data instance than
a negative one. µ p shows how dissimilar the testing data
instance T s is towards all positive learning models as a whole,
which is expected to better depict the relationship between T s
and all positive data instances than using any positive learning
model alone.

RS f inal =
RSn−µ p

RSn + µ p , where µ p =
1
M

M

∑
i=1

RSp
i . (7)

IV. EXPERIMENT

To evaluate the effectiveness of our proposed method on
imbalanced datasets, a benchmark dataset is used to compare
semantic concept retrieval performance with several other
well-known methods including support vector machine, de-
cision tree, etc. The details of the dataset are listed in Section
IV-1.

1) Experimental Setup: The dataset used in the experiment
is a light version of the NUS-WIDE dataset called NUS-
WIDE-LITE [48]. In this dataset, a total of 55,615 images
are crawled from the Flickr website. The NUS-WIDE-LITE
dataset has predefined the training and testing sets, where
27,807 images are in the training set and another 27,808
images are used as the testing set. Some low-level features
of the images (like color histogram, wavelet texture, and etc.)
are available for downloading. In the experiment below, we
evaluate our proposed method against LibSVM [49], Logistic
Regression, and Decision Tree [50] on two feature sets: 64-
dimensional color histogram in LAB color space and 128-
dimensional wavelet texture. There are a total of 81 concepts
in the NUS-WIDE-LITE dataset. The P2N ratio of the training
set and testing set for all 81 concepts are drawn in Figure
2 and Figure 3 in a sorted order, respectively. As can be
seen in the figures, the mean P2N ratio in the training set
is 0.023 and the median value is 0.009. Therefore, it is very
difficult and challenging to retrieve semantic concepts in such
an imbalanced dataset. Finally, the performance of semantic
concept retrieval is evaluated using a commonly used measure
called mean average precision (MAP). Let

• C: the number of concepts in the dataset;
• APi: the average precision of Concept i (defined in Equa-

tion (9));
• ‖Pi‖: the number of positive data instances of Concept i;
• K: the number of retrieved data instances;
• r j: an indicator value, equaling 1 if the retrieved data

instance at rank j is positive, zero otherwise (defined in
Equation (10)).



Then MAP can be calculated using Equation (8).

MAP =
1
C

C

∑
i=1

APi; where (8)

APi =
1
‖Pi‖

K

∑
ω=1

rω · 1
ω

ω

∑
j=1

r j; and (9)

r j =

{
1, if the instance j is relevant;
0, otherwise. (10)

2) Experimental Results and Analyses: Table I shows the
experimental results, comparing our proposed GMM-based
subspace modeling method with several peer methods such
as LibSVM with RBF-kernel (LibSVM), Logistic Regres-
sion(LR), and Decision Tree (DTree), in terms of the mean
average precision (MAP) on two feature sets. The suggested
parameters of these peer methods are used by default, as
these parameters usually generate reasonably good results.
Table I shows the MAP evaluated on two features and the
relative performance gain of our proposed method against
peer methods. For example, GMM-based subspace modeling
is 9.5% better than logistic regression on the color histogram
feature and 13.8% better than LibSVM on the wavelet texture
feature set, in terms of relative percentage improvements.
Furthermore, by comparing our method with the best peer
methods, we found that the proposed method renders the best
average precision values on 2/3 of the concepts in the dataset.
For the rest of the concepts, the proposed methods still has
room to improve, such as increasing the weight of the samples,
if the imbalance is too extreme.

The number of Gaussian components that are dynamically
generated for each concept is shown in Figure 4. On average,
about 8 Gaussian components are generated per concept and
the median value of the generated Gaussian components for
each concept is 4. To show the retrieval performance on
color histogram and wavelet texture in details, we pick the
concept ‘whales” and the concept “fish” and draw their ROC
curves in Figure 5 and Figure 6, respectively. In Figure 5,
the GMM-based subspace modeling method mostly shows
better performance than other peer methods on color histogram
features with the exception that the LibSVM is better starting
from false positive rate more than 0.6. However, it is obvious
to see that the area under curve (AUC) of the proposed GMM-
based subspace is larger than LibSVM, meaning the overall
performance of GMM-based subspace modeling is better.
Figure 6 clearly shows our method renders better performance
as the AUC of the proposed GMM-based method is much
more larger than any other comparative methods. It is worth
pointing out is that although the data is so imbalanced that the
decision tree model is totally dominated by negative instances
(predicting every instance as negative), causing the ROC curve
of Decision Tree being a diagonal line. However, our method
still shows its effectiveness to retrieve concepts from such an
imbalanced dataset.

TABLE I
MAP EVALUATED ON ALL 81 CONCEPTS OF NUS-WIDE-LITE ON
COLOR HISTOGRAM (CH64) AND WAVELET TEXTURE (WT128)

CH64 Relative Gain WT128 Relative Gain
Ours 4.14% − 4.44% −

LibSVM 3.60% 15.0% 3.90% 13.8%
LR 3.78% 9.5% 3.32% 33.7%

DTree 2.80% 47.9% 2.87% 54.7%

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel Gaussian mixture model-
based subspace modeling method, which built a Gaussian
mixture model with a number of dynamically-determined
Gaussian components on the positive training set. Then, the
positive data instances within each Gaussian component were
merged with the whole positive training set as the input to train
a positive subspace model. By utilizing GMM to divide the
positive training set to several Gaussian-distributed subsets, it
was expected that some patterns within the subsets could be
revealed. Finally, the final ranking scores were generated by
consolidating the score from the negative model with the mean
value of the scores from all positive models. Experimental
results showed that our proposed method was able to provide
better retrieval performance than the other comparative meth-
ods in terms of the MAP (mean average precision) measure
on a benchmark dataset that was highly imbalanced.

In the future, our research work will explore the following
directions. First, the number of replications that should be
made on the data belonging to each component will be
investigated, when merged with the whole positive training set.
In an extreme case in which the data of a component is just a
small portion of the whole positive training data instances,
the patterns within the Gaussian component would not be
obvious enough and therefore cannot be revealed. Second,
research work will also be dedicated to the generation of
the final ranking scores from the learning models as well,
especially on how to consolidate the ranking scores from all
the positive models. In this paper, the mean value of the
scores from all positive models is adopted, which considers
an equal weight from each component. However, this does not
take into consideration the distance of a data instance towards
each component’s center. It would be interesting to generate
the consolidated ranking scores by either selecting a few
nearest Gaussian components or using a weighted combination
based on a data instance’s distances toward the centers of the
Gaussian components. In addition, kernel PCA can be explored
to handle the linearly non-separable data.



Fig. 2. Positive-to-Negative (P2N) ratios in the training set

Fig. 3. Positive-to-Negative (P2N) ratios in the testing set

Fig. 4. Numbers of Gaussian components generated for 81 concepts



Fig. 5. ROC Curve of Concept “whales” using the color histogram features

Fig. 6. ROC Curve of Concept “fish” using the wavelet texture features
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