
A Three-Dimensional Geographic and Storm Surge Data Integration System for
Evacuation Planning

Jairo Pava1, Fausto Fleites1, Fang Ruan1, Kasturi Chatterjee1, Shu-Ching Chen1, Keqi Zhang2
1Distributed Multimedia Information Systems Laboratory

2International Hurricane Research Center
Florida International University, Miami, FL 33199

1{jpava001, fflei001, ruanf, kchat001, chens}@cs.fiu.edu,2zhangk@fiu.edu

Abstract

The rise of offshore water caused by the high winds of
a low pressure weather system, or storm surge, is a hurri-
cane’s greatest threat to human life. As weather forecasters
struggle to enable coastal residents to make timely evacua-
tion decisions, the need arises for more visually compelling
and interactive storm surge visualization tools. This paper
presents an interactive and three-dimensional storm surge
visualization system. It integrates road, topographic, and
building data to construct accurate three-dimensional mod-
els of major cities in the State of Florida. Storm surge data
are then used to construct a three-dimensional ocean po-
sitioned over the terrain models. Ambient details such as
wind, vegetation, ocean waves, and traffic are animated
based on up-to-date wind and storm surge data. Videos
of the storm surge visualizations are recorded and made
available to coastal residents through a web-interface. The
three-dimensional visualization of geographic and storm
surge data provides a more visually compelling represen-
tation of the potential effects of storm surge than tradi-
tional two-dimensional models and is more capable to en-
able coastal residents to make potentially life-saving evac-
uation decisions.

Keywords: Information Integration, Data Visualization,
Geographic Information Systems, Storm Surge

1. Introduction

Hurricanes are the most destructive natural hazards to
threaten the United States East and Gulf coasts. The great-
est threat to human life and property by a hurricane is storm
surge. Historically, storm surge has led to 90% of fatalities
caused by hurricanes. Salt water flooding is also a major
cause of damage to buildings and infrastructure [5][7].

As low pressure weather systems, such as hurricanes, ap-
proach a coastal area, storm surge models are used to esti-
mate the potential storm surge at the projected landfall area.
One such type of model is the Coastal and Estuarine Storm
Tide (CEST) model developed by the International Hurri-
cane Research Center (IHRC) [22][25]. The model takes
into consideration the expected tide at landfall and atmo-
spheric pressure and wind of the weather system. It also
takes into consideration major coastal topographic features
such as coastal ridges and barrier islands. Based on storm
surge models, coastal residents are warned and advised on
evacuations through television, Internet, radio, and newspa-
pers. Coastal residents, however, have been unable to relate
the two-dimensional evacuation maps broadcast over media
outlets to their three-dimensional life experiences. Conse-
quently, emergency planners have struggled to avoid under
and over-evacuation of coastal areas.

To address the issue of applying information and knowl-
edge for enhancing timely evacuation decision-making, we
propose a three-dimensional storm surge visualization sys-
tem that integrates Light Detection and Ranging (LiDAR)
measurements, storm surge data, and road data in Digital
Line Graphics (DLGs) in the State of Florida to effectively
aid coastal residents as they prepare for a storm. With the
term three-dimensional, we refer to a computer-generated
virtual environment that may be interacted with and viewed
within the spatial dimensions of depth, height, and width.
Coastal residents will better relate to three-dimensional an-
imations of their homes or businesses under storm surge
conditions and instantly be more disposed to regard official
evacuation notices. The work in [23] presents a storm surge
visualization system to display the effects of a rising storm
surge on vehicles during a hypothetical hurricane. However,
it is highly scripted and the individual components used to
animate the storm surge, wind, traffic, and rain have to be
carefully configured before every initialization. Therefore,
it is not practical to use such a time-consuming system when



coastal residents must make time-sensitive evacuation deci-
sions hours before storm impact. Furthermore, the system
does not have support for any formal storm surge model and
can therefore not be used to simulate official storm surge
data.

Our proposed system will extend the work in [23]. It
will utilize data from the CEST model to automatically con-
figure and update the storm surge visualization system in
real-time as updated storm surge data become available.
Real-time refers to the latest official storm surge projec-
tions which are typically updated every three to six hours
as a hurricane approaches landfall. In this manner, coastal
residents will be better informed when making potentially
life-saving evacuation decisions. Additionally, researchers
will now have the ability to use our system with historical
data to further study the effects of storm surge and help mit-
igate its damage in the future. We have also developed a
web-based interface to overcome the hardware limitations
imposed by [23] so that all coastal residents and emergency
planners, regardless of their available computational power,
have access to our system’s storm surge visualizations.

The main contributions of this paper are as follows: (1) it
provides techniques for a synergetic integration of LiDAR
and storm surge data; (2) it presents a novel methodology to
accurately visualize real-time and historical hurricane storm
surge scenarios in a three-dimensional environment; and (3)
it elaborates on a web-based integration of two and three-
dimensional storm surge visualizations for coastal residents
and emergency planners.

The rest of this paper is organized as follows. The
next section discusses the system architecture of our vi-
sualization system. Section 3 describes how our system
procedurally generates digital terrain models (DTMs) and
build footprints from LiDAR measurements and roads from
DLG data. Section 4 describes how the output from the
CEST model is used to animate the visualization. Sec-
tion 5 describes a web-based interface for coastal residents
and emergency planners to view storm surge visualizations.
Section 6 discusses related work. Sections 7 and 8 present
concluding remarks and acknowledgements.

2. System Architecture

The proposed system utilizes and extends the facilities
in the open-source Virtual Terrain Project (VTP) [13]. The
VTP is a set of two programs, VTBuilder and Enviro, which
are used to construct and render three-dimensional visu-
alizations of geographic data. VTBuilder provides an in-
terface to construct terrains, structures, and roads. Enviro
provides a highly interactive three-dimensional runtime en-
vironment using OpenGL [10]. We have extended both
programs to integrate large CEST model data sets, LiDAR
measurements, and DLGs for roads into a compelling three-

Figure 1. System Architecture

dimensional visualization of storm surge data.
Figure 1 presents a high-level four-tier system architec-

ture used to integrate geographic and storm surge data for
interactive visualization. The data processing layer pro-
vides the data management facilities that allow for con-
version of LiDAR, DLG, and CEST data into formats that
serve as accessible input data to VTBuilder. Processed
input data is used in the construction layer to construct
three-dimensional representations of terrain, structures, and
roads. These data are then integrated to construct a final
digital representation of the terrain with roads and build-
ings. Wind and storm surge data, obtained from the CEST
model, are used in the construction layer to drive graphics
animation engines for wind, storm surge, vegetation, rain,
traffic, and ocean waves. Access to the VTBuilder interface
is bi-directional so that a user may modify processed data
after it has been constructed into three-dimensional form.
The DTM, buildings, roads, and graphics animation engines
are then integrated and passed on as inputs to the VTP’s En-
viro for final rendering in the animation layer. This layer
provides an interactive three-dimensional navigation of the
digital terrain along with animated storm surge, rain, light-
ing, cloud, vegetation, traffic, and sun visualizations.

3. Terrain Data Integration

In this section we provide background information on
LiDAR and DLG data and how they are used to accurately
represent topography, buildings, and roads in our system.



We then discuss how these data are integrated into a stan-
dard format usable by the VTP for three-dimensional visu-
alization.

3.1. LiDAR

LiDAR is a remote sensing system used to collect to-
pographic data. The National Oceanic and Atmospheric
Administration (NOAA) collects LiDAR data with aircraft-
mounted lasers that are capable of recording elevation mea-
surements at a rate of 2,000 to 5,000 pulses per second with
a vertical precision of six inches. LiDAR data points are
stored as XYZ data points in text files where x is longitude,
y is latitude, and z is the elevation at that point. The laser-
scanned data include topographical measurements as well
as non-ground objects such as cars, buildings, and vegeta-
tion. The data must, therefore, be processed into separate
measurements for ground and non-ground objects to be us-
able for three-dimensional animation.

3.2. Digital Terrain Model

To construct a DTM from LiDAR data, measurements
from ground and non-ground features have to be identified
and categorized. The methodology used to remove non-
ground measurements from LiDAR data is the progressive
morphological filter investigated by Zhang et al. in [24].
The filter is based on dilation and erosion fundamentals of
set theory and has the advantage of filtering out non-ground
objects without prior knowledge of the size and elevation
of the terrain. Additionally, the morphological filters auto-
matically derive elevations for gaps in the LiDAR data us-
ing nearest neighborhood interpolation. The resulting out-
put from the morphological filters is converted to the Bi-
nary Terrain (BT) [2] format with VTBuilder. A BT file
is an elevation grid consisting of elevation values at speci-
fied geo-coordinates. BT files are used by Enviro to render
three-dimensional representations of DTMs.

In an effort to model the geographic extents of the State
of Florida, DTMs of nine cities have been created using
LiDAR data. They are Pensacola, Jacksonville, Tampa,
St. Petersburg, West Palm Beach, Ft. Lauderdale, Miami
Beach, Key Biscayne, and Key West.

3.3. Automatic Building Construction

Extending upon the morphological filter in [24], we use
the framework in [26] to automatically construct build-
ings from LiDAR measurements. Ground and non-ground
LiDAR measurements are separated using the progressive
morphological filter. Building measurements are then iden-
tified using a region-growing algorithm based on plane-
fitting techniques. Raw footprints for building measure-
ments are identified by connecting boundary points. These

<StructureCollection
xmlns:gml="http://www.opengis.net/gml">
<Building>

<Level FloorHeight="3.0"
StoryCount="1">

<Footprint>
<gml:coordinates>

587225.873,2851049.22
587206.933,2851075.11
587200.844,2851059.76
587223.588,2851034.80

</gml:coordinates>
</Footprint>
<Edge Material="Siding"

Color="ffffff">
<EdgeElement Type="Wall"/>

</Edge>
</Level>

</Building>
</StructureCollection>

Figure 2. VTST Structure File

raw footprints are then automatically refined to remove
noise caused by irregularly spaced LiDAR measurements.
The heights of the buildings are identified by averaging the
elevation differences between building measurements and
the DTM constructed from non-ground measurements.

After identifying building footprints, VTBuilder is used
to construct a Virtual Terrain Structure (VTST) [14] file
based on the extensible markup language (XML) format.
VTST is readable by the VTP and allows for systematic
creation of 3D building models based on the footprints.
VTST is built upon the definition for the OpenGIS Geog-
raphy Markup Language (GML) Implementation Specifica-
tion, version 2.1.2 [9]. It is the standard for encoding geo-
graphic data in XML.

Figure 2 presents a sample building footprint in the
VTST format. Building footprint points are specified
in counter-clockwise order using the VTP’s own two-
dimensional coordinate system which corresponds to the
geo-coordinates in the LiDAR data. The building’s floor
height is specified in meters, and a building may have more
than one floor with respect to the story count attribute.
The footprint vertex with the lowest elevation becomes the
height of the base of the building. Furthermore, buildings
may be systematically textured by adding the Edge element
with the appropriate attributes for material and color.

There exist advantages to using LiDAR data to construct
building models rather than 3D model creation software as
proposed in [23]. By using geo-referenced LiDAR data



Figure 3. System engines and modules

points, a building is placed at its exact geo-coordinates on
the DTM and with accurate distance between its neighbor-
ing buildings. We are able to do this within minutes of pro-
cessing LiDAR data whereas it typically takes two to three
hours, on average, to manually design one building model.
Most importantly, we can be certain that building heights
are accurate and the relative storm surge height in the visu-
alization is precise. However, while the VTST files allow
us to procedurally texture the generated building models,
we must manually texture landmark buildings to look more
realistic.

3.4. Road Distribution

United States Geological Survey (USGS) DLG data are
digital vector representations of cartographic information.
The data are publicly available for download from the of-
ficial USGS website [12]. Since the road data captured in
DLG comes from scanned cartography, it does not contain
road widths, names of streets, or traffic direction. However,
the precise geo-coordinates of the DLG files as well as pub-
licly available road map data [4] allow our system to render
roads with accurate placements and dimensions. VTBuilder
is then used to convert the data from DLG into Road Map
Format (RMF) [11], a binary file format that stores the ex-
tents of the DLG dataset and road coordinates and intersec-

tions. Enviro uses the RMF file to appropriately render the
roads over the terrain.

4. CEST Integration

In this section we describe how the IHRC’s CEST model
is used to drive all of the graphics animation engines and
modules in the VTP to accurately and realistically render
three-dimensional storm surge scenarios.

Figure 3 presents a minimal class diagram of all the
engines that utilize CEST model data for animation. The
vtEngine is an abstract class provided by the VTP that co-
ordinates the behavior of every animation within visualiza-
tion. Its abstract eval() function is invoked once per frame
and must be implemented by every class that inherits from
vtEngine with code that renders some change to the anima-
tion. All of the engines that inherit or are otherwise associ-
ated with vtEngine are described in the following sections.

4.1. Time Engine

The Time class implements the time engine to update
the wind and storm surge modules. It keeps track of the
time in terms of days, hours, minutes, and seconds. It can
also be set to begin at specific times upon initialization for



Figure 4. Ocean wave simulation

simulation of historical or projected storms and can elapse
at accelerated rates. At every invocation of its eval() func-
tion, the time engine updates the current time and reads in
the wind and storm surge data corresponding to the same
time interval in the supplied CEST data. At the completion
of every interval in the simulation, the time engine updates
the storm surge and wind modules with new CEST data.

4.2. Wind Module

At every update, the wind module, implemented by the
Wind class, receives updated CEST model wind data from
the time engine and correspondingly updates its current
wind direction and speed by calculating an average of all
the wind measurements within a one mile radius from the
currently simulated location. It does not need to keep track
of the next set of wind data to read at the following update as
this is managed by the time engine. It does not inherit from
the vtEngine class since it only needs to be updated when a
new time interval has been approached by the time engine.
Wind direction is measured in degrees and wind speed is
measured in miles per hour. To maintain a synchronized
and fluid animation with respect to wind, the wind module
is invoked once per frame by the vegetation and rain en-
gines.

4.3. Vegetation and Rain Engines

The Vegetation class implements the vegetation engine
to manage all of the trees in the animation. It uses an imple-
mentation of vertex weighting [20] for animation of three-
dimensional trees. At every frame in the animation, the
vegetation engine performs rotation, bend, and rupture of

Figure 5. Vehicles respond to storm surge

individual tree branches based on wind speed and direction
data. Tree animation is an integral component of ambient
details that adds to the experience of the visualization.

Similarly, the Rain class implements the rain engine to
render the direction and speed of rain droplets based on
wind data. While the CEST model does not predict precip-
itation, other sources may be used to automatically gather
and incorporate this data into the visualization [6].

4.4. Storm Surge Module and Ocean Wave Engine

The storm surge module, implemented by the Storm-
Surge class, receives updated CEST model data from the
time engine and updates the current storm surge height by
calculating an average of all the storm surge measurements
within a one mile radius from the currently simulated lo-
cation. The storm surge module is invoked by the ocean
wave engine once per frame to render the varying height
and waves of the ocean.

The ocean is modeled by animating a mesh using
Fournier’s model for ocean waves [18]. This model an-
imates water particles in circular or elliptical stationary
orbits and takes into account the surface of the ocean’s
floor for breaking waves on the shore. Specifically, each
water particle describes a circle around its rest position
(x0, y0, z0), and the particle’s motion around the circle is
given by the following parametric equations inx0 for a
givent and a constantz0:

x = x0 + rsin(kx0 − ωt)
z = z0 − rcos(kx0 − ωt)

TheXZ plane is the horizontal plane, and the height of
a wave is given on theZ axis. The above equations de-



scribe the curve generated by a point at a distancer from
the center of a circle of radius1k ; the circle rolls over a line
at distance1k under theX axis [18]. Fort = 0 andz0 = 0,
the equations are

x = −α
k − rsin(α)

z = −rcos(α)

whereα = −kx0, the height of the wave isH = 2r, the
wavelength isL = 2π

k , the period isT = 2π
ω , the phase

speed isc = L
T = ω

k , and the phase isφ = kx0 − ωt -
assuming a phase of 0 forx0. In deep ocean, the period and
wavelength are related byL = gT 2

2π [18].
The surface of the ocean’s floor is accounted for by in-

cluding the depthh at the point(x0, y0, z0) in a cumulative
way, meaning that the phase delay introduced by the depth
effect is carried over from deep ocean to the shore. The
wave numberk (the reciprocal of the wavelength) is a func-
tion of h, h is a function ofx0, and the phase is given by the
equation:

φ = −ωt +
x0∫
0

k(x)dx wherek(x) = k∞√
tanh(k∞h(x))

The termk∞ is the wave number at deep ocean (infinite
depth) and is calculated byk∞ = ktanh(kh). An approxi-
mation to the above equation is given by [18]:

φ = −ωt +
x0∑
0

k∞√
tanh(k∞h(x))

∆x

The angular frequencyω and the wave numberk utilized
to calculatek∞ are given as input parameters in our simula-
tion, and the timet is obtained from the temporal succession
of frames of the wave engine. The waves begin their motion
at deep ocean, where the depth is an arbitrary large number
MAXDEPTH, and move towards the shore, whereh(x)
is simulated as an increasing slope fromMAXDEPTH
to zero depth on the shore. Figure 4 shows our water ani-
mation using the model just described.

4.5. Traffic Engine

The traffic system engine developed in [19] is used to
render traffic on the roads placed on the terrain. The traf-
fic engine keeps track of all the vehicles in the animation
and updates the position of vehicles at every frame while
making sure that they follow road directions (stop lights,
lanes, road direction, etc.) and avoid collisions with each
other. Furthermore, the traffic engine’s dependency to the
storm surge module enables it to respond to changes in
storm surge and correspondingly force all vehicles to slow
down or stop if the storm surge rises beyond predetermined
thresholds. Figure 5 presents a screenshot of stalled vehi-
cles due to high storm surge.

4.6. Sound

OpenAL is used to implement sound in our system. It
is a free cross-platform audio Application Programming In-
terface (API) used in many games and simulation software
[8]. OpenAL is designed for efficient three-dimensional au-
dio. That is, any engine in the animation may specify the
velocity, position, direction, and intensity of a sound in a
three-dimensional space. This provides a more realistic au-
ditory component in the animation for wind, rain, vehicles,
lightning, and vegetation. For example, as wind speed in-
creases, the intensity of the professionally-recorded sound
also increases. Furthermore, as one navigates through the
visualization, the direction and intensity of sound changes
with respect to the current location in the terrain and the
sound sources. The Sound class is a singleton and there-
fore vtEngine has a reference to only one instance. This
allows it to coordinate sounds from all the engines through
its playSound() function.

5. Web-based Interface

To make the storm surge visualizations accessible to
coastal residents, we have designed a web-based interface.
It is based on the Google Maps API [3] and uses HTML,
JSP, Ajax, JavaScript, and Flash web technologies. Figure 6
presents a screen capture of the web interface. For clarifica-
tion, areas in the web interface discussed below are labeled
with a number enclosed in a box.

An interactive map of the State of Florida consumes ma-
jor part of the user’s screen. To the right of the screen, a
sliding bar menu (label 1) contains an address locator which
prompts the user to enter the address of a storm surge vi-
sualization he or she is interested in seeing. Upon having
an address submitted, the web interface queries a database
of user-contributed storm surge multimedia within a twenty
mile radius. It then uses Ajax to seamlessly display the re-
trieved images or videos without refreshing the page (label
2). Simultaneously, the map on the screen centers on the ad-
dress submitted, and a slightly transparent and color-coded
image (label 3) is superimposed over the map. The colors
of the image reflect the storm surge heights provided by the
latest CEST model data. If a visualization of the storm surge
is available at the location requested, a video icon (label 4)
appears on the map. Clicking on the icon reveals a window,
presented in Figure 7, with a video of the storm surge visu-
alization. Videos are presented in Flash video format, have
sound, and last for sixty seconds. Users have the option to
set the size of the video to fit their screens. The videos are
automatically updated every three to six hours as updated
storm surge data becomes available.

By presenting the visualizations of the storm surge sce-
narios as videos, coastal residents are able to view the visu-



Figure 6. Web Interface

alizations regardless of the performance capacities of their
personal computers. Additionally, users can access the
video through any mobile device with a Flash-supporting
web browser. This removes the limiting requirement of
needing a personal computer and access to a power source
to access the visualizations.

6. Related Work

There has been great effort in the research community to
provide alternative ways to visualize geographic and storm
surge data. However, most of the work that focuses on storm
surge visualization relies heavily on manual configuration
and is therefore too slow to be effective for time-sensitive
evacuation planning. In contrast, our approach uses an au-
tomated solution to automatically integrate geographic and
storm surge data and systematically generate storm surge
visualizations.

The work presented by Venkataraman et al. [15] is
most closely related to our work. The proposed work in-
tegrates computerized forecast models for hurricane wind,
temperature, and storm surge and LiDAR and GIS for
three-dimensional terrain views. The data are integrated
into a unifying data format, Hierarchical Data Format V.5,
and rendered using the Amira visualization framework [1].
Amira, however, does not have Level-of-Detail (LOD) al-
gorithms to handle large LiDAR data sets and cannot render
interactive and animated visualizations like the VTP used in
our approach.

Webster et al. [21] use topographic LiDAR measure-
ments to construct a high-resolution digital elevation model
(DEM) for Charlottetown, Prince Edward Island, Canada.

Figure 7. Storm Surge Video

Storm surge data are represented as a two-dimensional
shaded-relief image superimposed over the DEM in a GIS
rendering system. However, in this paper we focus on pro-
ducing three-dimensional visualizations of storm surge sce-
narios data that are more likely to persuade coastal residents
to follow official evacuation notices. Furthermore, we pro-
vide a web-based interface that enables coastal residents to
view storm surge scenarios for a wider set of city locations.

Flaxman et al. [17] uses the VTP to visualize alternative
futures for large cities and regions. It discusses a case study
where the city of Hangzhou, China, was modeled using ex-
isting GIS data for buildings, terrain, rivers, and roads. The
city models were used to help city planners identify areas
to place strategic public investments in transportation, in-
frastructure, and civic buildings. Our approach differs from
[17] in that we utilize LiDAR data to automatically con-
struct building models and terrains for storm surge plan-
ning. By using LiDAR data, we can procedurally construct
accurate city models with considerably less manual effort.
However, our system can benefit from the methods used in
[17] to evaluate our system’s ability to operate in an urban
planning environment.

7. Conclusions and Future Work

In this paper we present a three-dimensional storm surge
visualization system. LiDAR data were used to extract
buildings and terrain topography measurements to construct
digital terrain models. Roads were accurately placed on
the terrains using USGS DLG data. Finally, CEST model
data were used to construct three-dimensional visualiza-
tions of storm surge data on the terrains. Additionally,



CEST model data were used to drive sound and wind, ocean
wave, rain, vegetation, and traffic animations within the vi-
sualization. An accessible and portable web-based interface
for the storm surge visualizations based on the Google Maps
API was also presented. Videos of storm surge visualiza-
tions are updated based on the the most up-to-date storm
surge projections and automatically uploaded to the web-
interface. By integrating LiDAR, DLG, and CEST model
data, we have successfully developed a three-dimensional
data visualization system that may be used as a public re-
lations tool to better inform coastal residents of the poten-
tial storm surge in their immediate area and enable them to
make potentially life-saving decisions. Furthermore, deci-
sion makers are enabled to perform optimal urban planning
and mitigate flood damage by analyzing potential storm
surge scenarios.

Future work calls for: (1) using more extensive LiDAR
data sets to create storm surge visualizations for the entire
State of Florida; (2) investigating how the community re-
acts to the storm surge visualizations and evaluating what
is the most useful information to coastal residents and pub-
lic decision makers; and (3) exploring methods of enabling
users to interact with the storm surge visualization system
through the web-based interface.

Acknowledgements

This project was supported in part by a grant from
NOAA.

References

[1] Amira, http://www.amira.com/ (Apr. 2010).
[2] BT Format, http://vterrain.org/implementation/formats/bt.html

(Apr. 2010).
[3] Google Maps API, http://code.google.com/apis/maps (Apr.

2010).
[4] Google Maps, http://maps.google.com (Apr. 2010).
[5] IHRC, http://www.ihrc.fiu.edu/aboutus/hurricanehazards

(Apr. 2010).
[6] National Digital Forecast Database Simple Object Access

Protocol Web Service, http://www.nws.noaa.gov/xml (Apr.
2010).

[7] NOAA, http://www.nhc.noaa.gov/haw2/english/stormsurge.shtml
(Apr. 2010).

[8] OpenAL, http://connect.creativelabs.com (Apr. 2010).
[9] OpenGIS, http://www.opengeospatial.org (Apr. 2010).

[10] OpenGL, http://www.opengl.org (Apr. 2010).
[11] RMF, http://vterrain.org/doc/roads.html (Apr. 2010).
[12] United States Geological Survey, http://data.geocomm.com

(Apr. 2010).
[13] Virtual Terrain Project, http://vterrain.org (Apr. 2010).
[14] VTST Format, http://vterrain.org/implementation/formats/vtst.html

(Apr. 2010).

[15] W. Benger, A. L. S. Venkataraman, G. Allen, S. D. Beck,
M. Brodowicz, J. Maclaren, and E. Seidel. Visualizing ka-
trina - merging computer simulations with observations. In
Springer Verlags Lecture Notes in Computer Science Series
(in press).

[16] S.-C. Chen, K. Zhang, and M. Chen. A real-time 3d an-
imation environment for storm surge. InICME ’03: Pro-
ceedings of the 2003 International Conference on Multime-
dia and Expo, pages 705–708, Washington, DC, USA, 2003.
IEEE Computer Society.

[17] M. Flaxman. Using the virtual terrain project to plan real
cities: alternative futures for hangzhou, china. InACM SIG-
GRAPH, pages 340–350, San Antonio, TX, USA, 2002.

[18] A. Fournier and W. T. Reeves. A simple model of ocean
waves. InSIGGRAPH, pages 75–84, 1986.

[19] Y. Li, K. Chatterjee, S.-C. Chen, and K. Zhang. A 3-d traf-
fic animation system with storm surge response. InISM
’09: Proceedings of the 2009 11th IEEE International Sym-
posium on Multimedia, pages 257–262, Washington, DC,
USA, 2009. IEEE Computer Society.

[20] K. Saleem, S.-C. Chen, and K. Zhang. Animating tree
branch breaking and flying effects for a 3d interactive vi-
sualization system for hurricanes and storm surge flood-
ing. In ISMW ’07: Proceedings of the Ninth IEEE Inter-
national Symposium on Multimedia Workshops, pages 335–
341, Washington, DC, USA, 2007. IEEE Computer Society.

[21] S. D. T.L. Webster, D.L. Forbes and R. Shreenan. Using
topographic lidar to map flood risk from storm-surge events
for charlottetown. InCanadian Journal of Remote Sensing,
pages 64–76, 2004.

[22] C. Xiao, K. Zhang, and J. Shen. A three-dimensional coastal
and estuarine storm tide model.Journal of Coastal Re-
search, page 20, 2006.

[23] K. Zhang, S.-C. Chen, P. Singh, K. Saleem, and N. Zhao. A
3d visualization system for hurricane storm-surge flooding.
IEEE Comput. Graph. Appl., 26(1):18–25, 2006.

[24] K. Zhang, S. ching Chen, D. Whitman, M. ling Shyu, J. Yan,
C. Zhang, and S. Member. A progressive morphological
filter for removing nonground measurements from airborne
lidar data. IEEE Transactions on Geoscience and Remote
Sensing, 41:872–882, 2003.

[25] K. Zhang, C. Xiao, and J. Shen. Comparison of the cest and
slosh models for storm surge flooding.Journal of Coastal
Research, 24:489–499, 2008.

[26] K. Zhang, J. Yan, and S. Chen. Automatic construction of
building footprints from airborne lidar data.IEEE Transac-
tions on Geoscience and Remote Sensing, 44(9):2523–2533,
September 2006.


