
Automatic Convolutional Neural Network Selection for Image Classification Using
Genetic Algorithms

Haiman Tian∗, Samira Pouyanfar∗, Jonathan Chen†, Shu-Ching Chen∗ and Sitharama S. Iyengar∗
∗School of Computing and Information Sciences

Florida International University, Miami, Florida 33199 USA
Email: {htian005, spouy001, chens, iyengar}@cs.fiu.edu

†Miami Palmetto Senior High School, Miami, Florida 33156 USA
Email: jchen7760@gmail.com

Abstract—Deep neural networks such as Convolutional Neu-
ral Networks (CNNs) have achieved several significant mile-
stones in visual data analytics. Benefited from transfer learning,
many researchers use pre-trained CNN models to accelerate
the training process. However, there is still uncertainty about
the deep learning models, structures, and applications. For
instance, the diversity of the datasets may affect the perfor-
mance of each pre-trained model. Therefore, in this paper, we
proposed a new approach based on genetic algorithms to select
or regenerate the best pre-trained CNN models for different
visual datasets. A new genetic encoding model is presented
which denotes different pre-trained models in our population.
During the evolutionary process, the optimal genetic code that
represents the best model is selected , or new competitive
individuals are generated using the genetic operations. The
experimental results illustrate the effectiveness of the proposed
framework which outperforms several existing approaches in
visual data classification.

Keywords-Genetic Algorithms; Deep Learning; Image Clas-
sification; Convolutional Neural Network;

I. INTRODUCTION

The widespread growth of multimedia data including
video, image, audio, and text has provided extensive op-
portunities in various big data applications [1], [2], [3], [4].
Among them, visual data analytics is a fundamental task in
multimedia data. Its applications include video event detec-
tion [5], autonomous driving [6], robotics [7], healthcare [8],
and disaster management [9], [10].

Nowadays, remarkable progress has been achieved in
visual data analytics leveraging deep neural networks. In
particular, Convolutional Neural Networks (CNNs) have
been extensively used for image classification and recog-
nition [11], [12], [13]. These accomplishments are primarily
due to the powerful machines (e.g., with GPUs) and avail-
ability of large-scale annotated datasets (e.g., ImageNet).
Although the existing CNN models have been shown to
be effective, the networks are usually designed manually
for different tasks. In addition, it is shown that different
networks perform well for different tasks and datasets [5].
Therefore, it is critical to automatically decide the best
network for a specific dataset.

The power of transfer learning in visual data analytics
has been extensively pointed out in the literature [5], [14].
Existing deep learning models have millions of parameters
which require immense computing power and very large-
scale datasets to be trained from scratch [12], [13]. Transfer
learning is the solution to mitigate this problem by utilizing
part of the pre-trained models as the starting point of training
a related task. By using transfer learning and powerful image
classifiers trained on huge datasets (e.g., ImageNet), it is
possible to effectively train a deep learning model on regular
datasets with thousands rather than millions of training sam-
ples. However, the questions are (1) How can one determine
the most efficient pre-trained model for each dataset? and (2)
Will the size of the dataset or the nature of the data affect the
classification results? For example, in our previous work on
video event detection [5], AlexNet [11] performs better than
the advanced models such as GoogleNet [12] on the disaster-
related video dataset, while ResNet achieved the best per-
formance in a public dataset called TRECVID SIN [15].
In addition, based on our preliminary results (as shown in
Figure 1), Inception-v3 [16] performs well for a balanced
dataset like CIFAR10 but ResNet or MobileNet [17] may
perform better on imbalanced data. This inconsistency is
mainly due to the level of similarity between the source
(e.g., ImageNet) and target (e.g., disaster or TRECVID)
datasets. Other factors such as the distribution of data, size
of the dataset, and resolution of images may also affect the
performance of each model. Thus, in this study, we try to
answer these questions using an optimization algorithm.

Genetic algorithm (GA) is a subset of Evolutionary Algo-
rithms (EA). It is ordinarily used for search and optimization
problems using biogenetic operations such as selection,
mutation, and crossover [18]. In recent years, integrating
GA with deep learning has been attracting significant atten-
tion. More specifically, it is utilized for automatic selection
of hyper-parameters (e.g., learning rate), parameters (e.g.,
kernel size), and network structures [19], [20].

Different from existing work, we utilize GA to enhance
the performance of CNNs in image classification tasks using
transfer learning in this work. Specifically, several existing



Figure 1. The accuracy of four pre-trained deep learning models on three
different datasets.

pre-trained models are selected as the original population
and then GA is utilized to automatically select the best
model from the population or to regenerate the new can-
didates using GA operations. To serve this purpose, a new
encoding model representing the pre-trained models in the
population is presented. The GA model selects the best CNN
model and extracts the corresponding features from that
model. The fitness function employed in the GA algorithm
is F1-score which is regularly used for the evaluation of
imbalanced datasets.

To the best of our knowledge, this is the first work apply-
ing GA algorithm for automatically selecting the best pre-
trained CNNs for image classification. The contribution of
this work is twofold: (1) a genetic encoding model is created
to improve the process of approaching optimal solutions
for network selection, (2) an adaptive neural network is
presented to handle both balanced and imbalanced datasets
with dynamic feature inputs.

The remainder of this paper is organized as follows. In
section II, the related work in the area of CNNs and GA
is provided. Section III presents the details of the proposed
framework. Experimental results are discussed in section IV.
Finally, the paper is concluded in section V.

II. RELATED WORK

A. Convolutional Neural Networks for Visual Data

With the emergence of deep neural networks, we have
witnessed a revolution in many areas such as computer
vision [11], Natural Language Processing (NLP) [21],
and speech/audio processing [22]. Specifically, CNNs have
shown notable improvements in visual data analytics such

as image classification [23], object detection [24], and video
event detection [25].

CNNs have a a hierarchical structure consisting of a cas-
cade of linear and non-linear layers with local connectivity
and weight sharing characteristics. It is originally proposed
by LeCun et al. [26] for simple image recognition. That
version of CNNs (LeNet-5) consists of two convolutional
layers, each followed by a subsampling layer and finally
ended with a fully connected layer for class prediction. Later,
with the progress of hardware technology (e.g., GPUs),
it has been widely used in many research and real-world
applications [11].

In 2012, AlexNet [11] is proposed for image classification
which extends the traditional CNNs and achieves the best
results in ILSVRC 2012 with more than a 10% improvement
in the top 5 test errors. This model utilizes the GPU imple-
mentation of CNNs together with the image augmentation
and dropout techniques to handle the overfitting problem.

After that, a surge of research studies has been started to
investigate the capability of CNNs in visual data analytics.
Some studies mainly focus on the new structures of deep
networks by introducing deeper [13], [27] and wider [12]
CNNs.

Both VGGNet [27] and GoogleNet [12] were presented
in ILSVRC 2014 and introduced very deep CNNs to further
improve the image classification results. VGGNet, particu-
larly, proposes a very simple model with 19 CNN layers,
while GoogleNet, the winner of ILSVRC 2014, introduces
a more complex module (Inception) which applies several
operations such as convolution and pooling in parallel.

In 2015, ResNet [13] was proposed by Microsoft Research
and achieved remarkable results in ILSVRC and COCO
2015. This model introduced residual connections in CNNs
to overcome overfitting in very deep networks. Residual
connections resulted in designing an ultra deep CNN with
more than 100 layers.

In recent years, several extensions of successful deep
learning models have been introduced (e.g, Inception-
v3 [16]). Also, efficient CNNs models such as Mo-
bileNets [17] are proposed recently to be carried out on plat-
forms with time-constraint and limited computation powers.
These models and their pre-trained weights on very large-
scale datasets (e.g., ImageNet) have been widely utilized in
different applications. More specifically, recent studies have
shown the importance of the deep features extracted from the
pre-trained models using transfer learning over traditional
hand-crafted features [5], [28].

B. Genetic Algorithms for Deep Learning optimization

Automatically learning the structure of neural networks
has been studied for many years [29], [30]. Researchers
pay significant attention to GA-based approaches to tune the
network structure. Specifically, Leung et al. [31] proposed a
method to handle both network structure and its parameters



simultaneously. In that work, many network parameters were
selected manually or fixed to a specific number due to the
high computation costs of GA and hardware limitation. Tsai
et al. [29], on the other hand, proposed a more robust method
using the Hybrid Taguchi-Genetic Algorithm (HTGA) to
enhance the traditional GA for better and faster convergence.

In recent years, by the advent of deep learning algo-
rithms, researchers have studied the possibility of learning
parameters [19], [20], network structures [32], and hyper-
parameters [33] in deep neural networks using GA algo-
rithms.

Young et al. [33] proposed a method called Multi- Evolu-
tionary Neural Networks for Deep Learning (MENNDL) to
optimize hyper-parameters in CNNs using GA. The fitness
function used in that work is simply the testing error on
the dataset after a specific number of iterations. The hyper-
parameters include kernel size and number of filters in each
CNN layer.

In another work, GA algorithm was used to optimize
the parameters in Deep Belief Neural Networks (DBNN)
for object recognition. In particular, parameters such as the
number of epochs, learning rates, and hidden units in DBNN
are optimized to decrease the training time and error rate of
the object recognition task.

In the work proposed by Ijjina et al. [34], GA was used to
determine the optimum weight initializations of deep neural
networks. Specifically, it was applied to a CNN classifier
for the task of human action recognition in order to avoid
getting stuck in a local optimum solution.

In a recent work, Genetic CNN [32] was proposed to
learn the structure of deep neural networks using GA au-
tomatically. To serve this purpose, a new encoding scheme
was suggested which used a fixed-length binary sequence
to indicate the network structure. Then, the accuracy on a
reference set was used as the fitness function to determine
the quality of each individual in a population.

Different from existing work, we propose a new encoding
model which represents different pre-trained models in our
population and apply GA to select the best model or generate
new competitive individuals using genetic operations.

III. PROPOSED FRAMEWORK

Figure 2 depicts the overall structure of the proposed
framework which includes the genetic code generation and
revolution process. In each generation, a set of pre-trained
CNN models are selected. The items included in a particular
set is determined by the individual’s genetic code. Conse-
quently, one individual represents a possible combination
of CNN models that will be utilized to generate the deep
features. Then, a linear SVM classifier is trained on the sim-
ply concatenated deep features to validate the effectiveness
of the model selection using a fitness function. The fitness
function defined in the genetic model takes the average F1-
score from the validation data as the feedback to evaluate

the individual’s rank in the current population. After several
iterations of genetic operations, the best individual with the
highest fitness score will be selected as the optimal solution
for our problem. Then, an automatically created network
with several dense layers is employed to leverage the deep
feature representations and generate the final classification
results.

A step-by-step explanation of the proposed framework is
described as follows.

Algorithm 1: Genetic code evolution

1 RETAIN ← 0.2
2 RANDOM SELECT ← 0.1
3 MUTATE ← 0.2
4 for individual i ∈ Population p do
5 calculate Fitness function f(i)
6 grade[i]← f(i)
7 Sort grade in descending order
8 for x ∈ [0, RETAIN ∗ grade.size− 1] do
9 parents.append(grade[x])

10 # Random selection
11 for x ∈ [RETAIN ∗ grade.size, grade.size− 1] do
12 if RANDOM SELECT > random() then
13 parents.append(grade[x])
14 # Mutation
15 for pa ∈ parents do
16 if MUTATE > random() then
17 POS ← Randint(0, pa.size− 1)
18 Flip code pa at positon POS
19 # Crossover
20 size← Population.size− parents.size
21 while children.size < size do
22 select famale and male randomly from parents
23 if female 6= male then
24 child = (male[0,male.size/2− 1] +

female[male.size/2,male.size− 1])
25 children.append(child)
26 parents.append(children)
27 return parents

A. Genetic Code Revolution

Our network selection problem can be compared to a
black box switching problem. Suppose, the black box device
contains a bank of four input switches which refer to the
four selected deep learning models. The output can be
represented as F = f(s), where s is a particular setting
of the four switches and f(·) is the fitness function. The
objective of the problem is to set the switches to obtain the
maximum possible F value. In our model, we are aiming
to get the maximum Average (Avg.) F1 measure, thus, it
is used as the fitness function. Considering a group of four
binary numbers, a total of 16 (24) different combinations



Figure 2. A genetic algorithm-based framework for deep neural network selection

from “0000” to “1111” can be generated. The combination
“0000” means no model is going to be selected since there
is no output signal. By removing this individual from the
gene pool, there will be in total 15 different genes that
lead to various output performances. Exhaustive search or
brute-force search solutions are very time consuming for this
problem and the complexity increases exponentially when
one more model is added to the model pool. Therefore,
utilizing GA is a smart method that improves the process of
approaching the optimal solution in a shortcut. The entire
evolution algorithm is illustrated in algorithm 1.

One iteration of the genetic code revolution consists of
several genetic operations as explained below.

• Initialization: With GA, we first code the selected
model set (switches) as a finite-length string. A simple
code can be generated by considering a string of
four 1’s and 0’s where each of the four switches is
represented as “1” if the model is selected and “0” if
the model is discarded. For instance, with this schema,
the string “1001” encodes the setting where the first and
the last switches are on while the others are off. First,
the initial population is randomly selected. Then, we
define a set of genetic operations that takes this initial
population and generates successive populations. The
new populations can be potentially improved over the
time.

• Fitness Calculation: As we mentioned before, the
function f can be considered as a measure of profit,
utility, or goodness that we want to maximize. Copying
genetic code according to the fitness values means
a code with a higher value has a higher probability
to contribute to the next generation’s offspring. This
operator is an artificial version of natural selection,

Darwinian survival theory. For each generation, we
take a portion of the best performing individuals as
judged by our fitness function. These high-performers
will be the parents of the next generation. Instead of
running through the whole framework and getting the
feedback from the validation set, we proposed to train
a linear SVM classifier before building the deep neural
networks as a shortcut to validate each individual in the
current population. In this case, we can significantly
reduce the computational complexity. Based on our
preliminary results, Linear SVM classifier outperforms
all the other simple classifiers, such as decision tree,
RandomForest, etc. Therefore, it is utilized to calculate
the fitness score and potentially ensures the reliability
of the final output. Since we aim to tackle the multi-
class classification task in this paper, the evaluation
metrics and SVM classifier are evaluated based on the
one-vs-rest decision function. The fitness function f(s)
for each dataset that includes C classes is calculated in
Equation 1.

f(s) = (

C∑
c=1

2 ∗ truePostivec
2 ∗ truePositivec + Falsec

)/C, (1)

where truePostivec and Falsec represents the number
of instances that are correctly predicted as concept c
and the total number of wrongly classified instances,
respectively.

• Grades Ranking and Population Retaining: Each
individual in the current generation will get a rank
based on the descending order of the fitness scores.
The retaining rate is set as 20%, which means among a
total number of 10 individuals in a one-time population,
only the top two individuals will survive while all the



others might die. As each generation of a population
is a fixed number, eight new individuals will appear
according to the natural selection theory.

• Random Selection: We also randomly select some
of the individuals with low scores as the parents,
because we want to promote genetic diversity. It is
very likely that optimization algorithms get stuck at
a local maximum. Consequently, it may not reach the
global maximum. By including some individuals who
are not performing well, we decrease our likelihood of
getting stuck. The random selection threshold is set to
0.1. Whenever a random number in the range of [0, 1] is
generated, the number is compared with the probability
threshold (e.g., 0.1). If the random number is larger than
the threshold, then the corresponding individual will be
temporarily kept in the gene pool. For all the genes with
low fitness scores in the current population, a random
selection procedure will be used to determine whether
we keep the current individual or not.

• Mutation: Finally, mutation happens in a small random
portion of the population which randomly modifies
each individual. Like random selection, it also aims
to encourage genetic diversity and avoids getting stuck
at local maximum. As we only keep very few good
individuals in each generation, we want to set the
mutation probability considerably higher to speed up
the revolution. For each individual in our genetic code,
there are four possible positions that mutation might
happen. For each individual, we restrict the operation
to only change one position in one individual with a
probability of 0.2. The position is also determined by a
random integer ranging from [0,3]. The mutation will
only flip the selected digit either from 1 to 0 or from
0 to 1.

• Crossover: If there are still empty slots left after retain-
ment and random selection, a crossover will happen and
fill out all the left portions. After reproduction of a new
generation, the simple crossover may proceed in two
steps. First step is the random pair selection. Second,
each pair undergoes the cross over operation as follows:
We take the first half digits from the male and the last
half digits from the female. It is possible to have one
parent breed multiple times, but the male and female
parents cannot be identical. If the revolution process
reaches a single optimal solution in an early stage,
there will be no candidates remaining to process the
crossover, since both female and male will be always
the same. Then, the new generation will stop with fewer
individuals, as we only care about the top gene at the
final stage.

• Selection of the Best Individual: With 20% survival
rate (plus an additional 10% of other individuals) and
20% mutation, the evolution always takes less than
three generations (10 individuals in each generation)

to reach a perfect solution. If there are more than one
individual in the last generation reaching to the same
top fitness score, a logic “AND” operation is applied
to those codes. For example, if both codes “1101”
and “1100” perform the same, we will only use the
features from the first two models instead of using
three models, because the redundant features increase
the computational complexity without a guarantee of
boosting the performance.

B. Deep Representation Learning

After the genetic code evolution, we determined a varied
number of deep features. It is difficult to determine a
general network works for all of the combinations. Based
on our experience, the feature set that contains less than
10k features could be translated into 256-dimension high-
level feature neurons. Two optimizers are our candidates,
namely Adam [35] and RMSprop [36]. Adam is used as the
optimizer for the balanced datasets. If it is an imbalanced
dataset, RMSprop is used, and one 50% dropout layer is
inserted before the last output layer (softmax layer). Dropout
can significantly reduce the effect of overfitting. Batch size
is automatically determined according to the size of the
training samples.

IV. EXPERIMENTAL ANALYSIS

A. Datasets

We selected three representative datasets from different
domains to evaluate our proposed idea. First, a Youtube
video dataset [25] was used that represented different dis-
aster event-related concepts and we extracted one keyframe
from each video clip. Also, two image datasets were utilized
for the performance evaluation. One was collected from the
network cameras located in different places [23], while the
other one was a well-known public dataset called CIFAR-
10 [11] that classifies objects and animals.

For the datasets that are not separated into training and
testing, we randomly select 20% of samples as testing and
80% as training. Specifically, Disaster video dataset was sep-
arated into training and testing based on the time the event
happens (hurricane Harvey for training and hurricane Irma
for testing). CIFAR-10 data already provided the training
and testing data (50K for training, 10K for testing). Form
the training dataset, 20% of the samples were selected as
the validation set which calculated the fitness scores in the
genetic code evolution to evaluate the genetic code. Also, the
same validation data were used in the last stage to evaluate
the performance during feature representation learning.

The statistical information of the first two datasets were
listed in Table I. Both of them are imbalanced datasets.
For instance, the majority class in the Network Camera
10K is “Highway”. In the Disaster dataset, the concept
“flood/storm” contains most of the instances in both hurri-
cane events. The CIFAR-10 dataset consists of ten concepts



including several objects (airplane, automobile, ship, and
truck) and animals (bird, cat, deer, dog, frog, and horse).
It is a balanced dataset as each concept contains the same
number of instances.

B. Experimental Setups

The proposed framework was compared with several suc-
cessful deep learning models proposed in recent years. More
specifically, we selected MobileNet, ResNet50, Inception-
v3, and VGG16 which are all pre-trained on the ImageNet
dataset. We used linear SVM as the classifier for all the
models. In addition, we showed the performance of our
genetic selection combined with a linear SVM and compared
it with the whole proposed framework.

The evaluation metrics used in this work include Pre-
cision, Recall, average F1-score (Avg. F1), and weighted
average F1 score (AvgW. F1) which take both imbalanced
and balanced datasets into account. In particular, AvgW.
F1 is calculated as the weighted sum of all F1 scores that
considers the number of true instances for each class. This
metric is important to show the performance of each model
in a multi-class classification task.

Since Disaster dataset includes only 1K training data, the
batch size of training model is set as 16, while the other two
datasets are trained with batch size equals to 64. Since the
proposed model only contains two dense layers at the end,
we set the total number of epochs to 60 and only the best
model with the lowest losses will be selected. As CIFAR-10
has larger amount of data compared to the other two datasets,
the total number of epochs is set to 1200 to generate better
training weights.

C. Experimental Results

Table II illustrates the performance results for all the
baselines as well as our proposed genetic selection and the
whole framework. As it can be inferred from this table,
ResNet50 usually performs better than other deep learning
models such as VGG16, and Inception-v3 in imbalanced
datasets (e.g., Disaster and Network Cameras). However,
Inception-v3 can significantly improve the results compared
to the ResNet50 in a balanced dataset like CIFAR-10.
Overall, VGG16 performs poorly in all the selected datasets.
MobileNet’s results are very close to the ones from ResNet-
50, which shows the effectiveness of this light-version
model compared to the computationally-heavy models such
as Inception-v3. These results show the necessity of an
automatic model to select the best model or combine the best
ones in a way to maximize the final classification results.

Our proposed procedure of genetic code evolution shows
the capability of identifying the best model or, in some cases,
a group of models to further improve the final classification
results. For the Disaster dataset, the best result is identical
to ResNet50, which means combining any two or more of
the models together will not improve the results. However,

Figure 3. Top 5 models trained on CIFAR-10 within 1200 epochs

for the other two datasets, we can observe an improvement
by combining several group of features from different pre-
trained models. The AvgW. F1 improves 6% and 8% for
Network Camera 10K and CIFAR-10, respectively.

Finally, the whole framework shows more astounding
improvements. We leverage the features by feeding them
into another adaptive network instead of just simply con-
catenating them from each selected model. It can further
improve the results considering all the evaluation metrics.
Specifically, the AvgW. F1 reaches to 80% in the Network
Camera 10K dataset. Furthermore, larger improvements can
be recognized in the other two datasets.

For CIFAR-10 dataset, we also visualize the accuracy (to-
tal number of correctly classified instances), AvgW. F1, and
Precision from the last five models that were automatically
saved during the training process with descending losses.
From Figure 3, we can conclude that, although the Precision
fluctuated over the time, a trend of further improvement can
be expected with more iterations.

V. CONCLUSION

Currently, there exist many manually designed deep learn-
ing models which are successfully applied to different tasks.
However, there is no automatic way to select the best model
for each dataset and domain. To address this challenge,
we propose a new genetic algorithm for deep learning
optimization and model selection. Specifically, the proposed
genetic encoding and the adaptive network can automatically
select the best model from the population. The experimental
results show the effectiveness of the proposed GA method
compared to other baselines.

In this work, several parameters of the adaptive network
are set based on the empirical research. In the future, to
enhance the capability of the network, GA can also be
applied to determine all those parameters as well as the
weights generated during the learning phase (e.g., the depth



Table I
THE STATISTICAL INFORMATION OF NETWORK CAMERA 10K AND DISASTER DATASET

Network Camera 10K Disaster
No. Concepts Instances No. Concepts Instances No. Concepts Harvey Irma
1 Intersection 855 8 Yard 161 1 Demonstration 42 8
2 Sky 495 9 Forest 139 2 Emergency Response 81 20
3 Water Front 978 10 Street 431 3 Flood and Storm 426 177
4 Building+Street 603 11 Parking 99 4 Human Relief 70 1
5 Park 499 12 Building 243 5 Damage 42 172
6 Montain View 719 13 Highway 3724 6 Victim 75 16
7 City 432 14 Park+Building 149 7 Speak 347 63

Total 9527 Total 1083 457

Table II
EVALUATION RESULTS ON THREE DIFFERENT DATASETS

Datasets Models Precision Recall AvgW. F1 Avg. F1

Disaster

MobileNet 0.260 0.092 0.380 0.121
VGG16 0.140 0.142 0.296 0.109

ResNet50 0.296 0.113 0.419 0.141
Inception-v3 0.197 0.071 0.303 0.092

Genetic Selection + Linear SVM 0.296 0.113 0.419 0.141
Proposed Framework 0.380 0.136 0.468 0.163

MobileNet 0.610 0.145 0.755 0.216
VGG16 0.361 0.082 0.489 0.098

Network
Camera 10K

ResNet50 0.640 0.158 0.773 0.233
Inception-v3 0.559 0.131 0.726 0.194

Genetic Selection + Linear SVM 0.668 0.174 0.797 0.254
Proposed Framework 0.700 0.182 0.804 0.261

CIFAR-10

MobileNet 0.446 0.083 0.446 0.14
VGG16 0.010 0.100 0.018 0.018

ResNet50 0.471 0.09 0.469 0.15
Inception-v3 0.502 0.102 0.503 0.169

Genetic Selection + Linear SVM 0.588 0.137 0.589 0.223
Proposed Framework 0.651 0.169 0.648 0.268

and width of the network, the activation function for the
dense layer, and the optimizer for the network).

ACKNOWLEDGMENT

This research is partially supported by NSF CNS-
1461926.

REFERENCES

[1] C. Chen, Q. Zhu, L. Lin, and M.-L. Shyu, “Web media
semantic concept retrieval via tag removal and model fusion,”
ACM Transactions on Intelligent Systems and Technology,
vol. 4, no. 4, pp. 61:1–61:22, 2013.

[2] T. Meng and M.-L. Shyu, “Leveraging concept association
network for multimedia rare concept mining and retrieval,”
in IEEE International Conference on Multimedia and Expo,
2012, pp. 860–865.

[3] S.-C. Chen, M.-L. Shyu, and R. Kashyap, “Augmented tran-
sition network as a semantic model for video data,” Interna-
tional Journal of Networking and Information Systems, vol. 3,
no. 1, pp. 9–25, 2000.

[4] M.-L. Shyu, K. Sarinnapakorn, I. Kuruppu-Appuhamilage,
S.-C. Chen, L. Chang, and T. Goldring, “Handling nominal
features in anomaly intrusion detection problems,” in IEEE
International Workshop on Research Issues in Data Engineer-
ing: Stream Data Mining and Applications, 2005, pp. 55–62.

[5] S. Pouyanfar and S.-C. Chen, “Automatic video event detec-
tion for imbalance data using enhanced ensemble deep learn-
ing,” International Journal of Semantic Computing, vol. 11,
no. 01, pp. 85–109, 2017.

[6] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving:
Learning affordance for direct perception in autonomous
driving,” in IEEE International Conference on Computer
Vision, 2015, pp. 2722–2730.

[7] H. Shahbazi, K. Jamshidi, A. H. Monadjemi, and H. Eslami,
“Biologically inspired layered learning in humanoid robots,”
Knowledge-Based Systems, vol. 57, pp. 8–27, 2014.

[8] S. Liu, S. Liu, W. Cai, S. Pujol, R. Kikinis, and D. Feng,
“Early diagnosis of alzheimer’s disease with deep learning,”
in IEEE 11th International Symposium on Biomedical Imag-
ing, 2014, pp. 1015–1018.

[9] M. E. P. Reyes, S. Pouyanfar, H. C. Zheng, H.-Y. Ha, and S.-
C. Chen, “Multimedia data management for disaster situation
awareness,” in International Symposium on Sensor Networks,
Systems and Security, 2017.

[10] H. Tian, H. C. Zheng, and S.-C. Chen, “Sequential deep
learning for disaster-related video classification,” in The First
IEEE International Conference on Multimedia Information
Processing and Retrieval, 2018, pp. 106–111.



[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
Advances in Neural Information Processing Systems, 2012,
pp. 1097–1105.

[12] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich,
“Going deeper with convolutions,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 1–9.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 770–778.

[14] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How trans-
ferable are features in deep neural networks?” in Advances
in Neural Information Processing Systems, 2014, pp. 3320–
3328.

[15] G. Awad, C. G. Snoek, A. F. Smeaton, and G. Quénot,
“TRECVid semantic indexing of video: A 6-year retrospec-
tive,” ITE Transactions on Media Technology and Applica-
tions, vol. 4, no. 3, pp. 187–208, 2016.

[16] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,”
in IEEE Conference on Computer Vision and Pattern Recog-
nition, 2016, pp. 2818–2826.

[17] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko,
W. Wang, T. Weyand, M. Andreetto, and H. Adam,
“MobileNets: Efficient convolutional neural networks for
mobile vision applications,” CoRR, vol. abs/1704.04861,
2017. [Online]. Available: http://arxiv.org/abs/1704.04861

[18] C. M. Anderson-Cook, Practical genetic algorithms. Taylor
& Francis, 2005.

[19] D. Hossain, G. Capi, and M. Jindai, “Optimizing deep learn-
ing parameters using genetic algorithm for object recognition
and robot grasping,” Journal of Electronic Science and Tech-
nology, vol. 16, no. 1, pp. 11–15, 2018.

[20] O. E. David and I. Greental, “Genetic algorithms for evolving
deep neural networks,” in Genetic and Evolutionary Compu-
tation Conference, 2014, pp. 1451–1452.

[21] Y. Kim, “Convolutional neural networks for sentence clas-
sification,” in Conference on Empirical Methods in Natural
Language Processing, 2014, pp. 1746–1751.

[22] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath
et al., “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” IEEE
Signal Processing Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[23] S. Pouyanfar, Y. Tao, A. Mohan, H. Tian, A. S. Kaseb,
K. Gauen, R. Dailey, S. Aghajanzadeh, Y.-H. Lu, S.-C. Chen,
and M.-L. Shyu, “Dynamic sampling in convolutional neural
networks for imbalanced data classification,” in The First
IEEE International Conference on Multimedia Information
Processing and Retrieval, 2018, pp. 112–117.

[24] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich
feature hierarchies for accurate object detection and semantic
segmentation,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2014, pp. 580–587.

[25] H. Tian, Y. Tao, S. Pouyanfar, S.-C. Chen, and M.-L. Shyu,
“Multimodal deep representation learning for video classifi-
cation,” World Wide Web, pp. 1–17, 2018.

[26] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[27] K. Simonyan and A. Zisserman, “Very deep
convolutional networks for large-scale image recognition,”
CoRR, vol. abs/1409.1556, 2014. [Online]. Available:
http://arxiv.org/abs/1409.1556

[28] M. Papakostas, E. Spyrou, T. Giannakopoulos, G. Siantikos,
D. Sgouropoulos, P. Mylonas, and F. Makedon, “Deep visual
attributes vs. hand-crafted audio features on multidomain
speech emotion recognition,” Computation, vol. 5, no. 2,
p. 26, 2017.

[29] J.-T. Tsai, J.-H. Chou, and T.-K. Liu, “Tuning the structure
and parameters of a neural network by using hybrid taguchi-
genetic algorithm,” IEEE Transactions on Neural Networks,
vol. 17, no. 1, pp. 69–80, 2006.

[30] S. R. Young, D. C. Rose, T. P. Karnowski, S.-H. Lim, and
R. M. Patton, “Optimizing deep learning hyper-parameters
through an evolutionary algorithm,” in Workshop on Ma-
chine Learning in High-Performance Computing Environ-
ments. ACM, 2015, pp. 4:1–4:5.

[31] F. H.-F. Leung, H.-K. Lam, S.-H. Ling, and P. K.-S. Tam,
“Tuning of the structure and parameters of a neural network
using an improved genetic algorithm,” IEEE Transactions on
Neural networks, vol. 14, no. 1, pp. 79–88, 2003.

[32] L. Xie and A. Yuille, “Genetic CNN,” in IEEE International
Conference on Computer Vision, 2017, pp. 1388–1397.

[33] S. R. Young, D. C. Rose, T. P. Karnowski, S.-H. Lim, and
R. M. Patton, “Optimizing deep learning hyper-parameters
through an evolutionary algorithm,” in Workshop on Ma-
chine Learning in High-Performance Computing Environ-
ments, 2015, p. 4.

[34] E. P. Ijjina and K. M. Chalavadi, “Human action recognition
using genetic algorithms and convolutional neural networks,”
Pattern Recognition, vol. 59, pp. 199–212, 2016.

[35] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014. [Online].
Available: http://arxiv.org/abs/1412.6980

[36] Y. N. Dauphin, H. de Vries, J. Chung, and Y. Bengio,
“Rmsprop and equilibrated adaptive learning rates for
non-convex optimization,” CoRR, vol. abs/1502.04390, 2015.
[Online]. Available: http://arxiv.org/abs/1502.04390


