

Knowledge Acquisition from Corresponding Domain
Knowledge Transformations

Michael Armella1, Isaí Michel Lombera2, Stuart H. Rubin3, Shu-Ching Chen1, Gordon Lee2
1Distributed Multimedia Information Systems Laboratory

School of Computing and Information Sciences
Florida International University, Miami, FL 33199, USA

2Dept. of Electrical & Computer Engineering
San Diego State University

5500 Campanile Drive San Diego, CA 92182, USA
3
 SPAWAR Systems Center (SSC)

 53560 Hull Street, San Diego, CA 92152-5001, USA
1{marme003, chens}@cs.fiu.edu, 2{glee, imichel}@mail.sdsu.edu, 3stuart.rubin@navy.mil

Abstract

The capability to efficiently retrieve knowledge in

response to specific user queries offers the potential to
create decision support systems of unprecedented utility,
i.e., systems which can accelerate the learning process.
This paper presents such an architecture, the Type 2
Knowledge Amplification by Structured Expert
Randomization (T2K) system. This system differs from
traditional expert systems in the way knowledge rules are
matched with queries. The T2K has the ability to acquire
knowledge from corresponding domains to answer
queries from domains in which the system has less
knowledge. This system also solves the word mismatch
problem by modifying queries using word substitutions.
This is done through creative transformations and
optimizations of knowledge rule antecedents and
consequents. By pairing rules with identical antecedents
or consequents, we are able to induce new rules from
existing knowledge without explicit elicitation from the
user. The technique presented in this paper attempts to
transform both the rules in the knowledge base as well as
the query in order to find a matching action for a
specified query.

Keywords: Expert System, Transformation, Rule
Induction, Knowledge Acquisition

1. Introduction

Expert systems have been designed to deduce
knowledge based upon inference. An expert system is
usually made up of 3 parts: an inference engine, a
knowledge base, and a user interface [5]. In this paper, we

focus on the inference engine. The purpose of the
inference engine is to interpret the rule base. The
inference engine monitors the facts in the rule base and
executes the action portion of those that have their
condition satisfied [9]. There are two ways an inference
engine can accomplish this, forward chaining or backward
chaining. A forward chaining system begins with a piece
of information and moves forward through the rules in the
knowledge base until it reaches a final node or conclusion.
A backward chaining system starts with a final node or
conclusion and works back until it finds a starting state
[4]. The problem with these methods is that they rely
solely on comparing the input to the rules in the
knowledge base. If the inference engine is unable to find
an exact match in the knowledge base it has to give up.
We solve this problem through the use of a novel
architecture, the Type 2 KASER (Knowledge
Amplification by Structural Expert Randomization).

The purpose of the inference engine in a forward
chaining expert system is to determine in an efficient
manner which rules are available for firing and then select
the rules to be fired [12]. In a typical algorithm for
forward chaining inference engine [5], values are read
from an input and then compared to conditions in the rule
base. The conditions are then evaluated and, if the
conditions are satisfied, a rule is fired. The inference
engine can be thought of as a finite state machine [5]. The
inference engine will keep track of the number of
conditions that have been satisfied for each rule. Only
when a rule’s entire set of conditions are meet is its action
fired. This is similar to a finite state machine in that each
of the rules contains a final state; each additional matching
condition progresses the system toward the final state.
This technique of forward and backward chaining works

well when the queries are focused on a single domain and
the knowledge base contains sufficient knowledge in this
domain. However, if the queries may come from a number
of domains, then the typical inference engine would be
unable to match any queries to domains outside of those
contained with the knowledge base.

The cycle of an expert system consists of two phases, a
select phase and an execute phase [10]. The select phase
is the process where the inference engine selects rules
whose conditions have been met. The execute phase is the
process by which the inference engine interprets the
selected rule and draws inferences that alter the system’s
working memory [10]. Working memory contains
information from rules that have been fired during the
user’s session. The consequents of fired rules may cause
values to be inserted or deleted from the knowledge base
for the remainder of the user’s session.

The inference engine is the part of an expert system
that contains the strategies for controlling the selection
and application of rules in the knowledge base [11]. The
inference engine must select rules to be fired and thus
infer knowledge based solely on the facts that have been
provided. The inference engine must contain strategies to
deal with situations that can occur such as two rules being
satisfied at the same time. But the situation of greater
concern is what action an inference engine takes when no
rules are satisfied. A simple solution that is commonly
used is to elicit further information from the user but this
does not make use of the knowledge that the system
already contains. This is where experts systems fail to
perform as well as a human expert. If a human expert does
not have enough information to come to a definite
conclusion then they will attempt to deduce possible
conclusions based on the information/knowledge they
currently have and past experience with similar situations.
This kind of reasoning is what the T2K is attempting to
simulate. This paper will focus on the ability of the T2K
transform or create rules to satisfy cases which have not
yet been seen but are similar to cases previously seen.

Many other techniques have been proposed for the
creation of rules for inference engines. Techniques such as
rule pruning [6] and dependency trees [7] are useful but
still run into the problem of answering questions for
domains for which only sparse knowledge is contained
within the knowledge base. In [8], a technique is
presented to solve the problem of word mismatch. People
often use different words in their queries than authors use
in their documents [8]. Xu and Croft show that by
analyzing local and global contexts, words could be
matched to alternative words with the same meaning, thus
redefining the query. In this paper, we propose a
technique to transform not only the query, but also the
rules in order to more accurately reflect knowledge.

The T2K is an extension to the work done in the
KASER system [1]. The original KASER system is based

upon the theory of randomization, which takes a larger set
of information and reduces it to its simplest form through
compression. The KASER is capable of accelerated
learning in symmetric domains, which are domains that
can be represented in a more compact form. The KASER
system is a third generation expert system that computes
with words and employs qualitative fuzzy reasoning. The
main breakthrough with the KASER system is that it does
not suffer from the knowledge acquisition bottleneck; in
the KASER, the cost of acquisition decreases as the scale
of knowledge increases; whereas, the cost of acquisition
increases as the scale of knowledge increases in standard
expert systems [1-2].

The T2K continues the advancement of the KASER
system by adding the capability to transform rules. The
transformation of knowledge is based on the process of
relating rules in corresponding domains. The capability to
transform rules allows the T2K to take knowledge in a
corresponding domain from the original query and apply it
to the domain of the query. In this paper, we present the
mechanisms used by the T2K, which allows it to
transform both the query and rules to allow for proper
matching. This technique eliminates the word mismatch
problem as well as allowing for processing of queries for
which knowledge in the knowledge base is sparse.

The remainder of this paper is organized as follows. In
Section 2, we describe the capability of the Type 2
KASER to transform knowledge. Section 3 provides a
description of the design of the Type 2 KASER while in
Section 4, we discuss the graphical user interface that is
used for the Type 2 KASER. Finally, in Section 5, we
present some concluding remarks.

2. Type 2 KASER Transformations

The major contribution of the T2K is the use of

transformations to induce corresponding rules. These
transformations serve to dynamically create and normalize
contexts and rule antecedents, which in turn facilitates the
transformative induction of new knowledge.

The T2K uses transformations to induce corresponding
rules from the rule base. The rule base consists of an array
of rules of the form {i, j, k, …} � (u v w), where the
antecedent consists of a non-empty, sorted set of distinct
positive integers and the consequent consists of a non-
empty sequence of positive integers – including the
normalized insertion (INS) and erasure (ERA) commands
and their arguments. All phrases entered into the system
are hashed to integers to allow easier processing and
storage of the rules. Upon the firing of a rule, the integers
are reverse hashed to their original phrases to be
displayed. Rules are kept in order from most likely to be
valid at the top of the array to least likely to be valid at the
bottom of the array.

The design of the system is such that the user provides
the system with an initial context, which is of the same
form as rule antecedents, and the system will attempt to
match this context with a rule antecedent contained within
the rule base. The initial matching of the context and
antecedents does not differ greatly from that of other
expert systems. The rule antecedent that contains the most
matching phrases from the context is considered the most
specific rule and the rule antecedent which contains the
least matching phrase from the context is considered the
least specific. The most-specific rules will be the first to
be fired and within this stratum the most-possible rules are
preferred.

There are two types of transformations being used
within the T2K: creative transformations and optimization
transformations. Creative transformations are created by
pairing rule antecedents having a common consequent and
optimizations are created by pairing rule consequents
having common antecedents. Both transformations are
performed such that the direction of the transformation is
always towards the more likely to be valid.

2.1 Creative Transformation Rules

The procedure for finding and applying creative

transformations is as follows: Let Ri and Rj be two distinct
rules, where Rj is the more valid of the two; that is, Rj is
the topmost rule between Ri and Rj. Let RiA and RjA
denote the antecedents for Ri and Rj, respectively, such
that RiA < > RjA. This must be true; otherwise the rules
are not distinct. Let RiC and RjC denote the consequents
for Ri and Rj, respectively, such that RiC = RjC. Then, we
may induce the creative transformation RiA � RjA. For
example, R1: {1, 2} � (4 3 4) and R2: {1, 3, 5} � (4 3
4) induces the creative transformation rule, T1: {1, 2} �
{1, 3, 5}.

Creative transformation rules must not be right
recursive. The set on the left side of the transformation
rule must not be embedded in the set on the right of the
transformation rule, that is, ARAR ji ⊄ . For example, {1}
� {1, 2}, or {2, 3} � {1, 2, 3} may not be applied
because the set on the left is embedded in the set on the
right.

2.2 Optimization Transformation Rules

The procedure for finding and applying optimization

transformations is as follows. Let, Ri and Rj be two
distinct rules, where Rj is the more valid of the two. Let
RiA and RjA denote the antecedents for Ri and Rj,
respectively, such that RiA = RjA; and let RiC and RjC
denote the consequents for Ri and Rj, respectively, such
that RiC < > RjC. Notice that this forms a non-
deterministic rule pair as there exists an antecedent with

two possible consequents. If a pair of rules exists that
meet these conditions, then, we may induce an
optimization rule, RiC � RjC. For example, R1: {1, 2} �
(4 3 4) and R2: {1, 2} � (3 4 5) induces the optimization
rule, O1: (4 3 4) � (3 4 5).

Similar to creative transformations, the optimization
transformations may not be right recursive either.
Optimization transformations differ from creative
transforms in that the left and right sides of the
optimization transformation rule are not sets, but rather
sequences. Thus, an optimization rule is right recursive if
the sequence on left is embedded in the sequence on the
right. For example, (1) � (1 2), or (2 3) � (1 2 3) may
not be applied because the sequence on the left is
embedded in the sequence on the right. However, the
optimization rule, (1 3) � (1 2 3) may be applied because
it is not a right recursive sequence.

2.3 Transformation Example

An illustration of the power of the T2K can be seen in

the following example. Given the rules {airplane,
explosives, terrorists} � (al-Qa´-ida used TNT to bring
down a commercial airliner) and {airplane, bombs,
terrorists} � (al-Qa´-ida used TNT to bring down a
commercial airliner), we can see that the antecedents
{airplane, explosives, terrorists} and {airplane, bombs,
terrorists} both have the same consequent. Thus, we can
induce the creative transformation rule {airplane,
explosives, terrorists} � {airplane, bombs, terrorists}.
Take note that although it appears we are interchanging
explosives and bombs, one can not make this
generalization for all cases. Only in the context of airplane
and terrorists can we make the case that the phrases
explosives and bombs may be interchanged.

Suppose that we were now given the rule {airplane,
explosives, lighters, terrorists} � (Issue a Red Alert). By
the creative transformation rule that was previously
generated we can induce the new rule {airplane, bombs,
lighters, terrorists} � (Issue a Red Alert). The advantage
of this methodology is that it can be used to induce
context-sensitive knowledge.

3. Type 2 KASER Design

The T2K differs from a traditional expert system in its

unique ability to transform rules to create new rules based
on the knowledge already contained within the knowledge
base. The goal of the T2K system is to be able to simulate
intelligence and be able to link related rules to each other.

The T2K has been developed as two separate modules,
the T2K engine and the T2K graphical user interface. The
T2K graphical user interface (GUI) provides all

interaction between the user and the T2K engine. The
T2K engine contains all rule processing algorithms.

All knowledge acquisition takes place through the T2K
GUI. Rules entered by the user are inserted at the top of
the rule base, thus making the last entered rule to be the
most valid. This is done because recently entered
information is more likely to be of use to the user than
older information. Once the knowledge acquisition has
been completed, the user may query the system. Similar to
other expert systems, the user enters a query for which a
response is required. The query is entered as a set of terms
or phrases to be matched by the T2K; this set of terms is
referred to as the context. The T2K provides an action to
be taken for any given context that is entered into the
system. The procedure for the T2K is summarized in
Figure 1.

Figure 1. Flow Diagram of Type 2 KASER

If there is a direct match between the context and an

antecedent in the rule base, then the consequent for the
matching rule is returned and displayed as the action to be
taken; this is similar to standard forward chaining. If there
is no match, this is where the T2K differs from other
expert systems; the T2K will attempt to induce new rules
to match the given context. The T2K will first try to match

the context or a subset of the context with an antecedent in
the rule base.

There are
)!rn(!r

!n
r

n

−
=






 combinations of antecedent

subsets of length r in a context of length n. If all rules in
the rule base have approximately the same validity
(referred to as possibility), then each of these subsets,
from longest, most-specific, to shortest, most-general,
would be hashed to see if the context can fire a rule in the
base. But this would not be efficiently done using hashing
due to the fact that the rule base must be searched in
sequential order for the first most valid and most specific
rule; for this reason a linear search must be performed.

It can be argued that more-specific rules have less of a
chance of contextual error. This offsets any reason to fire
higher, more general and relatively more possible rules in
lieu of lower, more specific, and less possible ones. Thus,
it is the most-specific rule, rather than the most-valid rule
that is chosen, amongst the equally most-specific
candidate rules, the highest most-possible rule will be
fired, i.e. the longest matching rule highest in the rule
base. A top down linear search is performed on the rule
base. As antecedents are found that match a subset of the
context, the row number and length of the antecedent are
stored. The first found highest and longest antecedent that
matches the context is considered to be the most-valid,
most-specific rule to be fired.

At this point, no transformations have taken place and
the context is untransformed. It is necessary to minimize
the number of general creative transformations of the
context so as to minimize the introduction of combinatoric
error. The following procedure is used to accomplish this:
first the most-specific creative transform of the context is
made. Rule antecedents are checked from the bottom to
the top of the rule base to find the lowest most-specific
subset of the latest version of the context which has the
same consequent above it. The higher top-most
antecedent, having the same consequent, replaces the
previously matched subset in the context to form a
creative transformation, as previously described. The top-
down linear search is repeated if a creative transformation
was made, with the newly transformed context. The new
matching rule will overwrite the previous matching rule if
the antecedent is more specific; that is, if the antecedent is
of a greater length than the previous matching antecedent.
This process will continue until no further creative
transforms are possible, or a cycle is found in the
transformed context.

Transformations can potentially fire in an infinite
sequential cycle. In order to detect this problem, it is
required that the context be saved in distinct temporary
hash tables until it is found, if ever, that the contextual
state has been previously saved in a sequence consisting
of more than one contextual state. In other words, such

Query knowledge base Fire Rule
Match

Linear search for largest
matching subset

Find most specific
creative transform

Check for cycle

Find most specific
optimization

Consequent transformed

Cycle Detected
or

Context not transformed

Context
transformed

No match

repetition can be most conveniently detected by
temporarily hashing the most-recent state vector until it is
found, if ever, that it has been previously saved in a
sequence consisting of more than one state.

Once a rule has been acquired, the rule consequents are
checked from the bottom of the rules array to the top to
find the lowest most specific sequence, if any, which is
embedded by the latest version of the consequent to be
optimized and having the same antecedent above it. This
higher topmost consequent, having the same antecedent,
replaces the previously matched embedded sequence in
the consequent to form an optimization as previously
described. The process is iterated until no embedding can
be so replaced, or a cycle is detected, the last offending
optimization skipped, and otherwise run to conclusion.
The validity of a dynamic transformative knowledge space
is thus maximized.

The possibility that a fired sequence of rules is correct
is simple to compute as a function of each fired rule’s
relative validity.

Let m denote the number of rules in the knowledge
base. Let n denote the number of distinct rules in the fired

sequence. Let ir denote the relative position or row

number from the top for the ith fired rule in the sequence
of length n, where, 1 ir m≤ ≤

Then,

1
1

min in
i

m r
possibility

m=
 − +  =   

  

expressed as a percent, where a result of 1.0 or 100
percent is to be displayed as 99 percent to better reflect
the inherent potential for error. A result of 0 will be
automatically displayed as 1 percent to better reflect the
inherent potential for a correct chance result.
 The T2K contains many of the same features and
functionality of common expert systems. The process of
transforming and creating new rules is where the T2K
differentiates itself from other expert systems. The T2K
will always attempt to return a result to a users query even
despite a lack of knowledge in the domain of the query.

4. The Graphical User Interface

The T2K graphical user interface that has been used by

the T2K is a modified version of the user interface that
can be seen in [3]. As can be seen in Figure 2, the layout
of the user interface remains the same, but the underlying
mechanisms have been modified to better suit the needs of
the T2K.

Figure 2. T2K graphical user interface

The design methodology of the T2K GUI serves the

goal of being able to rapidly enter contexts, rule
antecedents, and rule consequents for processing by the
T2K engine [3]. The goal of T2K GUI is to provide a
fluid man-machine interface between the T2K and the
user.

There are two lists being used in the design of the T2K
GUI. The list on the left-hand-side is used to display
contextual keywords and phrases (CKP). The list on the
right-hand-side is used to display action phrases (AP). The
CKP list is used to select the antecedents and the AP list is
used to select the consequents during rule construction
[3]. As the user enters new entries into either list, the
phrases are hashed to integers to be used by the T2K
system. The T2K GUI will always display the full phrases
to the user; but the T2K engine will use the integers to
compress the representation of the phrases and rules.

To create rules, the user is able to enter multiple
phrases from either list. A user may only create rules from
phrases that have been entered into the GUI lists. This
ensures that all phrases are properly hashed before they
are used to create rules. A rule is created by providing a
set of antecedents to be used as the context and a sequence
of consequents to be used as the action. The unique
feature of the T2K GUI is the ability to select semantic
phrases based on natural language conceptual
specifications. During a typical system run, there are a
large number of phrases from which the user will select.
The methodology of the T2K GUI addresses the problem
of how to rapidly retrieve the desired semantic phrases in
real-time for contextual specification [3].

Figure 3. Entry bar

The rapid retrieval of semantic phrases is accomplished

through the use of filtering. Conceptual constraints can be
associated with phrases as they are entered into the system
using the entry boxes, as seen in Figure 3. These
constraints are used to filter phrases and provide a
streamlined method to allow the user to search through
phrases. An example of a conceptual constraint is
“colors”; this would allow only phrases that have been
tagged with the constraint “colors” to be displayed, such
as “red”, “green” and “blue” [3]. The user may also enter
literal constraints, which can also be seen in Figure 3.
These literal constraints filter phrases so that only those
that contain the constraint will be displayed for the user.
Literal constraints are more specific constraints that limit
the actual words within the phrases that must be present
for the phrase to be displayed [3]. These two constraint
mechanisms allow the user to effectively narrow the
search space for selecting phrases to be used to create
rules.

The user uses this GUI to populate the knowledge base
with rules. A rule is entered by selecting a phrase from the
CKP list and using the add button, seen in Figure 3, to add
the phrase to the context. The same is done for selecting
phrases from the AP list to be added to the action. Once
the user has selected all the phrases to be used in the rule,
the save button (seen in Figure 4) is used to add the rule to
the knowledge base, with the context becoming the
antecedent and the action becoming the consequent of the
new rule.

Once the elicitation of knowledge is complete, the user
can then proceed to submit queries to the system. In order
to build a query, the user must use the CKP list to select
phrases and add them to the context, as can be seen in
Figure 4. The user then submits this context to the T2K to
see if a matching action can be found.

Figure 4. Query bar

Explanation functionalities will also be provided to the

user, as can be seen in Figure 5, to allow the user to see
the transformations that were performed in order to
produce the fired rule. The explanation functionality
provides the user with details about which transformations

and rules where fired in order to find the action that is
displayed.

Figure 5. Explanation functionality

5. Conclusions

In this paper, we have presented a new system, the
T2K, which brings together elements not found in current
expert systems. The capability to transform knowledge
allows the T2K to answer a large number of queries, while
still minimizing the amount of knowledge that must be
stored.

This system has the capability to perform not only in
the explicit domain in which it was provided knowledge,
but also in corresponding domains, which it may have
sparse knowledge about. We have succeeded in creating
an expert system that is able to induce new knowledge
from related knowledge without the knowledge explicitly
elicited from the user to the system.

Use of the T2K shows that an expert system can have
intelligence to answer questions about subjects for which
it has not been strictly informed. In this sense it can
replicate the intelligence of an actual human expert, who
would be able to answer questions from a relevant
domain.

The main purpose of the T2K is not to develop a new
technique for inferencing but a new technique for creating
new knowledge from existing knowledge. The T2K does
not have a significant advantage over expert system which
will have queries focused in a single domain. The T2K
excels greatest in applications where the query domain
maybe from a wide range of domains.

6. Acknowledgments

This research was supported, in part, by DTRA

contract number BA08MSB008. The statements, findings,
conclusions, and recommendations are those of the
author(s) and do not necessarily reflect the views of the
sponsoring agency. This work was produced, in part, by a
U.S. government employee as part of his official duties
and no copyright subsists therein. It is approved for public
release with an unlimited distribution.

7. References

[1] S.H. Rubin, S.N.J. Murthy, M.H. Smith, and L. Trajković,

“KASER: Knowledge Amplification by Structured Expert
Randomization,” IEEE Transactions on Systems, Man, and
Cybernetics Part B, vol.34, no.6, 2004, pp. 2317-2329.

[2] S.H. Rubin, R.J. Rush Jr., J. Murthy, M.H. Smith “KASER:

A Qualitatively Fuzzy Objectoriented Inference Engine,”
Fuzzy Information Processing Society, 2002. Proc. of the
NAFIPS 2002 Annual Meeting of the North American, New
Orleans, Louisiana, USA, Jun 27-29, 2002, pp 354-359.

[3] I.M. Lombera, J. Patel, S. Rubin, S.C. Chen, G. Lee, “A

Graphical-User Interface In Support of a Cognitive Inference
Architecture,” Proc. of the ISCA 21st International
Conference on Computer Applications in Industry and
Engineering (CAINE 2008), Honolulu, Hawaii, USA,
November 12-14, 2008, pp. 274-279.

[4] A. Kandel, Fuzzy Expert Systems, CRC Press, 1991.

[5] N.L. Griffin, F.D. Lewis, "A rule-based inference engine
which is optimal and VLSI implementable," Proc. of the
Tools for Artificial Intelligence, 1989. Architectures,
Languages and Algorithms, IEEE International Workshop
on, Fairfax, Virginia, USA Oct 23-25, 1989, pp. 246-251.

[6] W.W. Cohen, “Fast effective rule induction,” Proc. of the

Twelfth International Conference on Machine Learning,
Tahoe City, California, USA, July 9-12, 1995, pp. 115-123.

[7] D. Lin, P. Pantel, “Discovery of inference rules for question-

answering,” Natural Language Engineering, vol. 7, no.3,
Cambridge University Press, 2001, pp. 343-360.

[8] J. Xu, W.B. Croft, “Query expansion using local and global

document analysis,” Proc. of the 19th annual international
ACM SIGIR conference on Research and development in
information retrieval, Zurich, Switzerland, August 18 – 22,
1996, pp. 4-11.

[9] M. Togai, H. Watanabe, “Expert System on a Chip: An

Engine for Real-Time Approximate Reasoning,” IEEE
Expert, vol. 1, no. 3, 1986, pp. 55-62.

[10] F. Hayes-Roth, “Rule-based Systems,” Communications of

the ACM, vol. 28, no. 9, 1985, pp. 921-932.

[11] S. J. Biondo, Fundamentals of Expert Systems Technology,

Intellect Books, 1990.

[12] K. Fordyce, G. Sullivan, “Boolean Array Structures for a

Rule-Based Forward Chaining Inference Engine,” Proc. of
the International Conference on APL: APL in transition,
Dallas, Texas, USA, May 10 - 14, 1987, pp. 185-195.

