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Abstract—Multimedia semantic concept detection is one of
the major research topics in multimedia data analysis in recent
years. Disaster information management needs the assistance
of multimedia data analysis to better utilize those disaster-
related information, which has been widely shared by people
through the Internet. In this paper, a Feature Affinity based
Multiple Correspondence Analysis and Decision Fusion (FA-
MCADF) framework is proposed to extract useful semantics
from a disaster dataset. By utilizing the selected features and
their affinities/ranks in each of the feature groups, the proposed
framework is able to improve the concept detection results.
Moreover, the decision fusion scheme further improves the
accuracy performance. The experimental results demonstrate
the effectiveness of the proposed framework and prove that
the fusion of the decisions of the basic classifiers could make
the framework outperform several existing approaches in the
comparison.
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I. INTRODUCTION

Disasters, in most cases, disrupt a community seriously
with human, economic, and environmental losses [1][2]. A
natural catastrophe or accident produces a great amount
of time-sensitive information [3]. The abilities to collect,
analyze, and manage such information can benefit the soci-
ety in decision-making and rehabilitation since not only the
hazard status but also the preparation or recovery processes
are critical to the populace and the community [4][5].
By witnessing an exponential growth of multimedia data
(including video, audio, image, and text) recently, using the
visual data that carries a variety of rich semantic information
becomes popular in conquering the challenges in disaster
information management.

During a disaster event, the advances and popularity of
electronic and mobile devices enable the capturing of a
large amount of disaster-related multimedia data[6]. How
to effectively and efficiently extract useful information from
such disaster-related multimedia data to provide situation
awareness information to the general public and the person-
nel in the Emergency Operations Center (EOC) has become

more and more important. Video semantic concept detection,
which aims to explore the rich information in videos, uses
various machine learning and data mining approaches to
address this challenge [7][8][9][10][11][12][13]. In addition,
there have been efforts to better bridge the semantic gap
between the low-level visual features and the high-level con-
cepts in the literature [14][15][16][17][18][19][20]. Not be-
ing restricted to the disaster classification tasks that attempt
to classify the disaster scenes from non-disaster scenes, a
variety of information relevant to a specified disaster can be
utilized, including the hazard situation, recovery progress,
disaster effects, and disaster prevention, to name a few. The
difficulty increases since all those concepts are surrounding
one major premise, which will immensely increase the
similarity between the concepts.

Benefited from the enhanced quality and increased res-
olution of multimedia data, a large number of features
can be extracted and utilized to improve the accuracy of
semantic concept detection. Though feeding these features to
a powerful classifier could improve the results, it may not be
an optimal one and as a result, the computational complexity
will increase significantly as well. In the literature, various
classifiers have been used to identify the inherent concepts in
videos, including Artificial Neural Networks (ANNs) [21],
Logistic Regression (LR) [22], Decision Trees (DTs) [23],
Support Vector Machines (SVMs) [24], etc. Besides per-
forming as single classifiers, SVMs are also considered
as good candidates for the choice of basic classifiers that
achieve multiple decision fusion tasks. However, there is
still a large space for improvements.

To address such challenges, a Feature Affinity based
Multiple Correspondence Analysis and Decision Fusion
(FA-MCADF) framework is proposed in this paper. In
the proposed framework, the Feature Affinity based MCA
(FA-MCA) algorithm is first introduced as an individual
classifier that outperforms other machine learning algorithms
in the disaster-related concept detection tasks. The low-level
features are fused into one group after the feature extraction
phase and a feature selection method is applied in the FA-
MCA model to deal with the high dimensional feature sets.



After building a tree-like structure that demonstrates the
feature affinities, a weighting function that considers the
affinity relationship among the ranks of the features and the
number of features at the same rank is developed to improve
the MCA algorithm. Furthermore, it is adopted as a basic
classifier that can be simultaneously applied to separated
feature groups, which reduced the complexity and the com-
putational time. In addition, it has an automatic process to
moderate how the weight of a feature dominates the other
features. The important relationships among features within
each feature group are preserved in FA-MCADF without
being affected or counteracted by other representations of
features that are less correlated globally.

The rest of this paper is organized as follows. Section
II discusses the related work in multimedia data analysis.
Section III introduces the proposed framework and discusses
each component in details. In section IV, the experimental
results and observations are presented. Finally, the last
section presents the conclusion and future work.

II. RELATED WORK

Multimedia data analysis has been widely used in a variety
of application domains that need to process and manage
huge amounts of raw multimedia data, typically represented
by a group of low-level features [25][26][27][28][29][30].
The low-level features are image descriptors of the visual
properties that are extracted directly from the images without
any object description [31][32]. The features are converged
into a single form for the sack of storage with diversified
representatives and can assist the content analysis afterward.
On the other hand, high-level features or concepts that
contain the semantic information can be acquired from
the low-level features using some data analytic approaches.
In order to utilize these low-level features to characterize
high-level semantic concepts, various approaches have been
developed, including feature selection [7][33][34], classifier
selection [35][36][37][38], and decision fusion [39][8].

Due to the advances in technologies that greatly improve
the quality of the recorded multimedia data, higher reso-
lution data is widely used to further improve the analysis
results. However, the more features learned from the data,
the more computational time it will need, which slowers the
analysis process. For most of the multimedia applications,
especially in the current big data era, the dimension of the
features is very high and thus feature selection is commonly
applied to reduce the feature dimension to make the learning
more efficient [40][41].

After feature selection, many classification algorithms can
be used to detect the high-level semantic concepts such as
ANNs, LR, DTs, SVMs, and Multiple Correspondence Anal-
ysis (MCA) [24][42][23][43]. The first two algorithms deter-
mine the parameters by maximum-likelihood estimation and
calculate the probability of each class. MCA has been used
as a classifier by calculating the correlations between the

features and the classes. DTs that use the information gain
values to generate the tree structure are another commonly
used classifier. However, while building up the decision tree
of each decision direction, the features are considered as
independent. SVMs can bound the generalization error and
build consistent estimators from data.

Decision fusion is the last step before printing out the
merged classification results. It commonly uses non-linearly
weighted summation methodologies to explore the inter-
dependencies among multiple classifiers. Decision fusion
frameworks are widely employed for multi-modality, multi-
temporal, and/or multi-spatial feature classification prob-
lems.

In our proposed FA-MCADF framework, FA-MCA is
used as the basic classifier and the affinity relationship
between the tying features is considered to enhance the
classification effectiveness by using conditional weighting
functions. It is a scalable framework that accepts a flexible
number of feature groups and evaluates the reliabilities of the
basic classifiers basing on the evaluation of every learning
process. The features are separated into different groups base
on the representation levels (e.g., color space, object space,
etc.).

III. THE PROPOSED FRAMEWORK

The overall framework is illustrated in Figure 1. It in-
cludes four major steps: pre-processing (the upper right
panel), training phase (the middle left panel), testing phase
(the lower right panel), and the decision fusion scheme for
the final classification. The pre-processing the phase includes
key frame extraction and feature extraction, which make the
data cleaned and structured. In the training phase, the model
is trained using the FA-MCA algorithm (details are depicted
in the upper right corner) for each structural feature group
individually.

The feature affinities are calculated and applied to the final
weight as a factor which will be used in the testing phase
to classify the testing instances. The proposed framework
considers the feature selection procedure as well as the rela-
tionship between the features. It will further affect the final
weight of each feature and moderate the bias of the classi-
fication results. Nevertheless, by distributing the feature set
(with an enormously high dimension) into several feature
groups (with smaller dimensions) based on the different
representation levels (e.g., color space, object space, etc.),
a closer dependency analysis on the relationships among
the features within each group and between groups can be
conducted. For example, from the color space to the object
space, the feature groups form a flat structure, indicating that
each group is self-structured and relatively independent.

A. Pre-processing

The pre-processing phase is typically domain-specific.
In video analysis, each video is processed independently
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Figure 1. Illustration of the FA-MCADF framework

to extract several low-level features as frame-based. To
reduce the redundancy of the frames in each video, the raw
videos are grouped into different video shots [44][45]. A
key frame from each video shot is selected to represent the
video shot, and all the selected key frames are then used
to cover the general idea of the video. This can reduce
the computation time significantly. In this paper, several
different types of low-level visual features are extracted from
the raw data, which include Histogram of Oriented Gradient
(HOG) [46], Color and Edge Directivity Descriptor (CEDD)
[47], Haar-like feature [48], and color space information
[49][50]. Specifically, HOG feature is used for the purpose
of object detection, which is computed on a dense grid of
uniformly spaced cells and uses overlapping normalization
for accuracy improvement. CEDD feature, as it is named,
obtains color information and texture information. The haar-
like feature is always used in object recognition with Haar
wavelets, especially useful in face detection. The color space
representations are the Hue, Saturation, and Value (HSV)

with YCbCr as the supplemental information. As a result,
one video is represented by several key frames, and each
key frame is composed by several feature values. Hence,
the dataset consists of data instances at the frame level with
the binary class information. The finalized dataset is then
split into training and testing sets using three-fold cross-
validation [51] based on the count of videos. In other words,
a set of key frame instances that belong to the same video
is assigned to either the training dataset or testing dataset
during the separation.

B. Training Phase

In the training phase, there are two key components:
feature selection and feature affinity calculation. The FA-
MCA model includes the chi-squared test [52] to evaluate
and select the most representable feature values if the dataset
is in a very high dimension. By building up a decision
tree structure that uses the reduced features, the useful
information and positions are stored and utilized in the



feature affinity calculation component.
The proposed feature affinity calculation component as-

signs the weight of each feature based on the position of
the feature (depthi) in the tree structure. Furthermore, the
number of features at the same depth in the tree is also
considered as useful information. By considering the number
of features at the same depth, the weight assigning to each
feature at the same rank will be reduced. It is obvious that
the feature, which holds the rank by itself, should be more
valuable than those features at the same depth. Unlike the
information gain in the original decision tree algorithm, the
relationships between features in the structure are preserved
after the feature selection component to make the final MCA
weight generation multivariate.

As a result of feature selection, the total number of useful
features in the training phase decreases. The number is
also considered while calculating the feature affinity (FAi)
for feature index (i). However, instead of considering only
the ratio of feature reduction, the proposed feature affinity
calculation component utilizes the position of the feature
to eliminate the effect. (as shown in Equation (1)). It will
be directly applied to the feature that is responsible for the
decision in a certain level only by itself. In other words, there
is no other feature competing with the current one while
making the decision. Let Iorig and I be the total number
of features before and after feature selection, respectively.
The natural logarithm is used to obtain a simpler derivative
under the curve y = 1/x.

FAi =
1

loge(depthi + 1)
+
Iorig
I

. (1)

Share FAi =
FAi

# offeatures in depthi
. (2)

For each selected feature, the feature index (i) and the
feature level (depthi) are recorded. They are reused here
for the feature weight calculation. The number of features
holding the same rank will be counted to evaluate how those
features in that rank dominate the other features. In brief,
dividing the count will decrease the respective affinity. Such
modification is shown in Equation (2).

The feature affinity is supposed to improve the final
classification results due to the deep observation of the
correlations between features. That is, the relationship be-
tween the features plays an important role to make the
feature domination consistency. Without such information,
each feature that is considered as independent will enlarge
the weighting effect. The most direct influence is that more
instances will be classified to be either positive or negative
during the testing phase since some features are over-
weighted.

By integrating the feature affinity with the MCA algo-
rithm, the final weighting function of the MCA algorithm
is thus modified. For the details of how to generate the
original MCA weighting matrix, please refer to [42]. After

selecting each feature to calculate the MCA weight, a 3-D
matrix (MW ) is generated as a form of feature-value pairs.
For each pair of the feature and class, the final weight is
multiplied by the feature affinity. The function is shown in
Equation (3).

MW c
i , ϕ = MW c

i , ϕ ∗ Share FAi, (3)

where c represents the class of the instance, and ϕ represents
the feature value. Similar to Equation (1), i′ indicates the
feature index after feature selection.

C. Testing phase

The final weighting matrix generated during the training
phase is used in the testing phase in order to get the final
ranking scores for the testing instances. Those ranking scores
are responsible for predicting the concept class. The ranking
procedure starts with adding all feature weights for instance
t, and calculates its average [42].

For classification, all the ranking scores of the testing
instances are sorted in the descending order, and the top
instances are selected with the best selection threshold [53].

Since the testing phase sums up the feature weights
learned from the training phase, the proposed feature affinity
calculation will make the final weight of each feature more
durable and improve the testing results.

D. Decision fusion

In the decision fusion stage, the classification results from
several FA-MCA classifiers are fused. The criterion that
decides the best threshold in the testing phase is used here to
evaluate the reliability of each training model. The F1 scores
(sf ) [54] calculated during the training phases are optimized
by the best threshold selection. The average F1 score (s̄) and
the standard deviation (stdF ) accumulated by the F feature
groups decide whether the specific group of features is a
good representative of the concept. The Bessel’s correction
[55] is applied to the standard deviation calculation as shown
in Equation (4). F is also the number of the basic FA-MCA
classifiers which correspond to the F feature groups.

stdF =

√√√√ 1

F − 1

F∑
f=1

(sf − s̄)2. (4)

In the proposed framework, each feature group is consid-
ered as an equally contributed input to the final decision.
Meanwhile, the uncertainty of the contribution for each
representation space makes the fusion scheme flexible, as
illustrated in Equation (5) and Equation (6). Pn′ is the final
label prediction set for each testing data (te). If the instance
is predicted as negative in any feature group, the prediction
value will be added to the output set Pn′ that takes the z-
score value (γf ) and the sum of the values of all the basic
classifiers. For every testing instance, each FA-MCA classi-
fier produces one prediction result. The prediction result is a



binary value, either 1 representing negative (not belonging to
the concept of interest) or 0 representing positive (belonging
to the concept of interest). For example, if there are four
basic classifiers that classify one instance as negative, the
final score will be summed up to at least four, since a smaller
absolute z-score value of a specific classifier represents a
higher reliability.

In addition, since the 99.7% confidence interval is rep-
resented between the z-score values of -3 and 3 [56], the
α value is set to 3.5 empirically to eliminate the effect of
abnormal values and keep as much information as possible.

Pn′
te

=

F∑
f=1

(Pntef + γf ) (5)

γf =

{
Pnte

f

F+|zscoref | |zscoref | ≤ α
Pntef otherwise

(6)

The decision fusion scheme mainly focuses on better
predicting the negative instances, as we would like to keep as
many positive instances as possible. Algorithm 1 illustrates
the idea of how to utilize the prediction results based on
the normal distribution among all basic classifiers. The
prediction set Pn is a Te × F matrix which includes F
prediction results for Te testing instances. The z-scores of
the basic classifiers are calculated in line 4 to decide the
reliabilities.

After accumulating the prediction results in line 6, the
final decisions are made though a threshold β calculation
using Equation (7) in line 9. When s̄ is close to 1, the final
classification result is considered to be trustable with a lower
accumulated value. By setting the z-score value (z) to -2 in
Equation (7), the mean value is shifted to the left with 2
standard deviation values. That is the smallest value between
0 and 1 in the 95% confidence interval and is considered as a
fault tolerance number. This number is applied to half of the
classifiers in order to decide the threshold of the summation,
which indicates the negative label. Namely, at least half of
the classifiers should classify an instance as negative with a
better z-score when the instance is a negative instance.

β = F − (s̄+ z ∗ stdF )

F
∗ F

2
= F − (s̄+ z ∗ stdF )

2
(7)

IV. EXPERIMENTAL ANALYSIS

A. Dataset Description

Although the MCA-based framework can be used as a
general framework that works for various multimedia appli-
cation domains, in this paper, the specific task of detecting
disaster-related semantic concepts is selected using a dataset
obtained from the Federal Emergency Management Agency
(FEMA) website. Since the semantic concepts obtained from
this website are different from the normal disaster event

Algorithm 1 Decision Fusion Scheme
Input: The negative label prediction set Pn of each feature
group F {Pntef |f = 1, · · · , F ; te = 1, · · · , T e}; the training
set F1 score set s= {sf |f = 1, · · · , F}; the average F1 score
s̄; and the F1 scores’ standard deviation stdF .
Output: The combined negative label prediction set Pn′

{Pn′te|te = 1, · · · , T e}
1: procedure DFCAL(Pn, s, s̄, stdF )
2: for all Pntef (f = 1, · · · , F ) do
3: //Calculate each F1 score’s z-score
4: zscoref = (sf − s̄)/stdF ;
5: for all Pntef (te = 1, · · · , T e) do
6: Calculate Pn′te using Equations (5) and (6);
7: Calculate β using Equation (7);
8: for all Pn′te (te = 1, · · · , T e) do
9: if Pn′te ≥ β then

10: Pn′
te is negative;

11: else
12: Pn′

te is positive;
13: return Pn′

te

concepts, it is more useful to examine the effectiveness of
the proposed FA-MCADF framework.

No. Concepts Positive Instances Videos
1 Flood 258 21
2 Human Relief 92 4
3 Damage 281 21
4 Training Program 148 7
5 Disaster Recovery 369 16
6 Speak 1230 145
7 Interview 117 23

Total 2495 237

Table I
DATASET STATISTICS

The dataset contains over 200 videos and thousands of key
frames that are related to seven different concepts. However,
there are still many similarities between some of the con-
cepts. The statistics information is shown in Table I which
depicts the name, number of positive instances, and number
of videos of each concept. When the similarity between
concepts increases, the task of concept detection becomes
more challenging. Meanwhile, the weight generation of each
feature needs a higher accuracy to improve the training and
testing performance. These are the reason and motivation
for proposing the FA-MCADF framework. As mentioned
in Section III-A, the dataset is split using three-fold cross-
validation based on the number of videos. In other words,
the entire data set is divided into 3 different folds with
approximately 1/3 of the videos (one fold) for testing and
2/3 of the videos (two folds) for training purpose.



Figure 2. Number of True Positives obtained from each classifier

Flood Human
Relief Damage Training

Program
Diasater
Recovery Speak Interview Average

RBF
Network

Pre 70.07% 1.10% 71.77% 35.20% 36.97% 78.23% 35.50% 46.98%
Rec 51.30% 33.33% 78.60% 34.87% 47.60% 99.93% 40.27% 55.13%
F1 36.83% 2.17% 62.47% 6.47% 26.53% 86.07% 15.53% 33.72%

SVM
Pre 70.17% 1.67% 71.77% 1.87% 70.33% 82.93% 68.83% 52.51%
Rec 46.20% 32.33% 65.97% 33.33% 66.87% 88.57% 40.70% 53.42%
F1 29.47% 3.17% 52.57% 3.53% 50.87% 82.27% 16.83% 34.10%

Decision
Tree

Pre 70.13% 1.43% 72.10% 68.60% 70.37% 82.93% 68.77% 62.05%
Rec 45.23% 32.33% 61.40% 40.87% 61.67% 81.37% 40.53% 51.91%
F1 29.77% 2.73% 49.13% 17.20% 46.47% 77.67% 18.90% 34.55%

Logistic
Regression

Pre 70.23% 67.87% 71.77% 68.60% 71.17% 82.97% 68.83% 71.63%
Rec 58.23% 38.07% 63.73% 49.23% 58.17% 81.00% 44.33% 56.11%
F1 42.97% 11.13% 50.60% 32.97% 47.93% 77.47% 22.80% 40.84%

FA-MCA
Pre 70.25% 34.18% 71.91% 68.61% 70.32% 82.91% 68.79% 66.71%
Rec 61.67% 30.52% 72.92% 65.48% 68.90% 97.78% 48.95% 63.74%
F1 46.62% 24.45% 64.80% 45.07% 52.69% 87.42% 29.54% 50.08%

FA-MCADF
Pre 45.26% 34.53% 71.77% 68.53% 70.30% 82.93% 68.82% 63.16%
Rec 85.84% 49.29% 96.06% 61.11% 97.48% 99.85% 78.63% 81.18%
F1 50.90% 28.08% 73.49% 42.43% 71.91% 88.45% 57.98% 59.03%

Table II
PERFORMANCE EVALUATION RESULTS ON A DISASTER DATASET

B. Evaluation Results

The performance evaluation takes the precision, recall,
and F1-score values as the criteria [54]. Table II presents
the experimental results in details, while the proposed FA-
MCA algorithm shows the best performance on average in
comparison with ANNs, SVMs, DTs, and LR classifiers
(available in WEKA [57]). All the classifiers are tuned to
achieve their best performance during the experiment, and
the results are ordered by the average F1-scores (the last
column in Table II). SVMs and ANNs are two examples of
black-box models that can only be verified externally. They
are always popularly used in different domains where good

classification performance is preferred. However, from the
evaluation results, it can be interpreted that their discrimi-
nating power is not significantly better than the other models,
which means for this specific dataset, a more accurate model
is needed to differentiate the concepts. The Radial Basis
Function (RBF) network is selected as a representative of
ANNs since it performs better than other ANNs classifiers
on this specific dataset. As can be inferred from this table,
the improvement of the average F1-score of FA-MCA is
around 10% when comparing to LR, which achieves promis-
ing results in comparison with the other classifiers. LR is
a statistical method that is always compared to the ANNs



models in many classification tasks. It shows its capability
of handling a dataset with a small number of positive
instances (i.e., imbalanced data). On the contrary, the RBF
Network reaches 86.07% for concept “Speak”, which is the
most balanced concept, but it is still 1% worse than FA-
MAC. Compared with the other machine learning methods
mentioned here, DTs take the information gain values as
the common criterion and have the advantage that each
tree can easily be expressed as rules. FA-MAC also takes
the information gain values as one of the feature selection
criterion and avoids the disadvantage of DTs, which is losing
information along the splitting process. In addition, The FA-
MAC algorithm shows significant improvements (12% and
13%, respectively) on the complicated semantic concepts
such as “Human Relief” and “Training Program”.

In the last three rows of Table II, the FA-MCADF
framework is used to boost the performance by separating
more than 700 dimensions of features into four feature
groups (illustrated in Figure 1) that run FA-MCA models
independently. Each FA-MCA model handles approximately
1/4 of the features, thus speeding up the learning process.
A decision fusion scheme (Algorithm 1) is proposed as
the final step to generate the final classification decision.
The FA-MCADF framework achieves the best in all the
evaluation metrics in comparison to the other classifiers in
the experiments. The average recall and F1-score values
elevate 17.44% and 8.95% more in comparison to the single
FA-MCA model.

V. CONCLUSION AND FUTURE WORK

Disaster-related concept detection does not limit to dis-
aster events. It also includes various concepts that are
critical disaster information, such as disaster preparation
training, disaster recovery, and disaster damage situation.
Since the correlations between those concepts are higher
than diverse disaster events, it makes the classification task
more challenging. To tackle this challenge, the FA-MCADF
framework is proposed to consider the relationship between
features within each feature group to eliminate the situation
when some features dominate during the feature weight
generation process. As a result, critical features are selected
and weighted based on their ranks. The decision fusion
scheme allows a scalable number of feature groups to run
the classifiers separately, which reduces the negative effect
among the features that belong to different representation
levels. Comparing with the decision tree and SVM classi-
fiers, the experimental results show significant improvements
for all the evaluation criteria, which means that the proposed
framework truly holds the importance of the features when
detecting the interrelated concepts. However, there is still
some improvements that can be further carried out.

In the future, this framework will be further extended
and tested for more concept detection applications. Multi-
modality features include high-level features, like audio,

spatio-temporal and textual information, also can be in-
cluded to improve the concept detection performance [58].
In addition, the latest cluster computing techniques (i.e.,
Apache Spark) can be included to build up a parallel
framework to reduce the computation time, which is worth
considering when processing large datasets [59][60].
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