
Efficiently Integrating MapReduce-based Computing into a Hurricane Loss
Projection Model

Fausto C. Fleites1, Steve Cocke2, Shu-Ching Chen1, Shahid Hamid3

1School of Computing and Information Sciences
2Meteorology Department

3Department of Finance
1,3Florida International University, Miami, FL, USA

2Florida State University, Tallahassee, FL, USA
1{fflei001,chens}@cs.fiu.edu, 2scocke@fsu.edu, 3hamids@fiu.edu

Abstract

Homeowner insurance is a critical issue for Floridians
because of the periodic threat hurricanes pose to Florida.
Providing fairness into the rate-making policy process, the
state of Florida has developed the Florida Public Hurri-
cane Loss Model (FPHLM), an open, public hurricane risk
model to assess the risk of wind damage to insured resi-
dential properties. For each input property portfolio, the
FPHLM processes a large amount of data to provide ex-
pected losses over tens of thousand of years of simulation,
for which computational efficiency is of paramount impor-
tance. This paper presents our work in integrating the at-
mospheric component into the FPHLM using MapReduce,
which resulted in a highly efficient computing platform for
generating stochastic hurricane events on a cluster of com-
puters. The experimental results demonstrate the feasibility
of utilizing MapReduce for risk modeling components.

Keywords: hurricane risk modeling, MapReduce,
distributed systems.

1. Introduction

Florida is periodically affected by hurricanes which
cause significant damage in property and human lives;
consequently, homeowner insurance is a critical issue for
Floridians. To ensure fair homeowner insurance rates, the
state of Florida has developed the Florida Public Hurricane
Loss Model (FPHLM) [11][5][6], an open, public hurricane
risk model to assess the risk of wind damage to insured res-
idential properties. Since its activation in 2006, the FPHLM
has been used more than 500 times by the insurance indus-
try in Florida as well as by insurance regulators.

Developed by a multi-disciplinary team of scientists, as
depicted in Fig. 1, the FPHLM’s modeling process consists
of the following components: an atmospheric component
that generates a large number of stochastic storms from a
seed of historical events over a large number of years of
simulation, an engineering component that links wind infor-
mation to physical damage creating vulnerability curves for
typical building structures, and an actuarial component that
estimates expected loss values across the stochastic storm
set for an input property portfolio based on the properties’
geographic locations, building characteristics, and insur-
ance policy terms. These components are integrated by a
computing platform that processes a large amount of data
to generate the required results for an input property port-
folio. Generally, users of the model need to run portfolios
multiple times with varying characteristics, and obtaining
the results as as fast as possible allows them to better as-
sess the risk of such portfolios. However, it is a challenge
to develop an optimized computing platform for such com-
plex risk models. The difficulty arises from the interaction
of the complex components from different disciplines that
make up the model and the intense computation required to
process each portfolio.

Our goal is this paper is to discuss our work in integrating
the atmospheric component into the FPHLM using MapRe-
duce (MR) [7], which resulted in a highly optimized plat-
form capable of efficiently generating stochastic storm sets
on a cluster of computers. The literature of not only hur-
ricane risk modeling but also of the more general case of
catastrophe (cat) modeling is mostly concentrated on the
science behind the components that make up the model.
Very few address aspects of the computing platforms sup-
porting such models. Thus, this work provides value in how
to integrate catastrophe modeling components into the sup-
porting computing platform using MR.



Figure 1. Main components of the FPHLM.

Published articles in the topic are related to (a) improve-
ments in proprietary cat modeling platforms and (b) open-
source efforts in risk modeling. Dehne et al. describe their
implementation of an earthquake cat modeling system on
the Cell Broadband Engine Architecture (Cell/BE) [8]. The
system was implemented on a PlayStation 3 whose Cell/BE
provides eight co-processing units that accelerate vector op-
erations; in addition, they incorporate other optimization
techniques, such as caches, vectorization of the computa-
tion, and double-buffering I/O. Mahmood [12] and Dönni
[9] report their efforts in porting the computing framework
of a re-insurance company to a Grid-based architecture.
Mahmood utilized ProActive [4], a Grid middle-ware li-
brary, to distribute the computation of the expected losses
for the input portfolio and store the results in a database.
Dönni focused on improving the data handling of the dis-
tributed version of the platform. In the open-source do-
main, Agora [3], the Alliance for Global Open Risk Analy-
sis, spurs open-source software for multi-hazard risk mod-
eling. Related software are OpenSHA [10] (seismic haz-
ard analysis), OpenSees [2] (earthquake engineering sim-
ulation), and OpenRisk [13] (multi-hazard risk modeling).
OpenSHA uses Java distributed component technique such
as RMI (Remote Method Invocation) to execute remote
components; OpenSees provides a flexible and extensible
object-oriented architecture that allows the development of
sequential and parallel finite element applications for struc-
tural analysis; and OpenRisk is object-oriented and web-
and GUI-enabled.

The reminder of this paper is organized as follows. Sec-
tion 2 describes the serial execution of the atmospheric
component of the FPHLM. Section 3 details the MR-based
design of the component. Section 4 presents the experimen-
tal results. Finally, section 5 concludes this work.

2. Atmospheric Component

Over tens of thousand of years of simulation, the at-
mospheric component generates the storm tracks and wind
fields for simulated storms based on stochastic algorithms
and random historical initial conditions obtained from the
historical record of the Atlantic tropical cyclone basin [11].
For each stochastic storm event, the output of the compo-
nent consists of 3-second terrain corrected (i.e., taking into
consideration the roughness of the terrain) gust wind speeds
for each property affected by the event. Fig. 2 depicts
the serial execution of an input property portfolio through
the FPHLM. Red arrows represent online control flow (i.e.,
flow executed for each input portfolio), whereas black ar-
rows represent offline control flow (i.e., flow executed once
per version of the model).

An input portfolio consists of a set of building proper-
ties, which are described by their street addresses, building
characteristics (e.g., year of construction, construction type,
number of stories, etc.), coverage values, and insurance pol-
icy terms. Upon reception, the portfolio is geocoded to ob-
tain the geographic locations (latitude and longitude coordi-
nates) of the properties from their street addresses. Geocod-
ing is the process of locating the geographic coordinates of
a set of street addresses.

The atmospheric component is further divided into the
Storm Forecast, Wind Field, and Wind Speed Correction
components. The Storm Forecast component generates
the stochastic storm tracks and intensities based on initial
conditions and empirically derived probability distribution
functions. Once a storm is close to within a threshold dis-
tance to Florida, the Wind Field component is activated
to generate the 1-hour marine surface winds of the storm.
These winds are interpolated to 10-minute over a 1km fixed
grid that entirely covers Florida at every time step, creat-
ing a wind swath for each storm. The wind swaths over
the fixed grid are stored into several lookup tables for later
access. These lookup tables are referred as “tiles”, where
each tile represents a rectangular geographic area of Florida.
Since they are independent of the input property portfolio,
these two components are executed once per version of the
FPHLM.

The estimation of the final winds (i.e., winds at the street
level) for the input property portfolio is carried out by the
Wind Speed Correction component. This component uses
roughness information and the marine surface winds to gen-
erate the terrain-corrected 3-second gust winds at the street
level, which are subsequently used by Actuarial component
of the FPHLM to estimate the expected insured losses for
each property. The roughness data are encoded at 90m res-
olution. In addition, all the roughness data are also divided
into the same tiles as the storms’ wind swaths. Firstly, using
nearest-neighbor approximation, the Wind Speed Correc-



Figure 2. Serial execution of an input property portfolio through the FPHLM.

tion component interpolates the 10-minute marine surface
winds over the 1km fixed grid to the resolution of the rough-
ness data. Subsequently, it converts the 10-minute marine
winds to 3-second gust winds by calculating the marine drag
coefficient, converting the winds from marine to actual or
open terrain, calculating the gust factor, and incorporating
the effect of sea-land transition in coastal regions. For the
purpose of this paper, it suffices to abstract the algorithm of
the Wind Speed Correction component as shown in Algo-
rithm 1.

Algorithm 1 wsc(C, k)

1: Load Rk // roughness data corresponding to tile k
2: Load Sk // storms’ wind swaths of tile k
3: for all ski ∈ Sk do
4: for all c ∈ C do
5: if c falls within the geographic area of tile k then
6: Compute 3-sec gust winds wc

i for c in ski
7: end if
8: end for
9: end for

The input to the Wind Speed Correction component con-
sists of the geographic coordinate file C and a tile identi-
fier k. The algorithm first loads the roughness data Rk and
the storms’ wind swaths Sk corresponding to tile k (lines 1
and 2). Subsequently, lines 3-9, it computes the 3-sec gust
winds wc

i for all the coordinates c in C that fall in the geo-
graphic area of tile k (line 5) and are affected by the wind
swath ski in tile k of the stochastic storm i.

The complete processing of the Wind Speed Correction

component consists in executing wsc(C, k) for each tile k.
After all tiles have been executed, a “merge” process ag-
gregates all the 3-second gust winds generated for the same
storm across all tiles.

3. MapReduce-based Integration

MR is a popular programming model introduced by
Google [7] on which distributed applications can be devel-
oped to efficiently process large amounts of data. Hadoop
[1], its open-source implementation, provides a distributed
file system called Hadoop Distributed File System (HDFS)
and MR. One appealing feature of MR is that is ab-
stracts programmers from details of parallelization, fault-
tolerance, data distribution, and load balancing, which
greatly reduces the complexity of developing distributed ap-
plications.

A MR program consists of two user-defined functions:
a map function that is used to process pieces of the input
data called input splits, and a reduce function used to ag-
gregate the output of invocations of the map function. Both
functions use user-defined key-value pairs as input and out-
put. The execution of a MR job consists of two phases: a
map phase and a reduce phase, and each phase is divided
into tasks. A map task is an invocation of the map function
to process an input split, and a reduce task calls the reduce
function to aggregate map output records. The MR frame-
work sorts the map-generated key-value pairs by key, copies
them to the node where the reduce operation is performed,
and merges the sorted pairs from all the map tasks. Hence,
each invocation of the reduce function receives as input a



Figure 3. MapReduce-based computing framework for the atmospheric component.

map-generated key and the list of all the values (across all
map tasks) that correspond to the key.

Since both the Storm Forecast and Wind Field compo-
nents are only run once per version of the model, the Wind
Speed Correction component is the one that is integrated
into the FPHLM via MR. It is realized by one MR job as
depicted in Fig. 3. Instead of the geographic coordinates,
the input to the MR job consists of the wind swath tiles. The
supporting rationale is the geographic locations and storms’
wind swaths are the only two datasets that are iterated over,
and the latter is the one that is large-scale and can be di-
vided into input splits by the MR framework. Consequently,
side data (i.e., data loaded by the MR tasks to process input
splits) to the MR job consists of the geographic locations
and the roughness data.

Algorithm 2 setup(I)

1: Let k be the tile id of I
2: if k differ from the previously loaded tile then
3: Load Rk // roughness data corresponding to tile k
4: Load Ck // coordinate file corresponding to tile k
5: end if

The overall algorithm of the map function of the MR job
is depicted in algorithms 2 and 3.

The setup function is called by the MR framework be-
fore processing the records of an input split (i.e., a subset
of the storms’ wind swaths in a tile). It receives as input
an input split I . In line 1, the setup function obtains the

id k of I . This can be accomplished by, for example, en-
coding the id of the tile in the file names of the wind swath
tiles. Subsequently, lines 2-5, the setup function loads the
roughness data corresponding to tile k (line 3), as well as
the list of geographic coordinates Ck that fall in the geo-
graphic area of tile k (line 4). Before executing the MR job,
a pre-processing script splits the input geographic coordi-
nates file C into k files, where each file Ck correspond to
tile k. The loaded Rk and Ck are subsequently used by each
invocation of the map function on the input split. This is ac-
complished by re-utilizing Java virtual machines, a feature
provided by the MR framework.

Algorithm 3 map
(
ski
)

1: for all c ∈ Ck do
2: Compute 3-sec gust winds wc

i for c in ski
3: Add wc

i to U
4: end for
5: output [i, U ]

The map function is called to process a record of an in-
put split, where a record consists of ski , i.e., the storm i’s
wind swath in a tile k. Having pre-loaded Ck in the setup
function, the map function basically iterates over all the ge-
ographic coordinates c in Ck (line 1) and computes the 3-
second gust winds wc

i for c in storm i (line 2). Now, since all
the 3-second winds speeds have to be aggregated per storm
as output of the Wind Speed Correction component, the
map function locally aggregates in U the computed winds



Figure 4. Response time as block size in-
creases.

(line 3) and outputs in line 5 only one key-value pair, in
which the key corresponds to the storm’s id i and the value
is the list of 3-second gust winds U .

The reduce function is very simple. Since the MR
framework will aggregate all the map-generated values
across all map tasks to the same map-generated key, the
reduce function receives as input a storm id i and the list
of all the 3-second gust winds that correspond to the storm.
Hence, the reduce function just outputs the input key-value
pair to HDFS.

4. Experiments

To evaluate the MR-based design of the atmospheric
component, we conducted experiments that assess the scala-
bility of the new design. The code was implemented in Java
1.6 and executed in Hadoop 1.0.1. The cluster on which the
code was executed consisted of 5 nodes that allow the con-
current execution of 58 MR tasks simultaneously, consid-
ering the number of CPU cores in each node and available
main memory. Each MR task was assigned 4GB of mem-
ory. The maximum number of map tasks that can execute
concurrently is referred to as the map task capacity. More-
over, for each property portfolio size used in the follow-
ing experiments, the same amount of coordinates were ran-
domly generated from each tile, ensuring the same amount
of geographic coordinates fell in each.

The purpose of the first experiment is to obtain the op-
timal split size that, with a fixed task capacity of 58, will
yield the fastest response time. When the task capacity is
fixed, obtaining a good split size is important to keep all
the available map slots occupied all the time. For example,
with the given task capacity, if the number of spawned map
tasks is 60, then 56 map slots will be unused while the last
2 tasks are processed. On the other hand, if the number of
spawned map tasks is 116, then there will be no idle map
slots in the cluster, and the response time for the component
will be faster.

Table 1. Number of map tasks spawned for
minimum split sizes of Fig. 4.

Split Size (MB) Num. of Map Tasks
128 454
256 235
384 158
512 122
576 109
640 99
768 83
896 79

1024 63

Figure 5. Response time as size of portfolio
increases.

The results for this experiment are shown in Fig. 4,
which depicts the response time in seconds as the split size
increases from 128MB up to 1024MB using in all cases two
reduce tasks. Table 1 contains the actual number of map
tasks spawned by the split sizes used in this experiment.
The size of the property portfolio used in this experiment
was 20,000. A split size of 576MB yields the fastest re-
sponse time with 96 seconds. It provides the best combi-
nation of task capacity utilization and number of spawned
map tasks. Not utilizing too many map tasks is important
for the performance of the component given that it takes a
few seconds to setup and schedule a task. The reason for
the peak at 512 is the ratio of spawned map tasks to task
capacity was 2.1, causing a significant amount of idle map
slots.

The second experiment measures the response time in
seconds of the MR-based atmospheric component as the
size of the property portfolio increases from 20,000 prop-
erties through 300,000 properties, in increments of 20,000.
All runs in this experiment use two reduce tasks. Instead
of the default split size of 64MB, the split size of this ex-
periment was set to 512MB, which provided the fastest re-
sponse time in the previous experiment. The results are as



Figure 6. Response time as task capacity in-
creases.

expected, as shown in Fig. 5. The input to the MR job is
constant as it consists of the wind swaths tiles, and the geo-
graphic coordinates are loaded as side data and looped over
in the map function. Hence there should a linear relation-
ship between the number of geographic locations and the
response time.

The third experiment measures the response time as the
cluster increases its task capacity by adding nodes. Fig. 6
depicts the results. Each node added 12 tasks to the capac-
ity, except for the second one that added 10. The results are
as expected. There is an inverse linear relationship between
the response time and the task capacity. Two reduce tasks
were utilized.

5. Conclusions

This paper has presented our work in using MapReduce
in the Florida Public Hurricane Loss Model (FPHLM) to
integrate the latter’s atmospheric component. The FPHLM
is a multi-disciplinary, open, public hurricane risk model
that assesses wind damage to insured residential properties
in Florida. Users of the model include the insurance indus-
try and insurance regulators, which need the output of the
FPHLM as fast as possible to be able to run property port-
folios multiple times and better assess their risk. The atmo-
spheric component of the FPHLM generates storm tracks
and wind fields for simulated storms over tens of thousand
of years of simulation. For an input property portfolio,
the output atmospheric component consists of the 3-second
terrain-corrected gust wind speeds the properties have on
each of the stochastically simulated storms, making the ex-
ecution of the atmospheric component computationally in-
tensive. Our MapReduce-based integration of the atmo-
spheric component into the FPHLM consists of one MapRe-
duce job that provides an scalable and efficient computing
framework. The experimental results validate the scalabil-
ity of the MapReduce-based component, demonstrating the
feasibility of utilizing MapReduce to scale the performance

of risk modeling components.

Acknowledgments

This work is partially supported by the Florida Office of
Insurance Regulation (OIR) under the “Hurricane Loss Pro-
jection Model” project. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect those of
the OIR.

References

[1] Hadoop. http://hadoop.apache.org, May.
[2] Opensees. http://opensees.berkeley.edu, 2006.
[3] Agora: Alliance for global open risk analysis.

http://www.risk-agora.org, Aug. 2007.
[4] Proactive parallel suite. http://proactive.activeeon.com/

index.php, 2013.
[5] S.-C. Chen, M. Chen, N. Zhao, S. Hamid, K. Chatterjee, and

M. Armella. Florida public hurricane loss model: Research
in multi-disciplinary system integration assisting govern-
ment policy making. Special Issue on Building the Next
Generation Infrastructure for Digital Government, Govern-
ment Information Quarterly, 26(2):285–294, 2009.

[6] S.-C. Chen, S. Gulati, S. Hamid, X. Huang, L. Luo,
N. Morisseau-Leroy, M. D. Powell, C. Zhan, and C. Zhang.
A web-based distributed system for hurricane occurrence
projection. Softw. Pract. Exper., 34(6):549–571, May 2004.

[7] J. Dean and S. Ghemawat. Mapreduce: simplified data pro-
cessing on large clusters. Commun. ACM, 51(1):107–113,
Jan. 2008.

[8] F. Dehne, G. Hickey, A. Rau-Chaplin, and M. Byrne. Paral-
lel catastrophe modelling on a cell processor. In Proceedings
of the 2009 Conference of the Center for Advanced Stud-
ies on Collaborative Research, CASCON ’09, pages 24–31,
Riverton, NJ, USA, 2009. IBM Corp.

[9] D. Dönni. Modification of the data handling to grid-enable
reinsurance natural catastrophe calculations, 2007. Intern-
ship report.

[10] E. Field, T. Jordan, and C. Cornell. Opensha: A developing
community-modeling environment for seismic hazard anal-
ysis. Seismological Research Letters, 77(4):406–419, 2003.

[11] S. Hamid, B. M. G. Kibria, S. Gulati, M. Powell, B. Annane,
S. Cocke, J.-P. Pinelli, K. Gurley, and S.-C. Chen. Predicting
losses of residential structures in the state of florida by the
public hurricane loss evaluation model. Statistical Method-
ology, 7(5):552–573, 2010.

[12] H. Mahmood. Application of distributed computing to a
reinsurance natural catastrophe calculation software. Mas-
ter’s thesis, Royal Institute of Technology (KTH), Stock-
holm, Sweden, 2006.

[13] K. Porter and C. Scawthorn. Openrisk: Open-source risk
software and access for the insurance industry. In First
International Conference on Asian Catastrophe Insurance
(ICACI), 2007.


