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Abstract 

 
The capability to efficiently retrieve knowledge in 

response to specific user queries offers the potential to 
create decision support systems of unprecedented utility, 
i.e., systems which can accelerate the learning process. 
This paper presents such an architecture, the Type 2 
Knowledge Amplification by Structured Expert 
Randomization (T2K) system. This system differs from 
traditional expert systems in the way knowledge rules are 
matched with queries. The T2K has the ability to acquire 
knowledge from corresponding domains to answer 
queries from domains in which the system has less 
knowledge. This system also solves the word mismatch 
problem by modifying queries using word substitutions. 
This is done through creative transformations and 
optimizations of knowledge rule antecedents and 
consequents. By pairing rules with identical antecedents 
or consequents, we are able to induce new rules from 
existing knowledge without explicit elicitation from the 
user. The technique presented in this paper attempts to 
transform both the rules in the knowledge base as well as 
the query in order to find a matching action for a 
specified query. 
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1. Introduction 
 

Expert systems have been designed to deduce 
knowledge based upon inference. An expert system is 
usually made up of 3 parts: an inference engine, a 
knowledge base, and a user interface [5]. In this paper, we 

focus on the inference engine. The purpose of the 
inference engine is to interpret the rule base. The 
inference engine monitors the facts in the rule base and 
executes the action portion of those that have their 
condition satisfied [9]. There are two ways an inference 
engine can accomplish this, forward chaining or backward 
chaining. A forward chaining system begins with a piece 
of information and moves forward through the rules in the 
knowledge base until it reaches a final node or conclusion. 
A backward chaining system starts with a final node or 
conclusion and works back until it finds a starting state 
[4]. The problem with these methods is that they rely 
solely on comparing the input to the rules in the 
knowledge base. If the inference engine is unable to find 
an exact match in the knowledge base it has to give up. 
We solve this problem through the use of a novel 
architecture, the Type 2 KASER (Knowledge 
Amplification by Structural Expert Randomization). 

The purpose of the inference engine in a forward 
chaining expert system is to determine in an efficient 
manner which rules are available for firing and then select 
the rules to be fired [12]. In a typical algorithm for 
forward chaining inference engine [5], values are read 
from an input and then compared to conditions in the rule 
base. The conditions are then evaluated and, if the 
conditions are satisfied, a rule is fired. The inference 
engine can be thought of as a finite state machine [5]. The 
inference engine will keep track of the number of 
conditions that have been satisfied for each rule. Only 
when a rule’s entire set of conditions are meet is its action 
fired. This is similar to a finite state machine in that each 
of the rules contains a final state; each additional matching 
condition progresses the system toward the final state. 
This technique of forward and backward chaining works 



well when the queries are focused on a single domain and 
the knowledge base contains sufficient knowledge in this 
domain. However, if the queries may come from a number 
of domains, then the typical inference engine would be 
unable to match any queries to domains outside of those 
contained with the knowledge base. 

The cycle of an expert system consists of two phases, a 
select phase and an execute phase [10]. The select phase 
is the process where the inference engine selects rules 
whose conditions have been met. The execute phase is the 
process by which the inference engine interprets the 
selected rule and draws inferences that alter the system’s 
working memory [10]. Working memory contains 
information from rules that have been fired during the 
user’s session. The consequents of fired rules may cause 
values to be inserted or deleted from the knowledge base 
for the remainder of the user’s session. 

The inference engine is the part of an expert system 
that contains the strategies for controlling the selection 
and application of rules in the knowledge base [11]. The 
inference engine must select rules to be fired and thus 
infer knowledge based solely on the facts that have been 
provided. The inference engine must contain strategies to 
deal with situations that can occur such as two rules being 
satisfied at the same time. But the situation of greater 
concern is what action an inference engine takes when no 
rules are satisfied. A simple solution that is commonly 
used is to elicit further information from the user but this 
does not make use of the knowledge that the system 
already contains. This is where experts systems fail to 
perform as well as a human expert. If a human expert does 
not have enough information to come to a definite 
conclusion then they will attempt to deduce possible 
conclusions based on the information/knowledge they 
currently have and past experience with similar situations. 
This kind of reasoning is what the T2K is attempting to 
simulate. This paper will focus on the ability of the T2K 
transform or create rules to satisfy cases which have not 
yet been seen but are similar to cases previously seen. 

Many other techniques have been proposed for the 
creation of rules for inference engines. Techniques such as 
rule pruning [6] and dependency trees [7] are useful but 
still run into the problem of answering questions for 
domains for which only sparse knowledge is contained 
within the knowledge base. In [8], a technique is 
presented to solve the problem of word mismatch. People 
often use different words in their queries than authors use 
in their documents [8]. Xu and Croft show that by 
analyzing local and global contexts, words could be 
matched to alternative words with the same meaning, thus 
redefining the query. In this paper, we propose a 
technique to transform not only the query, but also the 
rules in order to more accurately reflect knowledge.   

The T2K is an extension to the work done in the 
KASER system [1]. The original KASER system is based 

upon the theory of randomization, which takes a larger set 
of information and reduces it to its simplest form through 
compression. The KASER is capable of accelerated 
learning in symmetric domains, which are domains that 
can be represented in a more compact form. The KASER 
system is a third generation expert system that computes 
with words and employs qualitative fuzzy reasoning. The 
main breakthrough with the KASER system is that it does 
not suffer from the knowledge acquisition bottleneck; in 
the KASER, the cost of acquisition decreases as the scale 
of knowledge increases; whereas, the cost of acquisition 
increases as the scale of knowledge increases in standard 
expert systems [1-2]. 

The T2K continues the advancement of the KASER 
system by adding the capability to transform rules. The 
transformation of knowledge is based on the process of 
relating rules in corresponding domains. The capability to 
transform rules allows the T2K to take knowledge in a 
corresponding domain from the original query and apply it 
to the domain of the query. In this paper, we present the 
mechanisms used by the T2K, which allows it to 
transform both the query and rules to allow for proper 
matching. This technique eliminates the word mismatch 
problem as well as allowing for processing of queries for 
which knowledge in the knowledge base is sparse. 

The remainder of this paper is organized as follows. In 
Section 2, we describe the capability of the Type 2 
KASER to transform knowledge. Section 3 provides a 
description of the design of the Type 2 KASER while in 
Section 4, we discuss the graphical user interface that is 
used for the Type 2 KASER. Finally, in Section 5, we 
present some concluding remarks. 

 

2. Type 2 KASER Transformations 
 
The major contribution of the T2K is the use of 

transformations to induce corresponding rules. These 
transformations serve to dynamically create and normalize 
contexts and rule antecedents, which in turn facilitates the 
transformative induction of new knowledge. 

The T2K uses transformations to induce corresponding 
rules from the rule base. The rule base consists of an array 
of rules of the form {i, j, k, …} � (u v w), where the 
antecedent consists of a non-empty, sorted set of distinct 
positive integers and the consequent consists of a non-
empty sequence of positive integers – including the 
normalized insertion (INS) and erasure (ERA) commands 
and their arguments. All phrases entered into the system 
are hashed to integers to allow easier processing and 
storage of the rules. Upon the firing of a rule, the integers 
are reverse hashed to their original phrases to be 
displayed. Rules are kept in order from most likely to be 
valid at the top of the array to least likely to be valid at the 
bottom of the array.  



The design of the system is such that the user provides 
the system with an initial context, which is of the same 
form as rule antecedents, and the system will attempt to 
match this context with a rule antecedent contained within 
the rule base. The initial matching of the context and 
antecedents does not differ greatly from that of other 
expert systems. The rule antecedent that contains the most 
matching phrases from the context is considered the most 
specific rule and the rule antecedent which contains the 
least matching phrase from the context is considered the 
least specific. The most-specific rules will be the first to 
be fired and within this stratum the most-possible rules are 
preferred.  

There are two types of transformations being used 
within the T2K: creative transformations and optimization 
transformations. Creative transformations are created by 
pairing rule antecedents having a common consequent and 
optimizations are created by pairing rule consequents 
having common antecedents. Both transformations are 
performed such that the direction of the transformation is 
always towards the more likely to be valid. 

 
2.1 Creative Transformation Rules 

 
The procedure for finding and applying creative 

transformations is as follows: Let Ri and Rj be two distinct 
rules, where Rj is the more valid of the two; that is, Rj is 
the topmost rule between Ri and Rj. Let RiA and RjA 
denote the antecedents for Ri and Rj, respectively, such 
that RiA < > RjA. This must be true; otherwise the rules 
are not distinct. Let RiC and RjC denote the consequents 
for Ri and Rj, respectively, such that RiC = RjC. Then, we 
may induce the creative transformation RiA � RjA. For 
example, R1: {1, 2} � (4 3 4) and R2: {1, 3, 5} � (4 3 
4) induces the creative transformation rule, T1: {1, 2} � 
{1, 3, 5}. 

Creative transformation rules must not be right 
recursive. The set on the left side of the transformation 
rule must not be embedded in the set on the right of the 
transformation rule, that is, ARAR ji ⊄ . For example, {1} 
� {1, 2}, or {2, 3} � {1, 2, 3} may not be applied 
because the set on the left is embedded in the set on the 
right. 

 
2.2 Optimization Transformation Rules 

 
The procedure for finding and applying optimization 

transformations is as follows. Let, Ri and Rj be two 
distinct rules, where Rj is the more valid of the two. Let 
RiA and RjA denote the antecedents for Ri and Rj, 
respectively, such that RiA = RjA; and let RiC and RjC 
denote the consequents for Ri and Rj, respectively, such 
that RiC < > RjC. Notice that this forms a non-
deterministic rule pair as there exists an antecedent with 

two possible consequents. If a pair of rules exists that 
meet these conditions, then, we may induce an 
optimization rule, RiC � RjC. For example, R1: {1, 2} � 
(4 3 4) and R2: {1, 2} � (3 4 5) induces the optimization 
rule, O1: (4 3 4) � (3 4 5). 

Similar to creative transformations, the optimization 
transformations may not be right recursive either. 
Optimization transformations differ from creative 
transforms in that the left and right sides of the 
optimization transformation rule are not sets, but rather 
sequences. Thus, an optimization rule is right recursive if 
the sequence on left is embedded in the sequence on the 
right. For example, (1) � (1 2), or (2 3) � (1 2 3) may 
not be applied because the sequence on the left is 
embedded in the sequence on the right. However, the 
optimization rule, (1 3) � (1 2 3) may be applied because 
it is not a right recursive sequence. 

 
2.3 Transformation Example 

 
An illustration of the power of the T2K can be seen in 

the following example. Given the rules {airplane, 
explosives, terrorists} � (al-Qa´-ida used TNT to bring 
down a commercial airliner) and {airplane, bombs, 
terrorists} � (al-Qa´-ida used TNT to bring down a 
commercial airliner), we can see that the antecedents 
{airplane, explosives, terrorists} and {airplane, bombs, 
terrorists} both have the same consequent. Thus, we can 
induce the creative transformation rule {airplane, 
explosives, terrorists} � {airplane, bombs, terrorists}. 
Take note that although it appears we are interchanging 
explosives and bombs, one can not make this 
generalization for all cases. Only in the context of airplane 
and terrorists can we make the case that the phrases 
explosives and bombs may be interchanged. 

Suppose that we were now given the rule {airplane, 
explosives, lighters, terrorists} � (Issue a Red Alert). By 
the creative transformation rule that was previously 
generated we can induce the new rule {airplane, bombs, 
lighters, terrorists} � (Issue a Red Alert). The advantage 
of this methodology is that it can be used to induce 
context-sensitive knowledge. 

 

3. Type 2 KASER Design 
 
The T2K differs from a traditional expert system in its 

unique ability to transform rules to create new rules based 
on the knowledge already contained within the knowledge 
base. The goal of the T2K system is to be able to simulate 
intelligence and be able to link related rules to each other.  

The T2K has been developed as two separate modules, 
the T2K engine and the T2K graphical user interface. The 
T2K graphical user interface (GUI) provides all 



interaction between the user and the T2K engine. The 
T2K engine contains all rule processing algorithms. 

All knowledge acquisition takes place through the T2K 
GUI. Rules entered by the user are inserted at the top of 
the rule base, thus making the last entered rule to be the 
most valid. This is done because recently entered 
information is more likely to be of use to the user than 
older information. Once the knowledge acquisition has 
been completed, the user may query the system. Similar to 
other expert systems, the user enters a query for which a 
response is required. The query is entered as a set of terms 
or phrases to be matched by the T2K; this set of terms is 
referred to as the context. The T2K provides an action to 
be taken for any given context that is entered into the 
system. The procedure for the T2K is summarized in 
Figure 1.  

 
Figure 1. Flow Diagram of Type 2 KASER 

 
If there is a direct match between the context and an 

antecedent in the rule base, then the consequent for the 
matching rule is returned and displayed as the action to be 
taken; this is similar to standard forward chaining. If there 
is no match, this is where the T2K differs from other 
expert systems; the T2K will attempt to induce new rules 
to match the given context. The T2K will first try to match 

the context or a subset of the context with an antecedent in 
the rule base.  
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subsets of length r in a context of length n. If all rules in 
the rule base have approximately the same validity 
(referred to as possibility), then each of these subsets, 
from longest, most-specific, to shortest, most-general, 
would be hashed to see if the context can fire a rule in the 
base. But this would not be efficiently done using hashing 
due to the fact that the rule base must be searched in 
sequential order for the first most valid and most specific 
rule; for this reason a linear search must be performed. 

It can be argued that more-specific rules have less of a 
chance of contextual error. This offsets any reason to fire 
higher, more general and relatively more possible rules in 
lieu of lower, more specific, and less possible ones. Thus, 
it is the most-specific rule, rather than the most-valid rule 
that is chosen, amongst the equally most-specific 
candidate rules, the highest most-possible rule will be 
fired, i.e. the longest matching rule highest in the rule 
base. A top down linear search is performed on the rule 
base. As antecedents are found that match a subset of the 
context, the row number and length of the antecedent are 
stored. The first found highest and longest antecedent that 
matches the context is considered to be the most-valid, 
most-specific rule to be fired. 

At this point, no transformations have taken place and 
the context is untransformed. It is necessary to minimize 
the number of general creative transformations of the 
context so as to minimize the introduction of combinatoric 
error. The following procedure is used to accomplish this: 
first the most-specific creative transform of the context is 
made. Rule antecedents are checked from the bottom to 
the top of the rule base to find the lowest most-specific 
subset of the latest version of the context which has the 
same consequent above it. The higher top-most 
antecedent, having the same consequent, replaces the 
previously matched subset in the context to form a 
creative transformation, as previously described. The top-
down linear search is repeated if a creative transformation 
was made, with the newly transformed context. The new 
matching rule will overwrite the previous matching rule if 
the antecedent is more specific; that is, if the antecedent is 
of a greater length than the previous matching antecedent. 
This process will continue until no further creative 
transforms are possible, or a cycle is found in the 
transformed context. 

Transformations can potentially fire in an infinite 
sequential cycle. In order to detect this problem, it is 
required that the context be saved in distinct temporary 
hash tables until it is found, if ever, that the contextual 
state has been previously saved in a sequence consisting 
of more than one contextual state. In other words, such 

Query knowledge base Fire Rule 
Match 

Linear search for largest 
matching subset 

Find most specific 
creative transform 

Check for cycle 

Find most specific 
optimization 

Consequent transformed 

Cycle Detected 
or 

Context not transformed 

Context 
transformed 

No match 



repetition can be most conveniently detected by 
temporarily hashing the most-recent state vector until it is 
found, if ever, that it has been previously saved in a 
sequence consisting of more than one state. 

Once a rule has been acquired, the rule consequents are 
checked from the bottom of the rules array to the top to 
find the lowest most specific sequence, if any, which is 
embedded by the latest version of the consequent to be 
optimized and having the same antecedent above it. This 
higher topmost consequent, having the same antecedent, 
replaces the previously matched embedded sequence in 
the consequent to form an optimization as previously 
described. The process is iterated until no embedding can 
be so replaced, or a cycle is detected, the last offending 
optimization skipped, and otherwise run to conclusion. 
The validity of a dynamic transformative knowledge space 
is thus maximized.  

The possibility that a fired sequence of rules is correct 
is simple to compute as a function of each fired rule’s 
relative validity. 

Let m denote the number of rules in the knowledge 
base. Let n denote the number of distinct rules in the fired 

sequence. Let ir  denote the relative position or row 

number from the top for the ith fired rule in the sequence 
of length n, where, 1 ir m≤ ≤  

Then,  

1
1
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expressed as a percent, where a result of 1.0 or 100 
percent is to be displayed as 99 percent to better reflect 
the inherent potential for error. A result of 0 will be 
automatically displayed as 1 percent to better reflect the 
inherent potential for a correct chance result. 
 The T2K contains many of the same features and 
functionality of common expert systems. The process of 
transforming and creating new rules is where the T2K 
differentiates itself from other expert systems. The T2K 
will always attempt to return a result to a users query even 
despite a lack of knowledge in the domain of the query. 

 

4. The Graphical User Interface 
 
The T2K graphical user interface that has been used by 

the T2K is a modified version of the user interface that 
can be seen in [3]. As can be seen in Figure 2, the layout 
of the user interface remains the same, but the underlying 
mechanisms have been modified to better suit the needs of 
the T2K. 

 

 
Figure 2. T2K graphical user interface 

 
The design methodology of the T2K GUI serves the 

goal of being able to rapidly enter contexts, rule 
antecedents, and rule consequents for processing by the 
T2K engine [3]. The goal of T2K GUI is to provide a 
fluid man-machine interface between the T2K and the 
user. 

There are two lists being used in the design of the T2K 
GUI. The list on the left-hand-side is used to display 
contextual keywords and phrases (CKP). The list on the 
right-hand-side is used to display action phrases (AP). The 
CKP list is used to select the antecedents and the AP list is 
used to select the consequents during rule construction 
[3]. As the user enters new entries into either list, the 
phrases are hashed to integers to be used by the T2K 
system. The T2K GUI will always display the full phrases 
to the user; but the T2K engine will use the integers to 
compress the representation of the phrases and rules. 

To create rules, the user is able to enter multiple 
phrases from either list. A user may only create rules from 
phrases that have been entered into the GUI lists. This 
ensures that all phrases are properly hashed before they 
are used to create rules. A rule is created by providing a 
set of antecedents to be used as the context and a sequence 
of consequents to be used as the action. The unique 
feature of the T2K GUI is the ability to select semantic 
phrases based on natural language conceptual 
specifications. During a typical system run, there are a 
large number of phrases from which the user will select. 
The methodology of the T2K GUI addresses the problem 
of how to rapidly retrieve the desired semantic phrases in 
real-time for contextual specification [3].  

 



 
Figure 3. Entry bar 

 
The rapid retrieval of semantic phrases is accomplished 

through the use of filtering. Conceptual constraints can be 
associated with phrases as they are entered into the system 
using the entry boxes, as seen in Figure 3. These 
constraints are used to filter phrases and provide a 
streamlined method to allow the user to search through 
phrases. An example of a conceptual constraint is 
“colors”; this would allow only phrases that have been 
tagged with the constraint “colors” to be displayed, such 
as “red”, “green” and “blue” [3]. The user may also enter 
literal constraints, which can also be seen in Figure 3. 
These literal constraints filter phrases so that only those 
that contain the constraint will be displayed for the user. 
Literal constraints are more specific constraints that limit 
the actual words within the phrases that must be present 
for the phrase to be displayed [3]. These two constraint 
mechanisms allow the user to effectively narrow the 
search space for selecting phrases to be used to create 
rules. 

The user uses this GUI to populate the knowledge base 
with rules. A rule is entered by selecting a phrase from the 
CKP list and using the add button, seen in Figure 3, to add 
the phrase to the context. The same is done for selecting 
phrases from the AP list to be added to the action. Once 
the user has selected all the phrases to be used in the rule, 
the save button (seen in Figure 4) is used to add the rule to 
the knowledge base, with the context becoming the 
antecedent and the action becoming the consequent of the 
new rule. 

Once the elicitation of knowledge is complete, the user 
can then proceed to submit queries to the system. In order 
to build a query, the user must use the CKP list to select 
phrases and add them to the context, as can be seen in 
Figure 4. The user then submits this context to the T2K to 
see if a matching action can be found. 

 

 
Figure 4. Query bar 

 
Explanation functionalities will also be provided to the 

user, as can be seen in Figure 5, to allow the user to see 
the transformations that were performed in order to 
produce the fired rule. The explanation functionality 
provides the user with details about which transformations 

and rules where fired in order to find the action that is 
displayed. 

 

 
Figure 5.  Explanation functionality 

 

5. Conclusions 
 

In this paper, we have presented a new system, the 
T2K, which brings together elements not found in current 
expert systems. The capability to transform knowledge 
allows the T2K to answer a large number of queries, while 
still minimizing the amount of knowledge that must be 
stored. 

This system has the capability to perform not only in 
the explicit domain in which it was provided knowledge, 
but also in corresponding domains, which it may have 
sparse knowledge about. We have succeeded in creating 
an expert system that is able to induce new knowledge 
from related knowledge without the knowledge explicitly 
elicited from the user to the system. 

Use of the T2K shows that an expert system can have 
intelligence to answer questions about subjects for which 
it has not been strictly informed. In this sense it can 
replicate the intelligence of an actual human expert, who 
would be able to answer questions from a relevant 
domain. 

The main purpose of the T2K is not to develop a new 
technique for inferencing but a new technique for creating 
new knowledge from existing knowledge. The T2K does 
not have a significant advantage over expert system which 
will have queries focused in a single domain. The T2K 
excels greatest in applications where the query domain 
maybe from a wide range of domains.  
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