
Automated Neural Network Construction with Similarity Sensitive Evolutionary
Algorithms

Haiman Tian∗, Shu-Ching Chen∗, Mei-Ling Shyu† and Stuart H. Rubin‡
∗School of Computing and Information Sciences

Florida International University, Miami, FL 33199, USA
Email: {htian005, chens}@cs.fiu.edu

†Department of Electrical and Computer Engineering
University of Miami, Coral Gabel, FL 33124, USA

Email: shyu@miami.edu
‡Space and Naval Warfare Systems Center Pacific

San Diego, CA 92152-5001, USA
Email: stuart.rubin@navy.mil

Abstract—Deep learning has been successfully applied to a
wide variety of tasks. It generates reusable knowledge that
allows transfer learning to significantly impact more scientific
research areas. However, there is no automatic way to build a
new model that guarantees an adequate performance. In this
paper, we propose an automated neural network construction
framework to overcome the limitations found in current ap-
proaches using transfer learning. Currently, researchers spend
much time and effort to understand the characteristics of
the data when designing a new network model. Therefore,
the proposed method leverages the strength in evolutionary
algorithms to automate the search and optimization process.
Similarities between the individuals are also considered during
the cycled evolutionary process to avoid sticking to a local
optimal. Overall, the experimental results effectively reach
optimal solutions proving that a time-consuming task could
also be done by an automated process that exceeds the human
ability to select the best hyperparameters.

Keywords-deep learning; transfer learning; evolutionary al-
gorithm; automated neural network construction; image clas-
sification

I. INTRODUCTION

Classical Machine Learning (ML) techniques have
achieved superior performance in many research domains for
decades. Data modeling becomes challenging because un-
certainties increase when applying ML to a broader area of
study. Over the past several years, Deep Learning (DL) has
overcome some of the limitations faced by classical ML for
many research domains including visual data processing [1],
speech recognition [2], and natural language processing [3].
For instance, when it comes to processing heterogenous data
such as images and video, a lot of time is consumed by the
feature engineering process to reduce the dimensionality of
the data by identifying a cohesive subset of attributes that
best represent the data. In essence, DL is a new technique
that has proven to be appropriate in advancing the field of
Artificial Intelligent (AI). It has considerably simplified the
modeling process by incorporating both feature engineering

and conceptual learning to directly process raw data then
generate the final, conclusive results. Studies from different
research fields have shown how deep learning eases the
research work by requiring less task-specific manual process.
Some notable frameworks that have leveraged deep learning
into real-world applications include recommender systems,
answer selection, and medical image analysis. Compared to
the traditional independent feature engineering effort, deep
learning models have better capability to generalize unseen
combinations of features by embedding sparse inputs when
solving large-scale regression and classification problems.
Furthermore, traditional ML could not reach the same accu-
racy as the DL models in some cases. But developing and
training a DL model from scratch is not always feasible
for all researchers with limited access to computational
facilities. Usually, training a robust deep neural network
is a computationally expensive task that requires high-end
Graphics Processing Units (GPUs) to perform the training
process in a reasonable time. Moreover, recent work indi-
cates that not all neurons are needed after the completion
of the first iteration. This surprising result may lead to the
constructive definition of the wiring pattern, which today
is weighted through backprop and GAs. Fortunately, DL
techniques are adaptable and transferable among different
domains and applications. The rise in popularity of an
optimization technique known as transfer learning [4], gave
DL techniques the capability to influence more scientific
research areas and solve their domain-specific problems.
Practical usage of the features generated from well-designed
pre-trained DL models has enhanced the performance of
many applications. Those models are not only transferable
to similar domains but also adaptable to different application
fields. For example, the basic knowledge gained from a
speech recognition task can now be easily applied to tasks
in natural language processing [5].

Through the transfer learning process, traditional ML

techniques can directly use the high-level semantic features
learned from the DL models to perform many other domain-
specific tasks while achieving higher performance than be-
fore. At the same time, constructing another comparatively
simple deep neural network as the base network also appears
to be a popular choice. When the new application domain
is not very close to the source domain, deep features need
to be transferred to better represent the targeted application.
Still, even when adding just one layer to the pre-trained
model, there is no guarantee that the new model will
get promising results as expected in the source domain.
Although we benefit in transfer learning, it still takes time to
design a neural network after the feature extraction process
– especially when the researcher has limited experience or
knowledge of neural networks, the datasets, and the target
tasks. To tackle this emerging issue, studies have recently
focused on automating the network design process [6][7].
Two favorable directions to further explore are reinforcement
learning [8] and Evolutionary Algorithms (EA) [9]. The
latter has shown great promise in solving complex problems
that the former has defined for several decades [10].

In this work, we aim to leverage the deep features from
pre-trained Convolutional Neural Network (CNN) models
in different applications without the need to spend most of
the effort on examining the characteristics of each task. We
propose a generalized framework to accommodate different
datasets and problem domains. By integrating EA and other
techniques to support the automated searching process, the
hyperparameters of a new neural network, built for a specific
task, are determined after the best individual is selected.

The remainder of this paper is organized as follows. In
section II, the related work leverages evolutionary strategies
to the DL field is provided. Section III explains the details
of the proposed framework followed by a discussion of the
experimental results in section IV. In section V, we offer
conclusions.

II. RELATED WORK

Many existing deep learning models have been success-
fully applied for different tasks. However, an automated
approach to select the best model for each dataset and each
domain is not available. To address this challenge, Long et
al. [11] introduced Joint Adaptation Networks (JAN) that
is based on a Joint Maximum Mean Discrepancy (JMMD)
criterion to learn a transfer network by aligning multiple
domain-specific layers (layer fc7 in AlexNet and layer pool5
in ResNet).

In [12], the authors proposed a Genetic Algorithm (GA)
approach using transfer learning to enhance the performance
of the CNN model in the image classification tasks. Deep
features were generated from four pre-trained CNN models,
which are ResNet50, Inception-v3, VGG16, and MobileNet.
The experimental results showed that the proposed GA
method can improve the performance of the baselines.

However, while a straightforward genetic algorithm method
can select the primary data representation model, it needs
to be extended to enable deep neural network construction
for specific tasks. Moreover, genetic algorithms will not
scale here, or in natural evolution. What is needed are
heuristic accelerators. Such heuristics can be learned and
applied in a network configuration of neural networks. This
provides coherency, a guiding necessary AI principle, and
self-reference. The latter provides us with insight. Just as
one of AIs failings led to the field of ML, so too does the
failing of deep learning lead to the need for heuristics and
heuristic acquisition. To fix the architecture of a hidden-
layer neural network is to unnecessarily restrict that, which
can and needs to be learned. Furthermore, it is argued that
neural-based symbolic representations need to be enabled.
It is well-known that modus ponens cannot be achieved
without a symbolic representation. The creation of heuristics
and their transfer-extension follows suit. The over-arching
implication here is that today’s deep learning architectures
are not of sufficient Kolmogorov complexity to hold and
learn to generalize strong knowledge. Both of these capa-
bilities are inherent to not only real-world functionality, but
commonsense reasoning as well. Commonsense reasoning
has evaded capture by symbolic and neural AI alike. These
are complex concepts; and, it will take some time to realize
them in practice.

The authors in [13] discussed the advances in image
classification with hyper-optimization. Computer clusters
with large processing capacity GPUs allow trails and tests to
be run. The researchers used hyper-optimization for training
neural networks and deep belief networks, by optimizing hy-
perparameters with random searches and two greedy sequen-
tial methods. Sequential algorithms were applied to complex
deep belief learning problems and improved results were
obtained. The researchers validated the Gaussian Process
Analysis (GPA) approach with a random sampling of the
Boston housing data for a regression task. The dataset has
13 scaled input variables composed by 506 points to obtain
a scalar regression output. An MLP network was trained
with 10 hyperparameters. The hyperparameters included the
hidden layer size, learning rate, iteration times, the Princi-
pal Component Analysis (PCA) preprocessing, and others.
Sampling was used for the first 30 iterations, differentiated
random samples were used for training, and the whole set
up had 20 repetitions. Five GPUs were used; and, the test
was run for 24 hours.

Recent research focuses on evolving the deep neural
networks parameters or structures with GAs [14]. In [15], an
improved genetic algorithm was proposed to tune the struc-
ture and parameters of a 3-layer Feed-Forward Network.
Unlike deep neural networks that contain more complex
structures, this network has a relatively simple structure
which contains only one hidden layer. Therefore, there were
few combinations of the available hyperparameters. So the

best choice can be easily identified in advance.
In a recent work, Genetic CNNs [16] were proposed to

learn the structure of deep neural networks automatically.
The suggestion is to use GAs, since the network structures
tend to rise exponentially with the number of layers. To
serve this purpose, a new encoding scheme was suggested,
which used a fixed-length binary sequence to indicate the
network structure. Then, the accuracy on a reference set
was used as the fitness function to determine the quality
of each individual in a population. For each generation,
the standard genetic operations were defined and these
include the crossover and selection mutation needed to
develop outstanding individuals while rejecting weaker ones.
A standalone training method was used to identify the
competitiveness. The genetic process was carried out on
CIFAR10 with a small dataset to examine the capability to
identify high quality structures. The output of the learned
powerful structures was transferred to the ILSVRC2012 data
that can be used for large visual recognition.

An alternative method of hyperparameter optimization
for deep neural networks is presented in [17]. It compares
the proposed approach, named Covariance Matrix Adapta-
tion Evolution Strategy (CMS-ES), with the state-of-the-art
Bayesian optimization algorithms for tuning hyperparame-
ters of a CNN network. In their work, only two optimizers
such as Adam and AdaDelt can be selected, which makes
the expected performance more narrow.

III. PROPOSED FRAMEWORK

An EA-based framework for automated neural network
construction is illustrated in Figure 1. This framework aims
to select the best network model for a specific task that
uses transfer learning for image classification. Four major
hyperparameters (i.e., number of neurons in one layer,
number of fully connected layers in one model, the activation
function, and the optimizer) are considered to formulate
the network’s gene. Specifically, a combination of those
four hyperparameters composes a unique gene sequence that
represents a network. The search process starts by randomly
generating a group of networks as the initial population.
Then, the initial networks evolve for several generations
until they reach the end of the evolutionary limit. Several
evolutionary strategies are used in this framework to improve
the average performance in each population. Meanwhile, a
Hamming distance matrix is calculated for every generation
to evaluate the structural differences between each individ-
ual. Different genetic operations will be taken as reactions to
the similarity evaluation, which ensures that the development
of the new generation continues to cover a large searching
space. The model that performs the best on the validation
data is then identified at the end of the network’s evolution.
Next, a complete training process starts to build the final
model for the targeting task.

A. Network Selection

Algorithm 1: Network Evolution

1 RETAIN ← 0.4, SELECT ← 0.5,
MUTATE ← 0.2

2 for individual i ∈ Population p do
3 calculate FITNESS FUNCTION f(i)
4 grade[i].score← f(i)
5 Sort grade in descending order
6 for u ∈ [0, grade.size− 1] do
7 codes[u]←ENCODING (grade[x].network)
8 for v ∈ [v + 1, grade.size− 1] do
9 Huv ← σ (codes[u], codes[v])

10 Significant = (MAX(H)−MIN(H))/2
11 for x ∈ [0, RETAIN ∗ grade.size− 1] do
12 parents.append(grade[x])
13 # Random selection
14 for x ∈ [RETAIN ∗ grade.size, grade.size− 1] do
15 if SELECT > random()
16 AND ∀Hxs > Significant WHERE

s ∈ parents then
17 parents.append(grade[x])
18 # Crossover
19 size← Population.size− parents.size
20 while children.size < size do
21 select famale and male randomly from parents
22 if female 6= male then
23 child = (male.partA+ female.partB)
24 if MUTATE > random() then
25 MUTATE(child)
26 children.append(child)
27 else
28 # Force Mutation
29 child = male
30 MUTATE(child)
31 children.append(child)
32 parents.append(children)
33 return parents

Network selection starts with an initial population that
is generated by random search. The process, as shown in
Algorithm 1, takes all the networks (individuals) into the
current generation to evolve. The network evolution incorpo-
rates all the genetic operations that might be triggered during
the evolving process for every generation. The proposed
evolutionary process enhances the operations in the tradi-
tional GA by controlling the similarities between the pop-
ulations in subsequent generations. Specifically, it takes the
strength of mutation operation in evolutionary programming
to overcome the underlying weakness of crossover in the
later generations. Force mutation and distance calculation
ensure that the evolution process is capable of exceeding a
local optimum in the searching space when the top networks

Figure 1. Proposed framework for automated neural network construction

in the same generation are very similar. In each generation,
a portion of the top networks is selected as the parents to
produce offspring that represent the new network structures.
The selection is based on a specific retaining rate and a
fitness function ranks the networks (lines 4 - 7). This fitness
function is based on the formula of the averaged F1 score,
which evaluates the performance of a specific network.
Compared to using accuracy as the evaluation criterion, F1’s
score is more suitable for evaluating any dataset, whether
balanced or imbalanced. The fitness function can be written
as follows:

f(i) = (

C∑
c=1

2 ∗ tP i
c

2 ∗ tP i
c + F i

c

)/C, (1)

where C is the total number of classes in the targeting
dataset, and i is the index of a unique network. tP is defined
as the number of instances correctly identified as class c, and
F is defined as the number of instances wrongly classified
as c or others respectively for the network i.

Besides updating the ranking list of networks with their
performance in each evolution, we use additional storage
to record the information of the networks that have al-
ready appeared in previous generations. As we care only
about the best performance that we have gotten for each
unique gene sequence, only the highest fitness score for
one combination of the hyperparameters will be stored for
later references. Multiple networks that share the same gene,
however, can appear in the ranking list, which represents
the overall performance of the current population. The more
times this structure is selected, the greater the chance that

Table I
THE AVAILABLE CHOICES FOR NETWORK HYPERPARAMETERS AND THE

CORRESPONDING BINARY ENCODING DIGITS

Hyper-
parameters Choices # Encoding

Digits

neurons 32, 64, 128, 256,
512, 768, 1024 3

layers 1, 2, 3, 4 2
Activation
functions

relu, elu, tanh,
sigmoid 2

optimizers
rmsprop, adam, SGD,

adagrad,adadelta,
adamax, nadam

3

the offspring of the next generation will have substantial
similarity between the compositions of each network’s gene.
To overcome this limitation, which might slow down the
evolving process and keep the solution at a local optimal,
distance calculation and force mutation play vital roles in
ensuring that population can keep searching for more com-
binations in the later generations after identifying several
network configurations with proper performance.

Genetic encoding (line 7) transforms one combination of
four candidate hyperparameters into a unique binary string.
Table I shows the available choices of each hyperparameter
and the corresponding encoding bits. One-bit flipping (0 to
1) will result in changing of one hyperparameter, conse-
quently affecting the performance of the network (e.g., for
the choice of # layers, 00 to 10 means adding two more
layers) . The Hamming distance calculation (line 9) is used
to generate the distance matrices H = (σ(x, y)), where
1 ≤ x ≤ P and 1 ≤ y ≤ P , and P is the designated number

of individuals in one population. Lines 13 - 31 illustrate
the procedure of all the genetic operations (conditional
random selection, crossover, and force mutation) within
specified activating conditions (defined in line 1). While
doing the crossover operation, we select two network genes
as the candidates of the parents. Each gene representing the
combination of four hyperparameters is separated into two
parts. Part A consists of the first two hyperparameters in the
table, and part B takes the rest. By evenly separating one
combination into two opposite parts, the proposed approach
holds a lower bound ps of the survival probabilities under
simple crossover.

ps = 1− δ(i, j)/(l − 1), (2)

where δ(i, j) is the distance between the two digits i and
j we are observing, and l is the total length of the gene
sequence (10 in this case thus i, j ∈ [1, 10]). As the number
of neurons in one layer can significantly affect the choice
of the number of layers, grouping the choices of the first
two hyperparameters onto one side of the cutting point will
provide higher survival probabilities compared to separating
them into two parts. As the mutation operator randomly
activates after crossover, the survival probabilities reduced
to

ps = 1− δ(i, j)/(l − 1)− (1− pm)po, (3)

where pm is the mutation probability. Instead of changing
one bit of the genetic code, the mutation operator randomly
chooses a value for one specific hyperparameter. Therefore,
the maximum number of fixed position po is reduced from
10 to 4 (since we have 4 hyperparameters). By reducing
po, the mutation effect increases ensuring a further decrease
of the lower bound of the survival rate. We expected these
changes could help on gene evolution process when most of
the individuals in the later generations are very similar. Sec-
tion IV further details how this strategy met our expectations.
Again, note that this evolutionary process, while illustrative
is not heuristic or strong and thus will not scale successfully
in its present form.

B. Network Construction and Training Process

After evolving the networks for a certain number of
generations, the last generation identifies the top candidate
to construct the final training model. As the output layer
separates the data into different classes, the number of
neurons in the layer right before the output layer should not
greatly exceed the number of classes for each specific task.
Therefore, the number of neurons that the genetic selection
process determines sets the number for only the first layer.
The number of neurons will gradually diminish by half until
either it reaches the last fully connected layer or the number
of neurons in the current layer is less than twice that of
the number of classes. Also, one 50 percent dropout layer

is placed ahead of the output layer to reduce the effect of
overfitting.

Moreover, we restricted the training epoch in the network
selection phase to a relatively small but reasonable number
(200), so the converging speed of the network has been
considered by default. Nevertheless, the early stopping with
patience=5 is set for all models, which means that most of
the time the training process will not last until the last epoch.
Ideally, we can identify a network that performs well in more
generations during genetic selection within a competitive
training duration.

IV. EXPERIMENTAL RESULTS

We evaluate the proposed framework using two datasets;
a disaster video dataset that consists of two major hurricane
events that happened in 2017 in two geographic locations
(Harvey in Texas and Irma in Florida), and a surveillance
camera dataset that contains images captured from various
places. Table II shows the statistical information of these two
datasets. For the disaster dataset, by following chronological
order, we use the first event as the training data while the
later one becomes the testing data. We extract one keyframe
image as the representative of each video. For the Network
Camera 10K dataset, 20 percent of the data is separated into
testing data. Moreover, 20 percent of the training data from
both datasets was randomly selected to form the validation
data for fitness score calculation which assists the model
training and network evolution process.

Figure 2. The performances of the 40 percent of individuals in each
generation for the Disaster Dataset

Before getting into the evaluation of the final model,
we observed the efficiency of the proposed framework. In
Figure 2, the fitness scores’ distribution (average F1 scores

Table II
THE STATISTICAL INFORMATION OF THE NETWORK CAMERA 10K AND DISASTER DATASET

Network Camera 10K Disaster
No. Concepts Instances No. Concepts Instances No. Concepts Harvey Irma
1 Intersection 855 8 Yard 161 1 Demonstration 42 8
2 Sky 495 9 Forest 139 2 Emergency Response 81 20
3 Water Front 978 10 Street 431 3 Flood and Storm 426 177
4 Building+Street 603 11 Parking 99 4 Human Relief 70 1
5 Park 499 12 Building 243 5 Damage 42 172
6 Montain View 719 13 Highway 3724 6 Victim 75 16
7 City 432 14 Park+Building 149 7 Speak 347 63

Total 9527 Total 1083 457

Figure 3. The performances of the 40 percent individuals in each
generation for the Network Camera 10K Dataset

of the validation data) of the top 12 individuals in each gen-
eration depicts the evolutionary process. Since the retaining
rate in the evolutionary process is defined as 0.4 and the
number of populations in each generation is fixed at 30, only
the top 12 individuals will survive and continue evolving
in the next generation. As can be seen from the plot, the
performance of each generation has steadily increased and
reached a certain optimal F1 score near the 5th generation.
After that, the new populations in each generation keep
searching for a better solution and successfully exceed the
optimal score in the 10th generation. Notably, the model
not only focuses on discovering one individual as the best
solution but also raises overall performance gradually for
all the top populations in subsequent generations. Similar
trends can be also found in Figure 3. Since we have a
limited number of GPUs, we reduce the total number of
populations in each generation to 25 for the Network Camera

10K dataset. As the retaining rate stays the same, the plot
shows the performance of the top ten individuals for each
generation. Those 10 populations in each generation are the
parents that contribute to the next generation. Similarly, a
local optimal appears near the 8th generation and sticks for
several iterations. Again, our framework successfully gets
the F1 score to improve after the 14th generation.

Furthermore, Figures 4 – 7 compare the search space
covered in the representative generations and visualized all
the individuals using scatterplots in three-dimensional space
that clearly shows the improvement of the three generations
(the first, the 10th, and the last generation). We project
each unique network structure into two-dimensional space,
where the x-axis represents the gene code in decimals of
the first two hyperparameters, and the y-axis represents the
other two. Five binary digits can be easily converted to a
decimal number between 0 and 31. Therefore, a unique
pair of x and y (point [x, y] in the plots) represents a
unique individual in the search space. The z-axis is the
fitness score, which means the dots on the top represent the
models that have better performance. The first generation
starts with randomly selected individuals, covering a sparse
space with various performance measures. Until the 10th
generation, the individuals with lower scores are eliminated
from the population. The solutions, however, are narrowed
down into a smaller space. As we proposed a similarity
sensitive framework, it still makes a breakthrough in the
search space later on and produces better results. It is also
evident in Figure 7 that the first generation (green dots)
sparsely covers the search space by randomly producing
30 populations. Until the 10th generation (red dots), the
individuals stay in a smaller solution area and demonstrate
average performance. Finally, in the last generation (blue
dots), the individuals became sparse again to cover a larger
search space, which resulted in an optimal better than the
local optimal than had been reached in the very early
stage. We also plot the performance of the model using the
Network Camera 10K dataset in the same way as shown in
Figure 8. In the 10th generation, the network candidates have
been identified in a very restricted area. Still, the proposed

Figure 4. The first generation search Figure 5. The tenth generation search Figure 6. The last generation search

Figure 7. Individual performance in the first, tenth, and the last generation
(Disaster)

framework shows the power of escaping the limited space
and getting better solutions to construct the network with
extensive performance.

Table III
EVALUATION RESULTS ON TWO DATASETS

Datasets Models AvgW. F1 Avg. F1

Disaster

MobileNet 0.380 0.121
ResNet50 0.419 0.141

Inceptin-v3 0.303 0.092
Our Work 0.541 0.194

768 Neurons, 2 Layers, sigmoid, adamax

Network
Camera 10K

MobileNet 0.755 0.216
ResNet50 0.773 0.233

Inception-v3 0.726 0.194
Our Work 0.806 0.268

256 Neurons, 1Layer, sigmoid, adamax

Figure 8. Individual performance in the first, tenth, and the last generation
(Network Camera 10K)

The overall performance of the proposed framework is
listed in Table III and compared with different pre-train mod-
els using two criteria (weighted average F1 score [AvgW.
F1], and averaged F1 scores [Avg. F1], respectively). For
evaluating the performance of an imbalanced dataset, F1
score is a more vital measure than accuracy. As trade-offs
between precision and recall, F1 scores are more suitable to
evaluate the overall model performance.

Generally, using a pre-trained CNN model for visual
feature extraction and appending multiple network layers
for image classification has proven able to get better results
compared to constructing the model from scratch. Neverthe-
less, in this work, automated network construction performs
much better than employing classical ML techniques to
learn the high-level representations of the deep features.
Results show increments of 12.2 percent and 5.3 percent

respectively for weighted and unweighted average F1 scores
for a new problem domain by adopting automated EA and
considering the similarities between the solutions in the
proposed work for the Disaster dataset. Compared to the pre-
trained model using the Network Camera 10K dataset, the
proposed method improved the weighted average F1 score
by 3.3 percent. Seeing there is a significant improvement
in F1 score for both datasets, we can conclude that the
proposed framework selected and built the network model,
which could recognize more instances correctly for each
class. The table also shows the final configuration of the
hyperparameters that achieved the scores as demonstrated.

V. CONCLUSIONS

In this work, we aim to leverage the deep features from
pre-trained CNN models in different applications without
spending most of the effort in examining the character-
istics of each task. A generalized framework is proposed
to accommodate all datasets. By integrating EA and other
techniques to support the automated searching process, the
proposed work determines the hyperparameters of a new
neural network for one specific task after the best individual
is selected. Overall, the experimental results have proven that
a time-consuming task conducted by experts could be done
by an automated process that surpasses human ability and
reaches an optimal solution effectively. It should be noted
however, that validation feedback needs to be provided lest
the network select the best individual for an incorrect resul-
tant task. Quadded neural nets could be applied to ameliorate
this situation somewhat, but until the nets can be designed
to reliably extract fundamental features and combinations of
features, this possibility will persist. Again, the differential
is attributed to “understanding” or the lack thereof. Higher-
level evolution requires (self-referential) heuristics. An open
question is how to represent and apply them in deep learning.

ACKNOWLEDGMENT

This research is partially supported by NSF CNS-1461926
and the Dissertation Year Fellowship (DYF) at Florida
International University (FIU).

REFERENCES

[1] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan,
O. Vinyals, R. Monga, and G. Toderici, “Beyond short
snippets: Deep networks for video classification,” in the IEEE
conference on computer vision and pattern recognition, 2015,
pp. 4694–4702.

[2] G. Hinton, L. Deng, D. Yu, G. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, B. Kingsbury et al.,
“Deep neural networks for acoustic modeling in speech recog-
nition,” IEEE Signal Processing Magazine, vol. 29, 2012.

[3] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent
trends in deep learning based natural language processing,”
IEEE Computational Intelligence Magazine, vol. 13, no. 3,
pp. 55–75, 2018.

[4] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE
Transactions on Knowledge and Data Engineering, vol. 22,
no. 10, pp. 1345–1359, 2010.

[5] D. Wang and T. F. Zheng, “Transfer learning for speech and
language processing,” in asia-pacific signal and information
processing association annual summit and conference. IEEE,
2015, pp. 1225–1237.

[6] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink,
O. Francon, B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy
et al., “Evolving deep neural networks,” in Artificial Intelli-
gence in the Age of Neural Networks and Brain Computing.
Elsevier, 2019, pp. 293–312.

[7] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing
neural network architectures using reinforcement learning,”
arXiv preprint arXiv:1611.02167, 2016.

[8] B. Zoph and Q. V. Le, “Neural architecture search with
reinforcement learning,” arXiv preprint arXiv:1611.01578,
2016.

[9] K. O. Stanley and R. Miikkulainen, “Evolving neural net-
works through augmenting topologies,” Evolutionary Com-
putation, vol. 10, no. 2, pp. 99–127, 2002.

[10] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley,
and J. Clune, “Deep neuroevolution: genetic algorithms are
a competitive alternative for training deep neural networks
for reinforcement learning,” arXiv preprint arXiv:1712.06567,
2017.

[11] M. Long, H. Zhu, J. Wang, and M. I. Jordan, “Deep transfer
learning with joint adaptation networks,” in the 34th interna-
tional conference on machine learning, vol. 70. JMLR. org,
2017, pp. 2208–2217.

[12] H. Tian, S. Pouyanfar, J. Chen, S.-C. Chen, and S. S. Iyengar,
“Automatic convolutional neural network selection for image
classification using genetic algorithms,” in the IEEE inter-
national conference on information reuse and integration.
IEEE, 2018, pp. 444–451.

[13] J. Bergstra and Y. Bengio, “Random search for hyper-
parameter optimization,” Journal of Machine Learning Re-
search, vol. 13, no. Feb, pp. 281–305, 2012.

[14] M. Suganuma, S. Shirakawa, and T. Nagao, “A genetic
programming approach to designing convolutional neural
network architectures,” in the genetic and evolutionary com-
putation conference. ACM, 2017, pp. 497–504.

[15] H. Lam, S. Ling, F. H. Leung, and P. K.-S. Tam, “Tuning
of the structure and parameters of neural network using an
improved genetic algorithm,” in the 27th annual conference of
the IEEE industrial electronics society, vol. 1. IEEE, 2001,
pp. 25–30.

[16] L. Xie and A. Yuille, “Genetic cnn,” in the IEEE international
conference on computer vision, 2017, pp. 1379–1388.

[17] I. Loshchilov and F. Hutter, “CMA-ES for hyperparame-
ter optimization of deep neural networks,” arXiv preprint
arXiv:1604.07269, 2016.

