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Abstract—Multimedia semantic concept detection is an
emerging research area in recent years. One of the prominent
challenges in multimedia concept detection is data imbalance.
In this study, a multimedia data mining framework for interest-
ing concept detection in videos is presented. First, the Minimum
Description Length (MDL) discretization algorithm is extended
to handle the imbalanced data. Thereafter, a novel Weighted
Discretization Multiple Correspondence Analysis (WD-MCA)
algorithm based on the Multiple Correspondence Analysis
(MCA) approach is proposed to maximize the correlation
between the feature value pairs and concept classes by in-
corporating the discretization information captured from the
MDL module. The proposed framework achieves promising
performance to videos containing disaster events. The experi-
mental results demonstrate the effectiveness of the WD-MCA
algorithm, specifically for imbalanced datasets, compared to
several existing methods.

Keywords-Weighted discretization; Multiple Correspondence
Analysis (MCA); imbalanced data; video concept detection;
disaster information management

I. INTRODUCTION

Nowadays, multimedia data consisting of audio, text,
image, and video has grown tremendously [1][2][3][4][5].
Social networks such as Facebook, Instagram, and Twitter
as well as multimedia sharing websites including YouTube,
Flickr, SlideShare, etc. are the main sources of multimedia
data widely used by ordinary users and even scientists for
research purposes. With such an increase in the amount
of multimedia data through the Internet, the main question
raised is how one can analyze this high volume and variety
of data in an efficient and effective way. To answer this
question, many research studies have been done recently in
multimedia big data analysis [6][7].

Among various multimedia applications, video concept
detection has attracted lots of attention in both academia
and industry due to the rich content and information in
the videos [8][9]. In the literature, various data mining
approaches have been proposed to detect concepts and
interesting events in videos [10][1][11][12][13]. Example
classifiers include neural networks [14], decision trees [15],
Multiple Correspondence Analysis [16], etc. However, one

main remaining challenge is that of bridging the gap between
the low-level visual features and the high level concepts in
the videos.

Another critical challenge in multimedia data is how to
process data with skewed distributions or in other words,
the imbalanced datasets. This can be seen commonly in real
world multimedia applications where the classes are not
distributed uniformly [17][18][19][20][21][22]. There are
usually two classes: the major classes (or called the negative
classes) and the minor one (or called the positive class),
where we are more interested in detecting the minor class.
For instance, in medical lab results, cancer instances are rare
but more important than those instances for regular diseases.
Other applications of imbalanced data are fraud activities
detection, bomb detection, failure predictions of technical
equipment, etc. [23][24]. In such conditions, conventional
machine learning and data mining algorithms often fail
to detect the minor class, and they are biased toward the
negative classes, which may have serious effects. Suppose
an instance of a medical lab result is predicted as non-cancer
(a negative class), while in reality the patient has the cancer.
This error is called false negative, which can cause very
serious harm.

To overcome the aforementioned challenges, in this paper,
a new Weighted Discretization Multiple Correspondence
Analysis (WD-MCA) is proposed. It contains a new weight-
ing factor for the discretization algorithm, which is later
utilized in the Multiple Correspondence Analysis (MCA)
classifier. By assigning reasonable weights to the instances
in the minor class, it would be possible to improve the
interesting concept detection in multimedia data. This obser-
vation motivates us to propose a new data mining framework
to handle the imbalanced data problem. For this purpose,
the supervised discretization function introduced in [25]
is extended to penalize the negative classes and bias the
learning model toward the positive class. Moreover, the
discretization factor is integrated to the MCA weighting
function for effective video concept detection.

The rest of this paper is organized as follows. Section II
discusses the existing work in multimedia data analysis.



In section III, the proposed framework is introduced and
each component of the WD-MCA is discussed in details.
Section IV gives the experimental results and observations.
Finally, conclusions and recommendations for future work
are presented.

II. RELATED WORK

Regarding the data imbalance issue, conventional ap-
proaches can be mainly categorized into the following
groups [23][26]: Sampling methods, cost sensitives learning,
and hybrid algorithms. Typically, sampling methods modify
the data distribution in order to balance the dataset and
improve the classification results. There are two main re-
sampling approaches in the literature: over-sampling the
minority (positive) class [27] or under-sampling the majority
(negative) class [28]. Either way can be used in any machine
learning algorithm as a preprocessing phase. Another solu-
tion is Cost Sensitive Learning (CSL) which modifies the
learning process by incorporating the misclassification costs
of the different classes [29]. Currently, CSL has been applied
in various learning algorithms such as decision trees [30],
AdaBoost [31], and Naive Bayes [32]. Recently, various
hybrid methods have been proposed, which combine the
traditional solutions for data imbalance subject [33].

In recent years, with the advent of new technologies and
easy access of multimedia data in the social networks and
sharing websites, multimedia concept detection has become
a hot topic, both in industry and academia [34][35][36][37].
Current video search engines often use textual descriptions
and video tags to retrieve videos. However, due to the
limitation and subjectivity of video metadata, such engines
may provide a very low performance. Thus, automatic
concept detection is crucial in multimedia analysis [38]. Ha
et al. [39] proposed a new framework using two different
correlation-based approaches integrated with a well-known
deep learning method called Convolutional Neural Network
(CNN) to automatically detect semantic concepts from NUS-
WIDE image dataset [40]. The Positive Enhanced Ensemble
Learning (PEEL) framework is presented in [41], which
addresses the video concept/event detection, specifically
for soccer videos. By integrating the ensemble learning
algorithm with a sampling-based mechanism, it outperforms
the existing single models and ensemble classifiers. The
TRECVID data is a very large real world dataset focusing
on information retrieval, specifically on video content based
retrieval [42]. Recently, many research studies have been
done based on the TRECVID dataset, which made consid-
erable contributions in this area and improved the video
semantic concept detection, especially for the imbalanced
datasets [43].

Despite the fact that many real world applications deal
with continuous features, most of the machine learning
algorithms can only be applied to nominal or discrete nu-
merical features [44]. Therefore, discretization continuous-

valued features are considered as a significant step in the
preprocessing phase. Discretization algorithms can be classi-
fied into supervised and unsupervised methods [45]. Fayyad
and Irani [25] proposed a supervised discretization algorithm
using an information entropy heuristic called the Minimum
Description Length (MDL) principle. In this algorithm, first,
the continuous features are sorted, then the potential cutting
points are calculated from classes’ boundaries based on the
MDL principal. An unsupervised discretization algorithm
based on the Self-Organizing Map (SOM) is presented
in [46]. Unlike the K-means clustering which requires the
number of clusters beforehand, SOM only requires the
maximum number of requested intervals and can effectively
partition the feature values into nominal values. In this
study, however, we extend the MDL approach to improve
the discretization algorithm, specifically for the imbalanced
datasets.

In this paper, MCA is used as a classifier due to its
powerful nature which is able to measure the correlation
between the attributes and classes [47]. In the literature,
MCA is widely applied to several multimedia applications
including feature selection, discretization, data pruning, and
classification [48][16][49]. In the current studies, MCA
analyzes each instance by using the equal weight function
for all feature sets. However, in this paper, MCA is extended
to incorporate the discretization information to enhance the
classification efficiency.

This study concentrates on binary classification algorithm.
The contributions are as follows. First, the MDL discretiza-
tion algorithm is extended to handle the imbalanced datasets
using a novel costing factor. Then, the discretization factor
is combined with the MCA weighting function to improve
the classification performance.

III. THE PROPOSED WEIGHTED DESCRITIZATION
MULTIPLE CORRESPONDENCE ANALYSIS FRAMEWORK

The proposed WD-MCA framework is depicted in Fig-
ure 1. The whole framework can be divided in three main
steps: the preprocessing component (the top left panel), the
training process (the right panel), and the testing phase
(the bottom left panel). The preprocessing phase includes
shot boundary detection routine, visual feature extraction,
and data splitting. As this step is domain specific, other
applications may apply different preprocessing routines. For
example, each data type (e.g., audio, speech, image, text,
and video) may require a specific feature set and various
preprocessing techniques. The next step is the training
process where a learning model is trained using the proposed
WD-MCA algorithm which contains the weighted MDL
discretization algorithm and the MCA based discretization
factor. On the other side, testing data instances are dis-
cretized using the training discretization information and the
WD-MCA model is used as a classifier to detect the semantic
video concepts.



A. Preprocessing

The preprocessing phase is domain specific and each
application applies different preprocessing routines. Specif-
ically, for video analysis, the preprocessing includes shot
boundary detection, key-frame selection, and feature extrac-
tion as explained in more details as follows.

In this paper, an automatic and effectual shot boundary
detection algorithm described in [50] is applied on the
raw video. This algorithm is based on an unsupervised
method for image segmentation as well as object tracking
techniques. The segmentation algorithm first clusters the
feature map of every video frame and groups the frame
pixels into several classes. Then, these segmentation maps
are compared to see how different they are. In addition, an
object tracking algorithm is used to detect moving objects
and luminance changes, which improves the final matching
results. Moreover, it can be further used for other purposes
such as content analysis and video indexing.

After final shots are extracted, a key-frame is selected as
a representative of each shot. Key-frames are helpful for
video summarization, and therefore, it is important to select
the most distinctive one which represents the contents of the
whole shot. For this reason, the first frame of each shot is
chosen because it is the cut-point separating successive shots
in the shot boundary detection algorithm.

In this study, several low-level visual features are ex-
tracted from raw videos as described in [51]. Histogram
of Oriented Gradient (HOG) [52] has been proven to be
an effective and robust visual descriptor in many image
processing applications such as object recognition, human
detection, and action recognition, to name a few. Color and
Edge Directivity Descriptor (CEDD) [53] is another well-
known visual descriptor, which incorporates a histogram’s
texture and color information. Many research studies have
leveraged the CEDD features for image indexing and re-
trieval. These two feature sets, plus other low-level visual
attributes such as texture wavelet, color histogram, and color
moment are integrated as the final feature set.

Finally, the dataset is split into training set and testing set
for further procedures.

B. Training Phase

The proposed training algorithm includes two main com-
ponents. First, a weighted discretization algorithm is applied
to the training set and then to the discretized dataset. Second,
the discretization factors are used to train the MCA algo-
rithm. The algorithm and its technical details are described
as follows.

1) The Weighted MDL Discretization Algorithm: In this
component, the Minimum Description Length (MDL) ap-
proach [25] is extended to improve the discretization step
by considering the importance of positive instances in an
imbalanced dataset. For this purpose, a weighting factor is

Figure 1: Illustration of the proposed WD-MCA framework

proposed to assign a weight to each positive instance using
Equation (1).

wc(i) =

{
1 + (ps/L) ∗ ϑ if c = 1

1 otherwise (1)

where wc(i) is the weighting factor for the ith instance, c
is the class concept (positive=1 and negative=0), ps is the
number of positive instances in the corresponding concept,
L is the total number of training instances, and ϑ is a
predefined constant. For instance, wc(i) = 1.4 for a positive
instance i in a dataset with 200 positive instances out of
10000 training instances, where ϑ=20. The purpose of using
the constant factor (ϑ) is to increase the weight of positive
instances in an imbalanced dataset. As ps/L is a very small
number, especially for a highly imbalanced dataset, it is
multiplied by a larger number (ϑ) to increase the weighting
factor for positive instances. If ϑ is very small, the weighting
factor for positive instances would be very close to the
negative ones. On the other hand, if it is very large (>100),
the results will be overfitted to the positive class. Therefore,
a number between 10 to 50 (depending on the ps/L factor)
is reasonable.

In order to find the best cut-point for each feature, the
MDL algorithm is applied as follows. First, all the instances
are sorted. Next, the class count Countc in the dataset is
calculated as shown in Equation (2).

Countc =

L∑
i=1

wc(i). (2)

To continue the previous example, Count1 = 280, which
increases by 1.4 times for the positive instances. Afterward,



the entropy and information gain [54] of the given dataset
is computed using Countc for both positive and negative
classes. Finally, a cut-point of a dataset T , including N
instances is evaluated using Equation (3), and Delta is
defined in Equation (4).

InfoGain >
log2(N − 1)

N
+

Delta

N
. (3)

Delta = log(3CL − 2)− ((CL ∗ priorentropy)−
(CLright ∗ entropyright)− (CLleft ∗ entropyleft)),

(4)

where CL is the total number of classes (CL = 2 for binary
classification), priorentropy is the entropy value before the
split, entropyright and entropyleft are the entropy values of
the right and left subsets, respectively, and CLright, CLleft

are the total number of classes of right and left subsets,
respectively.

The cut-points will be iteratively generated for both left
and right sides of the given dataset until the condition in
Equation (3) is true. As a result, all features are discretized
into several feature items. Finally, the total number of dis-
cretized subsets for each feature is stored in the DisCountj ,
where j = 1, 2, · · · ,M and M is the total number of
features.

2) MCA based Discretization Factor: Multiple corre-
spondence Analysis (MCA) is a modified version of original
correspondence analysis which captures the correlation be-
tween features and classes. In this paper, the MCA algorithm
is enhanced using the discretization information captured
from the previous component. In multimedia databases, rows
represent data instances and columns represent features as
well as the corresponding concept labels. MCA captures
the correspondences between rows and columns which will
be later leveraged in the classification step to bridge the
gap between the low-level visual features and high-level
concepts.

Algorithm 1 illustrates the whole procedure of the
Weighted Discretization Multiple Correspondence Analysis
(WD-MCA) approach. The WD-MCA input includes a ma-
trix containing all training instances T and feature values
F ; its output is the Weight Matrix (WM c

j,ϕ) calculated
using the correlation information. First, as described in
the previous section, each feature is discretized using the
weighted MDL discretization algorithm called WDISC in
line 1 in Algorithm 1, which generates the discretized data
as depicted in Table I. Let the total number of feature items
for all features be DisCount, new training instances being
discretized into nominal intervals be T ′, feature items be
F ′
j,ϕ, and c1 and c2 be the positive and negative classes.

Afterwards, an indicator matrix (Ind) is constructed whose
dimension is (DisCount + CL) ∗ (DisCount + CL) as
shown in Table II. This table is a binary representation of
the discretized features, where the rows indicate the training
instances and the columns indicate the feature items (feature-
value pairs). Therefore, each instance can only belong to one

Table I: Discretized data

F1 F2 · · · FM Class
t′1 F ′

1,1 F ′
2,1 · · · F ′

M,1 c1
t′2 F ′

1,2 F ′
2,1 · · · F ′

M,1 c2
t′3 F ′

1,2 F ′
2,3 · · · F ′

M,2 c2
· · · · · · · · · · · · · · · · · ·
t′N F ′

1,1 F ′
2,2 · · · F ′

M,2 c1

Table II: Indicator matrix

F ′
1,1 F ′

1,2 F ′
2,1 · · · F ′

M,1 F ′
M,2 c1 c2

t′1 1 0 0 · · · 1 0 1 0
t′2 0 1 1 · · · 1 0 0 1
t′3 0 1 0 · · · 0 1 0 1
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
t′N 1 0 0 · · · 1 0 1 0

of the feature items. In this case, the corresponding indicator
value equals 1.

After that, Burt matrix (Burt) is calculated by the inner
product of the indicator matrix (Burt = IndT Ind) as
shown in Table III. Each number in the Burt matrix
represents the number of occurrences of a specific feature
item. For instance, Burt(F ′

1,2, c2) = 2 if there are two
instances with feature item F ′

1,2 that belong to class c2.
Then, Burt is normalized by the grand total (G) of Ind
(Z = Burt/G). Thereafter, Z is transformed to a new
projected space using the eigenvectors V and eigenvalues
E extracted from the Singular Value Decomposition (SVD)
and the diagonal matrix D is derived from the singular vector
V . Next, the correlation (weight W c

j,ϕ, as shown in line 10
in Algorithm 1) between classes and feature-value pairs is
calculated using the cosine value of the angle between them.
The smaller the angle value is, the higher correlated the
feature-value pairs and classes are. The final MCA weight
value for each feature-value pair is then calculated using the
corresponding weight value. For more details regarding the
MCA process, please refer to [16].

In this paper, a penalized factor obtained from the dis-
cretization algorithm is utilized to reduce the weight of
the features with higher feature items. In other words, the
smaller the discretization count is, the more valuable infor-
mation it has. For this purpose, in each iteration, the final
weight value is calculated using the WM c

j,ϕ combined with
the penalized factor dw∗DisCountj , as shown in line 14 in
Algorithm 1, where dw is the discretization weight obtained
from the weighted MDL algorithm in Section III-B1, and
DisCountj is the number of feature items for each feature
j. Eventually, the final weights are stored in the weight
matrix WM c

j,ϕ.

C. Testing Phase

The testing module includes the weighted discretization
and classification steps. First, the testing dataset is dis-
cretized into nominal features using the weighted discretiza-
tion algorithm described in Section III-B1. Then, the final



Table III: Burt matrix

F ′
1,1 F ′

1,2 F ′
2,1 · · · c1 c2

F ′
1,1 2 0 1 · · · 2 0

F ′
1,2 0 2 1 · · · 0 2

F ′
2,1 1 1 1 · · · 1 1

· · · · · · · · · · · · · · · · · · · · ·
c1 2 0 0 · · · 2 0
c2 0 2 1 · · · 0 2

Algorithm 1 WD-MCA
Input: Training instances T{ti, i = 1, 2, · · · , N}, feature
set F = {fj , j = 1, 2, · · · ,M}.
Output: Weight matrix WM c

j,ϕ.
1: {T ′, F ′

j,ϕ, DisCount} ← WDISC(T, F );
2: for all fj ∈ F, (j = 1, · · · ,M) do
3: Create Indicator matrix Ind;
4: Create Burt matrix Burt;
5: {Z, V,E} ←MCA(Burt);
6: Create correspondence matrix CM;
7: Derive diagonal matrix D from V ;
8: for all F ′

j,ϕ(ϕ = 1, · · · , DisCountj) do
9: for all Cj,c(c = 1, · · · , CL) do

10: Calculate W c
j,ϕ;

11: end for
12: end for
13: for all F ′

j,ϕ(ϕ = 1, · · · , DisCountj) do
14: for all Cj,c(c = 1, · · · , CL) do
15: WM c

j,ϕ ←WM c
j,ϕ +W c

j,ϕ;
16: end for
17: WM c

j,ϕ ←WM c
j,ϕ/(dw ∗DisCountj);

18: end for
19: end for
20: return WM c

j,ϕ

features are fed to the classification component to predict the
concept class of each testing instance. The WM c

j,ϕ matrix
created in the training phase (depicted in Algorithm 1) is
used in the testing phase to generate the ranking score for
each instance. This score is calculated by accumulating all
the weights within one instance i and then is normalized by
the total number of features (M ) as shown in Equation (5).

Scorei =

∑M
j=1(1−mwj(i))

2

M
(5)

After the score matrix SM is calculated for all training
instances, it can be directly used to rank the testing data.
For classifying instances, a threshold needs to be generated
based on the training performance as described in [55]. In
the first step, training scores are sorted by the descending
order, and then the candidate thresholds are selected based
on the indexes of the scores with target class label. Finally,
the best threshold is generated by iteratively evaluating the
performance of the candidate thresholds.

Table IV: Disaster dataset statistics

No. Concept #Positive Instances P/N ratio
1 damage 410 0.060
2 fire 309 0.045
3 mud-rock 143 0.021
4 lightening 674 0.098
5 snow 221 0.032

(a) (b)

(c) (d)

(e)

Figure 2: Different sample concepts in the disaster dataset:
(a) damage, (b) fire, (c) snow (d) lightening, (e) mud-rock

IV. EXPERIMENTAL ANALYSIS

A. Dataset Description

Although the proposed WD-MCA can be used as a
general framework for various multimedia applications (with
data including video, image, audio, and/or text), in this
paper, a specific task is selected called semantic concept
detection from videos containing disaster events. Automatic
disaster detection from videos, a new and demanding topic,
can be beneficial for classifying videos including disaster
events from non-disaster ones. For this purpose, the pro-
posed framework is tested using a new disaster dataset.
Specifically, it contains about 80 different YouTupe videos
with 5 disaster concepts. Figure 2 depicts a key-frame sam-
ple extracted from the videos for each disaster concept. The
detailed statistics of the dataset is summarized in Table IV.
In total, the dataset includes 6884 video shots and the
average ratio of the positive instances to the negative ones
(P/N) is 0.051, which shows the non-uniform distribution of
the dataset.



B. Evaluation Criteria

In the imbalanced datasets, accuracy may not be the
best metric to show the effectiveness of the classification
algorithm because most conventional classifiers are biased
toward the major (negative) class and may have very high
performance on negative classes. However, as the minor
(positive) class is more important and critical to be detected,
the proposed WD-MCA framework is evaluated using a
common measurement metric for imbalanced data called F1
score as defined in Equation (6), where precision and recall
are defined as shown in Equations (7) and (8), respectively.
Here, TP, FP, and FN refer to the numbers of true positive,
false positive, and false negative data instances, respectively.

F1 = 2 ∗ Precision ∗Recall

(Precision+Recall)
; (6)

Precision =
TP

TP + FP
; (7)

Recall =
TP

TP + FN
. (8)

C. Evaluation Results

As mentioned earlier, the first step in the proposed frame-
work is preprocessing the data which includes shot boundary
detection, key-frame selection, visual feature extraction,
and finally data splitting. After applying an automatic shot
boundary detection approach [50], the first frame of each
shot is selected as a representative of that shot. Then,
several visual features as described earlier are extracted from
each key-frame. In total, there are 6884 instances and 707
features for each instance. Then, the dataset is divided into
three training and testing sets through a 3-fold validation
which contains approximately equal numbers of positive and
negative instances (P/N ratio is almost equal).

In the training phase (see Section III-B), the training set
is discretized using the proposed weighted MDL discretiza-
tion algorithm and then the testing set is discretized using
the same discretization scheme. Afterward, the discretized
training instances are passed to the WD-MCA module to
train the model.

For evaluating the proposed WD-MCA model, an exper-
iment is conducted using the testing instances to see how
accurate they are classified. The performance results are
compared to two well-known existing methods: standard
MCA [16] and Decision Tree (DT), which achieved very
high performance for other imbalanced datasets [15]. The
detailed comparison results for each concept and each frame-
work are presented in Table V. As can be seen from this
table, the proposed WD-MCA outperforms other methods
in terms of F1 score for all disaster concepts. For the
fire concept, for instance, it has a promising performance
(F1=91%) and improves the classification result by about
8% and 2% compared to DT and MCA, respectively. For
the snow concept, the average F1 score is a little bit low

(a) (b)

(c)

Figure 3: Average comparison results on disaster dataset: (a)
F1 score, (b) Precision, (c) Recall

(F1=67%). However, it is still about 10% and 4% higher
than that of DT and MCA, respectively. In overall, the
average F1 score of all three folds for all 5 disaster concepts
is 85%. In an imbalanced dataset where detecting positive
instances such as disaster, cancer, fraud, and bomb is very
vital, such an improvement (even small for some concepts) is
very significant. In addition, only positive instances are used
for evaluating the results and the performance of negative
instances is not considered. The average comparison results
including F1, precision, and recall for each concept are
shown in Figure 3. As can be inferred from Figure 3b, MCA
has higher precision values in three concepts, while its low
recall values, as shown in Figure 3c, decrease its overall
performance. The DT algorithm has the lowest precision
values in all the concepts, which reduces its overall F1
scores. All in all, the proposed WD-MCA achieves the
highest average results, demonstrating the effectiveness of
integrating the weighting discretization function with the
standard MCA algorithm.

V. CONCLUSION

Multimedia analysis has attracted lots of attention in re-
cent years. One of the significant applications in multimedia
is video semantic concept/event detection. In particular, the
data imbalance problem, an open issue in multimedia anal-
ysis systems, is selected because conventional data mining
algorithms are often unable to detect the minor (positive)
class in such non-uniform data distribution. To overcome
this challenge, a Weighted Discretization algorithm based on
the MCA classifier (WD-MCA) is proposed to improve the
correlation between classes and feature-value pairs. Specifi-
cally, the MDL discretization approach is extended to tackle
the imbalanced data issue by applying a weighting factor to



Table V: Detailed comparison results on disaster dataset

disaster fold # DT MCA WD-MCA
concept precision recall F1 precision recall F1 precision recall F1

damage
fold 1 0.826 0.875 0.85 0.874 0.765 0.816 0.945 0.757 0.841
fold 2 0.796 0.796 0.796 0.952 0.73 0.826 0.971 0.723 0.828
fold 3 0.805 0.752 0.777 0.885 0.672 0.763 0.921 0.679 0.782
average 0.801 0.774 0.787 0.904 0.722 0.802 0.946 0.720 0.817

fire
fold 1 0.865 0.800 0.831 0.971 0.825 0.892 0.972 0.875 0.921
fold 2 0.825 0.846 0.835 1.000 0.878 0.932 0.947 0.923 0.935
fold 3 0.825 0.846 0.835 0.939 0.795 0.861 0.969 0.795 0.873
average 0.838 0.831 0.834 0.970 0.833 0.895 0.963 0.864 0.910

mud-rock
fold 1 0.723 0.723 0.723 0.929 0.830 0.876 0.929 0.830 0.876
fold 2 0.857 0.875 0.866 0.970 0.667 0.79 0.921 0.729 0.814
fold 3 0.745 0.729 0.737 0.944 0.708 0.81 0.927 0.792 0.854
average 0.775 0.776 0.775 0.948 0.735 0.825 0.926 0.784 0.848

lightening
fold 1 0.775 0.844 0.808 0.902 0.741 0.814 0.913 0.746 0.821
fold 2 0.816 0.827 0.821 0.814 0.800 0.807 0.839 0.809 0.824
fold 3 0.843 0.858 0.85 0.852 0.791 0.82 0.886 0.791 0.835
averagee 0.811 0.843 0.827 0.856 0.777 0.814 0.879 0.782 0.827

snow
fold 1 0.580 0.548 0.563 1.000 0.448 0.648 0.900 0.493 0.637
fold 2 0.533 0.662 0.590 1.000 0.500 0.667 0.935 0.581 0.717
fold 3 0.566 0.581 0.573 1.000 0.419 0.590 0.905 0.514 0.655
average 0.560 0.597 0.575 1.000 0.456 0.635 0.913 0.529 0.670

the minor (positive) class. Moreover, the discretization factor
is integrated with the MCA algorithm to enhance the mul-
timedia semantic concept detection. The whole WD-MCA
framework is successfully evaluated on videos containing the
disaster events. This dataset includes few positive instances
and has a highly imbalanced P/N ratio. The experimental
results show the effectiveness and high performance of the
proposed algorithm compared to several existing data mining
algorithms in terms of the F1 score.

However, there are still some limitations that need to
be overcome. The proposed framework is tested on a new
dataset collected by our team, which is not publicly avail-
able. In the future, this framework will be extended to
detect more concepts from various datasets and applications.
Furthermore, in the current framework, only low-level visual
features are used for video analysis. Some mid-level and
high-level features including spatio-temporal and textual in-
formation (e.g., object motion features, and video metadata)
will be investigated and utilized to improve the concept
detection performance.
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