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Abstract

In this paper, a hierarchical disaster image classification
(HDIC) framework based on multi-source data fusion
(MSDF) and multiple correspondence analysis (MCA) is
proposed to aid emergency managers in disaster response
situations. The HDIC framework classifies images into
different disaster categories and sub-categories using a
pre-defined semantic hierarchy. In order to effectively
fuse different sources (visual and text) of information, a
weighting scheme is presented to assign different weights to
each data resource depending on the hierarchical structure.
The experimental analysis demonstrates that the proposed
approach can effectively classify disaster images at each
logical layer. In addition, the paper also presents an iPad
application developed for situation report management
using the proposed HDIC framework.

1. Introduction

Due to the ease of access and wide reach of Internet,
more and more multimedia data such as images and videos,
along with corresponding textual descriptions, become
available through the web everyday. Such availability
of content-rich data is extremely valuable for emergency
management (EM) personnel as they can take more accurate
decisions in disaster situations by having both textual
and visual information of the disaster. Nevertheless,
currently, EM personnel mostly utilize disaster situation
reports (also referred as situation reports) which provide
just a textual description of the disaster. To augment
situation reports with related disaster images and thus
provide EM personnel with images and videos that present
valuable information about the disaster, a hierarchical
disaster image classification (HDIC) framework is proposed
in this paper. Based on multi-source data fusion (MSDF)
and multiple correspondence analysis (MCA) [1], our
framework classifies disaster multimedia data into different

categories and links these images to related situation
reports. In order to obtain images for the disaster domain
(i.e., hurricane, oil spill, and earthquake), we collected both
images and their corresponding titles and description from
Flickr. The HDIC framework utilizes both visual features
from images and textual description to demonstrate the
performance of combining MCA-based data fusion method
with the hierarchical classification approach.

There are two main applications for image classification
in the area of disaster analysis: damage detection and
damage prediction. Najab [13] used Principal Component
Analysis (PCA) to extract the features from remotely-
sensed data and classify them into different landcover
classes. Gandhe [8] leveraged a framework which includes
discrete wavelet transform (DWT) and PCA to help with
image mining and weather forecasting, and Hsu [9] applied
wavelet transformation, support vector machines, and fuzzy
neural networks for image compression, classification and
error correction respectively to an intelligent typhoon
damage prediction system. In addition, classification of
high-resolution disaster images facilitates the process of
damage assessment after environmental disasters such as
hurricane, tsunami, etc [12, 6, 2, 3, 4]. Unlike the
aforementioned works that focus on satellite images [13,
3, 4], images retrieved from multiple remote sensing
sensors [12, 6] and aerial photos [9, 2], our framework
is able to classify the actual disaster images taken at the
disaster location, which have higher complexity and reduce
the semantic gap between the images and the disaster
categories. In addition, the proposed framework is able
to fusion multi-source data in an efficient way achieving
higher performance than the individual textual and visual
models independently.

The remainder of this paper is organized as follows.
Section 2 briefly describes the HDIC framework based on
MSDF and MCA. Section 3 discusses the MCA algorithm
for multimedia content analysis. Section 4 presents
the details of the visual-text model training. Section 5
discusses the hierarchical classification based on MSDF.



Experimental analyses is presented in section 6, and
section 7 briefly introduces the ipad application developed
based on the HDIC framework. Finally, section 8 concludes
the paper.

2 HDIC Framework

Depicted in Figure 1, the HDIC framework is composed
of two main processes: multi-source model training and
hierarchical classification. During the model training
process, visual and text features are extracted respectively
and fused based on the weighting scheme presented in
section 5. Then the models for different categories and
sub-categories (subjects) are trained based on the MCA
algorithm, generating thresholds for classification. The
feature extraction of testing data depends on that of the
training data. For example, the discretization intervals
of test visual feature should corresponds to those of the
training data. Finally, the trained models are applied to the
hierarchical classification of images, where the images are
firstly classified into general categories, and then passed to
the next layer to be assigned to specific subjects.

Figure 1: HDIC framework.

3 MCA for Multimedia Content Analysis

MCA is an exploratory data analytic technique designed
to analyze multi-way tables for some measure of
correspondence between the rows and columns [1]. It is
a natural extension of the standard correspondence analysis
to more than two variables. The observations used for MCA
are a set of nominal variables, each of which is composed
of several levels, and each level is coded as a binary value.
There is a constraint that one and only one level of the

variable gets the value 1. Therefore each observation has
the same total, called mass. MCA can also accommodate
quantitative variables by recording them as bins, which
inspires the idea that it could be applied to numerical data,
such as multimedia feature instances. For example, each
image feature variable could be discretized into several
intervals, and each image can be presented by a series of
nominal values.

Motivated by the functionality of MCA as well as its
quantitative analysis ability, the utilization of MCA has
been explored in our previous works to analyze the data
instances described by a set of low-level features to capture
the correspondence between items (feature-value pairs) and
classes (subjects). The similarity of every item and every
class can be presented by the cosine of the angle between
each item and class [10, 11]. A smaller angle indicates a
higher correlation between the item and class.

4 Visual-Text Model Training Based on MCA

This section reveals the feature extraction processes for
both visual and text data as well as the model-training
procedure based on the MCA algorithm. An iterative
threshold determination algorithm is also presented to find
out the most appropriate threshold for classification.

4.1 Visual feature extraction

There are mainly three steps for visual feature extraction:
feature extraction, normalization, and discretization. The
first two steps are the same for both training images and
test images; however, the discretization of the test images’
features is based on the discretized intervals resulted from
training image instances.

In order to capture the visual contents of images, two
types of feature are extracted: low-level color features and
mid-level object location features, which are described as
follows:

• Twelve color features: black, white, red, red-yellow,
yellow, yellow-green, green, green-blue, blue, blue-
purple, purple, and purple-red;

• Nine object location features: Images are divided into
3×3 grid, i.e., nine locationsL1, · · · , L9, whereLi =
1 if there is an object whose centroid falls insideLi =
1, 1 ≤ i ≤ 9.

Therefore a total number of 21 features are obtained,
where the color features are based on the HSV color space,
and the object location features are extracted using the
SPCPE algorithm [5]. Since the color features and object
location features are considered equally important, an equal
weight (i.e., 0.5) is assigned to each type of features in



the normalization step. Finally, an information-gain-based
discretization method [7] is used for numerical to nominal
transformation.

4.2 Text feature extraction

Due to its limitation in descriptive capability, visual
features alone could not well represent the content of an
image. Therefore text features are introduced to enhance the
description. The proposed text feature extraction procedure
requires more preprocessing than visual features. First,
punctuation characters and stop words are removed, thus
obtaining a list of valid words for each image instance.
The word frequency is calculated based on all the training
instances for each concept (subject). The top N (i.e. 50
in our experiment) words with the highest frequencies are
selected as features. A nominal value is assigned to each
feature representing the existence or absence of it. Then
each image instance could be transformed to a sequence
of nominal variables with N dimensions. The feature
extraction process of the test data set is almost the same
as that of the training data set except for the ”get word
frequency” step since the construction of testing feature
vector is based on the top N words from training data.

4.3 Visual-Text Model Training

The process of visual-text model training can be
summarized into two major steps: MCA score calculation
and threshold generation. More specifically, after visual and
text feature extraction of the training data sets, the two sets
of feature vectors are concatenated together to form a data
set of fused instances, which are used for angle generation
based on MCA correlation analysis. The angles, denoted
as A, are calculated using Equation (1), whereI and
C are two-dimensional principal components representing
items and classes respectively as described in section 3,
and j, k are indicators of items and features. Then the
generated angles are applied to weight conversion as shown
in Equation (2). The weight is a measure of the similarity
between each item and class. The sum of all of the weights
within one instance is denoted asS (shown in Equation (3)),
which is the final evaluation of the relationship between
each instance and class. A higher score implies a higher
possibility that the instance belongs to the class, which
implies the existence of a cut point (threshold) determining
the positive or negative attribute of one instance for certain

class (subject).

Aj
k = arccos(

Ij
k · C)∣∣∣Ij
k

∣∣∣ |C|
), (1)

weightjk = ±(1 + cos(Aj
k × π/180)), (2)

Si =
K∑

k=1

weightjk, i ∈ {1, 2, · · · , N} (3)

How to determine the threshold is a critical issue and
plays an extremely important role in the final performance
of the whole classification algorithm. Therefore an
iterative method is designed to find out the threshold for
classification based on the training instances:

THRESHOLD-GENERATION:
1 finalF1 = 0;
2 finalThresh = 0;
3 sortedScore = sort (trainScore);
4 cddThresh = find (positive);
5 for i = 1 to length (cddThresh)
6 testLabel (1 to cddThresh(i)) = classLabel;
7 F1 calculation;
8 if finalF1 > F1 || finalF1− F1 < γ then
9 finalF1 = F1;
10 finalThresh = sortedScore(cddThresh(i)).

Steps 1 and 2 initialize the variables offinalF1 and
finalThresh, which store the final F1 score and the
corresponding threshold. In step 3, the sort function sorts
training scores in descending order, and step 4 finds the
indexes of positive scores from the sorted array as candidate
thresholds. Step 5 through 10 loop through each candidate
to find the best threshold giving the optimal performance
in terms of the F1 measure. Specifically, steps 6 and
7 calculate the F1 scores based on precision and recall
(refer to section 6). In step 8, the latter condition (i.e.,
finalF1−F1) is designed to include the neglected positive
instances; it provides the functionality of balancing between
recall and precision measures and improves F1 scores. The
termγ is a practical parameter, and it is set to be 0.03 in the
experiments. Finally, steps 8 and 9 recall the final F1 score
and threshold.

5 Hierarchical Classification

In order to explore the extensive relationship between
various subjects and perform the classification in a more
efficient way, a hierarchical classification mechanism is
proposed. The hierarchical classification scheme breaks
down disaster-related categories into a tree structure which
serves to organize general to specific categories. The
classification scheme addressed in this paper was developed



Figure 2: Hierarchical structure.

upon consulting with experts in the disaster management
field.

As shown in Figure 2, the top-down category tree
classifies images into one of three main categories, i.e.,
hurricane, oil spill, or earthquake based on text-visual
models, and then the chosen category will be further
classified into a specific sub-category. Based on the
observation that the text data in the second layer has a
stronger pattern than that of visual model and vice versa
in the third layer, a weighting scheme is proposed to
distinguish the significance of visual and text models at
different layers and obtain a better fusion result. The fusion
score is calculated as follows:

scoref = αWv ∗ scorev + βWt ∗ scoret, (4)

threshf = αWv ∗ threshv + βWt ∗ thresht, (5)

Wv =
F1v

F1v + F1t
, Wt =

F1t

F1v + F1t
, (6)

Wv + Wt = 1, α + β = 2. (7)

wherescorev andscoret represent the scores obtained from
visual and text models, whileαWv and βWt denote the
weight factors of visual and text models respectively, and
scoref is the final fused score. The thresholds are fused
in the same manner. TheWv andWt are calculated based
on the F1 measures of visual and text models at different
layers, while theα and β are tuning parameters. In the
experimental analysis, theα andβ are set to be 0.50 and
1.50 in the second layer; 1.23 and 0.77 in the third layer.
Finally, the classification rules are generated as follows:

finalLabel =
{

positive, if scoref ≥ threshf ,
negative, if scoref < threshf .

(8)

6 Experimental Analysis

In order to demonstrate the effectiveness of the
proposed MCA-based multimedia content analysis, a
set of experiments have been conducted to evaluate its

Figure 3: Composition of categories and subjects.

performance. The test bed is a web-crawled dataset
consisting of 1,025 images with texts downloaded form
Flickr. The number of images is limited due to the fact
that domain-specific disaster images are not abundant. The
images contain three categories and cover six subjects as
shown in Figure 3. The categories are denoted as Cat1,
Cat2, and Cat3, and the subjects are denoted as Sub1
through Sub6.

In the experimental settings, the hierarchical
classification scheme shown in Figure 2 is adopted.
Multi-source (text and visual) data fusion is performed
at both layer 2 and layer 3. To show the advantages
of the multi-source model over single–source models,
a comparison between the performances of the multi-
source text-visual model and the single-source text and
visual models are conducted at each layer. The precision
(Equation 9), recall (Equation 10), and F1 (Equation 11)
are calculated as the measurements of performance under
the 3-fold cross validation approach.

precision =
TP

TP + FP
, (9)

recall =
TP

TP + FN
, (10)

F1 =
2 · precision · recall

precision + recall
, (11)

where TP , FP , and FN represent the number of
true positive, false positive and false negative instances
respectively. Tables 1 through 3 show the performance
evaluation results for layer 2. Specifically, tables 1 and 2
give the scores of text and visual models respectively, and
table 3 shows the results of the fused model. As shown in
the tables, the fused model outperforms the single-source
models. The visual-text model approach achieves a 7%
improvement over the text model and a 36% over the
visual model. Another observation is that the text model
outperforms the visual model. This is because the text
information at layer 2 shows a stronger pattern than that of
visual information. For example, there is a high possibility
that the text files describing images of Cat1 contain the



key ”hurricane”, while the text files belonging to Cat2
contain the words ”oil” and ”spill”. However, the visual
contents of the corresponding images are more abstract and
complicated, especially when many categories and subjects
are involved. Therefore, a higher weight is assigned to text
features at layer 2.

The advantages of text features diminish gradually as the
categories are further classified into specific subjects since
there is not a strong distinction among those text files in
the same category. On the other hand, the visual features
demonstrate their superior characteristics for extracting
visual patterns when there are fewer subjects involved.
Therefore, the weight for visual features increases at layer
3. Tables 4 through 6 contain the subject classification
results of layer 3. Specifically, table 4 and table 5 present
the scores of text and visual models respectively, and
table 6 shows the performance of the combined model.
The categorization results of layer 2 enhance the power
of visual model at layer 3. The final F1 score of the
whole classification framework is 83%, which is 10% and
5% higher than the visual and text models respectively.
Although the performance of layer 3 is not as good as
layer 2 due to the error propagation problem, the overall
experimental results demonstrate the advantages of the data
fusion method based on MCA as well as the effectiveness
of the hierarchical classification approach.

Categories Precision Recall F1
Cat1 0.98276 0.99415 0.98839
Cat2 0.82698 0.91743 0.86625
Cat3 0.73662 0.97199 0.80158

Average 0.84879 0.96119 0.88541

Table 1: Performance evaluation for text model (Layer-2).

Categories Precision Recall F1
Cat1 0.4485 0.62405 0.51397
Cat2 0.53 0.69419 0.59718
Cat3 0.60715 0.68908 0.6434

Average 0.52855 0.6691 0.58485

Table 2: Performance evaluation for visual model (Layer-
2).

7 iPad Application Based on HDIC
Framework

The proposed HDIC framework has been utilized in an
iPad application developed for enhancing disaster situation
reports and facilitating decision making processes. The

Categories Precision Recall F1
Cat1 0.98825 0.98533 0.98678
Cat2 0.9578 0.90214 0.9291
Cat3 0.94653 0.93277 0.93925

Average 0.96419 0.94008 0.95171

Table 3: Performance evaluation for visual-text model
(Layer-2).

Subjects Precision Recall F1
Sub1 0.87877 0.86807 0.86899
Sub2 0.85186 0.82548 0.83193
Sub3 0.94494 0.85296 0.89631
Sub4 0.92468 0.93569 0.92994
Sub5 0.64674 0.76712 0.67544
Sub6 0.43501 0.58087 0.49665

Average 0.78033 0.80503 0.78321

Table 4: Performance evaluation for text model (Layer-3).

Subjects Precision Recall F1
Sub1 0.64212 0.84219 0.72403
Sub2 0.65548 0.84511 0.73546
Sub3 0.74588 0.80961 0.76942
Sub4 0.75924 0.74552 0.72477
Sub5 0.7355 0.89078 0.79925
Sub6 0.59502 0.75858 0.66468

Average 0.68887 0.8153 0.73627

Table 5: Performance evaluation for visual model (Layer-
3).

Subjects Precision Recall F1
Sub1 0.86667 0.88361 0.8707
Sub2 0.88159 0.81884 0.83733
Sub3 0.97143 0.86151 0.91294
Sub4 0.95505 0.91613 0.93427
Sub5 0.71064 0.9133 0.79285
Sub6 0.60397 0.75129 0.66131

Average 0.83156 0.85745 0.8349

Table 6: Performance evaluation for visual-text model
(Layer-3).

implementation of the user interface (UI) is based on the
officially supported tools for iOS design and coding, i.e.,
Apple’s Xcode 3 and its built-in Interface Builder and iOS
Simulator applications. Figure 4 shows the main interface
of the system, where users can browse the classified images
associated with a specific situation report. Since it is not the



focus of this paper, the details of the implementation are not
introduced.

Figure 4: iPad application based on HDIC framework.

8 Conclusions and Future Work

In this paper, an hierarchical disaster image classification
scheme based on MSDF and MCA is developed
for enhancing disaster situation reports with relevant
multimedia data and consequently improve the decision
making process in disaster situations. The experimental
results show the effectiveness of the proposed method.
Furthermore, the proposed HDIC framework has been
successfully in an iPad application for aiding EM personnel
in disaster emergency response. However, there are several
aspects of this algorithm to be improved. First, the
hierarchical structure and weighting scheme are fixed for a
specific scenario, where an adaptive approach is preferable.
Second, the visual features are mainly low-level, and more
mid-level features are needed to better describe the content
of images. Finally, the range of disaster categories and
subjects should be extended to serve more general purposes.
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