

Hierarchical Affinity Hybrid Tree: A Multidimensional Index Structure to

Organize Videos and Support Content-Based Retrievals

Kasturi Chatterjee and Shu-Ching Chen
Distributed Multimedia Information Systems Laboratory

School of Computing and Information Sciences
Florida International University

Miami, FL 33199, USA
{kchat001, chens}@cs.fiu.edu

Abstract

Multimedia data, especially videos, have gained
enormous popularity in the recent years. Data
management techniques for traditional text-based data
are inadequate to handle multimedia data efficiently due
to their atypical characteristics. Thus, to have a robust
data management framework for complex multimedia
data like videos, comparable in efficiency and capability
to the traditional data management approaches,
components like multimedia data storage, index, and
query engines need to be developed with dedicated
abilities to handle the characteristics of multimedia data
like multidimensional representation and semantic gap.
In this paper, we investigate the design of the second
component, i.e., a multimedia index, and propose a novel
tree-based multidimensional hierarchical index structure
called Hierarchical Affinity Hybrid-Tree (HAH-Tree)
which addresses the critical issues of multidimensionality
and semantic gap. The index structure accommodates
different levels of video relationships during Content-
Based Video Retrieval (CBVR) by utilizing a probabilistic
approach called the Hierarchical Markov Model
Mediator (HMMM), which is also responsible for
managing the high-level semantic content of the video
components. In addition, a computationally efficient k-
Nearest Neighbor (k-NN) algorithm is proposed, which
supports CBVR for different video units with a high
precision level.

1. Introduction

Multimedia data, like videos, have gained popularity
in the recent years due to the proliferation of internet
technology and availability of cheap storage. The atypical
nature of multimedia data, viz. its high dimensionality,
the varied semantic interpretation and the gap between the
low-level features and high-level semantic contents,
necessitate dedicated research to be able to efficiently

manage them. Traditional database management systems
are not capable of handling multimedia data efficiently.
Thus, a robust data management framework for complex
multimedia data like videos requires components like
multimedia data storage, index, and query engines to be
developed which should be comparable in efficiency and
capability to the traditional data management approaches,
and should have dedicated abilities to handle
multidimensional representation and semantic gap.
Indexing is one of the pivotal issues in designing efficient
data management frameworks as it is basically the bridge
between the storage system and the query engine, which
accesses the storage system to provide query results.
Therefore, an index structure should be able to handle the
characteristics of both the storage system as well as the
retrieval requirements to be submitted to the query
engine. For multimedia data, the storage system should
accommodate the multidimensional representation of the
multiple features of the multimedia data, and the retrieval
system, comprising of the query engine, should be able to
handle the issue of high level relationship and semantic
gap associated with multimedia data. Hence, an efficient
index structure for complex multimedia data like videos
should have the capability to handle the multi-
dimensional aspect of the data and should be able to
efficiently bridge the semantic gap as well.

In the past, the concept of video indexing mainly
dealt with the process of classifying the video content and
assigning content-based labels to them for the ease and
precision of retrieval processes. As pointed out in [1],
three main issues arise while classifying the video content
viz. granularity, modality, and type. There are different
video indexing techniques like [2][3][4] etc. from the
traditional video classification point of view. For
example, [2] tends to index videos based on single
modality; whereas [3][5][6] use a more advanced
multimodal approach to index the videos. [4] proposes
another content-based video indexing system which
achieves the purpose of automatic management of the

video data by syntactic and semantic features. Other
similar video techniques were proposed in [7][8] etc.
where concepts like virtual image and Dublin core
metadata [7] were used and statistical frameworks [8]
were engaged for modeling and segmenting video content
into coherent space-time segments.

However, none of the above techniques attempted to
address the issue of indexing the video data from the true
database point of view. They classify the video data into
units and design a way to identify useful information
from them, but internally they need to perform exhaustive
search of the entire database to locate the video objects of
interest. This increases the computation overhead and has
increasing negative effects on the overall retrieval
performance, especially for large video retrieval systems.
To develop a robust multimedia database management
system, designing an index structure, just as efficient and
useful as index structures like kDB-Tree [9], R-Tree [10]
etc., is crucial. A set-based nearest neighbor approach
applied on a multidimensional index structure, to index
and retrieve videos based on their feature information,
was proposed in [11]. Though [11] attempts to enable
index structures like SR-Tree [12] to support multimedia
object indexing, it has a major drawback. That is, the
nearest-neighbor algorithm proposed by [11] does not
consider the high-level semantic interpretation of
multimedia objects, which might have huge degradation
in the precision of the query results due to the semantic
gap, an inherent characteristic of multimedia data.

To address the issue of efficiently managing video
data, we propose a novel hierarchical tree-based
multidimensional index structure, called Hierarchical
Affinity Hybrid-Tree (HAH-Tree) which indexes the
data, in a multidimensional space, based on feature-level
information. We further propose a computationally-
economic nearest-neighbor algorithm that enables
content-based video retrieval by considering both the
feature-level and semantic-level similarity. Additionally,
the framework of HAH-Tree supports various levels of
video-unit similarity search and retrieval like frame-level
similarity search, shot-level similarity search, and entire
video-level similarity search. To define and accommodate
the high-level similarity among different levels of video
objects and to bridge the gap between the feature and
semantic information, we utilize the HMMM framework
[13] and embed it seamlessly within the k-NN similarity
search.

The rest of the paper is organized as follows: Section 2
describes the overall structure of HAH-tree. In Section 3,
we briefly discuss video units, video features, and the
HMMM model. It is followed by Section 4, which
presents the k-NN algorithm facilitating the similarity
search. Section 5 presents the experimental results. In
Section 6, a brief conclusion and the scope of future work
are given.

2. Hierarchical Affinity Hybrid Tree

Hierarchical Affinity Hybrid-Tree is an elaborate
extension of the basic framework of Affinity Hybrid-Tree
[14][15] which is an index structure developed to manage
images efficiently. Videos are more complex to handle
than images because they carry more information both at
feature-level as well as at semantic level. Each video can
be considered as an ensemble of a large number of
images, called frames, which might carry a number of
semantic information or events in them. For example, a
piece of soccer video might have a goal event and a foul
event among its frames/shots, either of which might be of
interest to the user. Additionally, a video can be
represented as different units like frames, shots, concepts
etc, which is discussed in Section 3. These special
characteristics of video data made the existing AH-Tree
inadequate to handle it efficiently.

Figure 1: HAH-Tree Structure

As depicted in Figure 1, HAH-Tree is basically a two-

level index structure, where Level 0 indexes the shots of
the videos and Level 1 indexes the information about the
concepts/events associated with individual videos. Hence,
it is called hierarchical. One of the major differences of
HAH-Tree from its predecessor AH-Tree, besides the
hierarchical structure, is the type of indexing
methodologies utilized. Whereas AH-Tree utilizes both

feature-based and distance-based index structures within
its framework, HAH-Tree utilizes only a distance-based
index structure. The reason for excluding the feature-
based index structure in HAH-Tree is that the feature-
level index structure was utilized in AH-Tree mainly as a
filtering mechanism to reduce the number of distance
computations. However Level 1 in HAH-Tree already
performs the required filtering process by building the
index trees for the lower-level based on the conceptual
information that identifies candidate video shots to a
submitted query.

The top level or level 1 indexes the video-level
information and stores the features of the key shot, which
identifies a video, in a multidimensional tree index, called
the video_level_tree. Generally, the key shot is the first
shot of a group of shots identifying an event in a video.
There can be multiple key shots in a video if there are
multiple events associated with it. On the other hand, if
no event has been identified in a video yet, the first shot
of the video is set as the key shot by default. The lower-
level or level 0, indexes the shot level information
associated with each video event, comprising of multiple
shots. Level 0 can be considered as a collection of several
multidimensional index trees, one for each video/video
event built with the shot nodes. The root of each such a
shot_level_tree tree is linked to each video via the key
shot of the video_level_tree. Another important
characteristics of HAH-Tree is that each node is linked to
its siblings, which ensures across-video or across-shot
traversal during the retrieval process.

HAH-Tree has the following eight types of nodes:
• root: This node is the root of the HAH-Tree.
• video_node: This node stores the pointer to the

object ids of the videos.
• key_shot_node: This node stores the information

of the key shot for each video.
• router_key_shot_node, leaf_key_shot_node:

These nodes store the feature-level information of
the key_shots identifying the video and form the
video_level_tree.

• root_level0: This node is the root of the individual
tree-structures for each shot.

• router_shot_node, leaf_shot_node: These nodes
store the feature-level information of each shot for
each video shot and form the shot_level_tree.

Each router node of the HAH-Tree (both the
router_key_shot_node as well as the router_shot_node)
has an associated pointer which references the root of a
subtree. All objects in the subtree should be within a
specified radius r from the routing object. For the leaf
nodes (both the leaf_key_shot_node and the
leaf_shot_node), there are no associated covering radii
and they store the pointer to the root of the
shot_level_tree and the object id of the video object,
respectively.

HAH-Tree is a balanced tree structure and is dynamic
in nature. Insertion and deletion of a new video object can
be achieved without re-shuffling the entire tree structure.
To insert a new video object, one needs to traverse the
HAH-Tree recursively to find the most suitable location
to insert a leaf node which can accommodate it. The most
suitable subtree, where a new leaf node can be inserted, is
generally identified as one which will not increase its
covering radius. If no such candidate subtree can be
identified, the goal is to choose one, which on inserting a
new leaf node pointing to a video object, will have the
minimum increase in its covering radius. When a leaf
node storing the pointer to the video object is deleted, the
covering radius of the corresponding subtree should be
updated and the pointer to the leaf node is set to null. The
entire tree structure will not be updated for each deletion,
but is updated after a certain number of deletion
procedures for efficiency and optimization.

3. Video Representation

The novelty of HAH-Tree is the approach which
seamlessly integrates and includes both the low-level
features and high-level semantic interpretations of videos
in its index and retrieval framework. Thus, it is
imperative to understand the techniques which capture the
required information from videos. It should be pointed
out here that HAH-Tree is a very flexible and dynamic
structure and should be able to accommodate different
representations of low-level and high-level video
information without imposing considerable overhead.

3.1. Video unit classification

Temporal segmentation of a video sequence into
meaningful units is called video unit classification. There
are various levels of video units that have been proposed
viz. shot level, frame level, scene level, and clip level.
Among them, shots are the most self-contained and well
defined units. A shot-based approach categorizes a video
sequence into a collection of frames, where each
collection represents a continuous camera action in time
and space while sharing a close high-level semantic as
well as low-level feature similarity. In this paper, we used
video shots as the lowest conceptual unit of videos. Video
shot detection is mainly performed by adopting the three-
level filtering architecture viz. pixel-histogram
comparison, segmentation map comparison, and object
tracking as discussed in [16]. Each video shot consists of
a number of temporally related video frames, one of
which called the key frame, serves as a representative of
the shot. For the purpose of ease, in this work, we
identified the first frame of each shot as the key frame,
but other techniques can be used as well like selecting the
frame which best describes the overall concept of the

shot. The average of the low-level features of all the
frames comprising a shot is used to represent each shot’s
feature vector.

3.2. Low-level features

There are two main approaches towards extracting the

low-level features/visual descriptors from videos viz.
unimodal and multimodal. The unimodal approach
utilizes the features of a single modality such as visual,
audio or textual; whereas the multimodal approach uses
more than one modality for representation. In this work,
we utilized multimodal features (visual and audio) as
proposed in [17] for each shot. Some important shot-level
visual feature descriptors utilized for indexing purposes in
this paper are pixel change, histogram change, average
volume, average energy, flux, etc.

3.3. High-level semantic video interpretation

In order to capture and utilize the high-level
relationship among the different video units and bridge
the gap between the low-level features and high-level
semantic concepts attached to each video unit, a
mathematical construct, called Hierarchical Markov
Model Mediator (HMMM) [13] is used. It is represented
by an 8-tuple (, , , , , , ,)d S F A B O Lλ = Π , where each
element of the tuple is discussed in details in [13]. The
element d represents the number of levels in an HMMM
and the purpose and representation of the other elements
vary within the level under consideration. In this research,
we set d as 2 and are mainly concerned with the
following three elements of the tuple viz. ,F A , and
B during the similarity searches. F represents the set of
distinct features in level 0 and semantic concepts in level
1, A represents the affinity matrix which denotes the
similarity measurement between video units as perceived
by the users and collected over time, and B represents the
low-level feature information for each frame at level 0
and concept matrices at level 1. The matrices ,F A , and
B are constantly updated, for each iteration, through a
learning process by utilizing users’ feedback.

4. Similarity Search

Similarity searches for video data are mainly based on
two different similarity criteria viz. low-level feature
similarity and high-level semantic or conceptual
similarity. As discussed earlier, HAH-Tree is a distance-
based index structure where multimedia data (here
videos) are indexed based on a distance function like
Euclidean or Manhattan in a metric space. When a query

in the form of a video shot or a complete video is
submitted, the k-NN search algorithm traverses the HAH-
Tree and produces k most similar video objects to the
user. During querying the HAH-Tree, the proposed k-NN
search algorithm considers both the distance or
(dis)similarity between the indexed nodes (video_node,
key_shot_node, etc.) and the query object (also
represented as feature vectors with the same data
structure as the index tree nodes), as well as the high-
level semantic relationships among them. A threshold
value (affinity), specifying the minimum high-level
similarity expected in the query result, is supplied with
the query. This value is utilized to further prune the
candidate nodes which have passed the distance criterion
or the low-level similarity condition. It should be
mentioned here that the k-NN search algorithm for HAH-
Tree can handle different video units as queries. For
example, HAH-Tree can be queried in frame-level, shot-
level, or entire video-level. It totally depends on the video
units chosen by the users to classify the videos. Frame-
level queries may be issued to find frames similar to the
submitted frame from within the same video or across
multiple videos. This is useful when a video is large in
size and users may be interested to find similar frames
from within the video. Similarly, shot-level and video-
level queries can be issued with the same efficiency. The
k-NN algorithm presented in Table 1 discusses the video-
level query processing. The frame-level and shot-level
query processing are merely subsets of the presented
algorithm and can be easily reproduced from it.

The k-NN algorithm, supporting CBVR, starts with
extracting features from the key shots representing the
videos and the frames constituting a shot of the submitted
query object, and represents them as multidimensional
feature vectors. Then, depending upon the video unit of
the submitted query, it proceeds to the corresponding
portion of the retrieval algorithm. If an entire video is
submitted and is associated with a concept, at first the
pointers of the videos with similar concepts are stored in
a queue by querying the video_nodes. Next, the
video_level_tree in Level 1 of HAH-Tree is searched for
similar key_shot_nodes based on both the low-level
feature similarity and high-level semantic closeness
(obtained from the A matrix for level 1 of HMMM). dkKey
is the dynamic radius which stores the radius of the
current kth nearest neighbor. If the examined
key_shot_node satisfies both the conditions, it qualifies as
a candidate node and is pushed into the priority queue.
The value of dkKey is also updated. Once the candidate
key shots or in other words, the candidate video shots are
short-listed, the same pruning criteria, applied for key
shots, are used at the shot_level_tree. dkShot is also
dynamic in this case and the high-level semantic
closeness is obtained from A(ShotLevel0,ShotQuery). Once the
priority queue associated with the shot_level_tree is

exhausted, the result set consisting of shots is sorted
based on the temporal information (since the result set
obtained is sorted based on the distance or (dis)similarity
measurement). The users’ feedback is collected for each
iteration and the affinity matrix at each level is updated
accordingly. This ensures that a constant learning loop is
executed to improve the high-level semantic relationship
captured metric.

Table 1: k-NN search algorithm supporting CBVR

1. Extract the key shot (keyquery) and the low-level
feature descriptor vector (Bquery) from the query
video shot (Vquery).

2. For each video_node in HAH-Tree
3. Obtain the key_shot_node.
4. For each key_shot_node in video queue
5. If ((d(key_shot_node, keyquery) ≤ dkKey) &&

(A(KeyShotLevel1,KeyQuery) ≥ affinity))
6. Add key_shot_node to the key shot queue.
7. endif
8. endfor
9. endfor
10. For each candidate key shot in key shot queue
 // search the corresponding shot-level tree at level 0
11. If ((d(shot_node, shotquery) ≤ dkShot) &&
 (A(ShotLevel0,ShotQuery) ≥ affinity))
12. Add shot_node to the shot priority queue.
13. endif
14. endfor
15. Sort the shot priority queue for each candidate video

with respect to the temporal information and
generate the result set.

16. Collect users’ feedback for each result set and
update the A matrix at each level.

5. Experiments

In our experiments, 10 soccer videos were collected
from different sources with total time duration of almost 2
hours. For each video, shot boundary detection was
performed utilizing the concepts presented in [16]. For
each shot, the key frame is set as the first frame and 20
multimodal features (as discussed in Section 3.2) are
extracted. Ten queries comprising of video-level and
shot-level were issued. Since, to the best of our
knowledge, there is no comparable video indexing
framework like HAH-Tree, we could not compare the
performance with any other tree-based video indexing
strategy. However, we compared our system with the
traditional exhaustive video retrieval strategy which does
not have any underlying index structure from the storage
point of view and depends only on the video classification
technique to provide search result. Essentially, the
exhaustive search traverses the entire video shot-by-shot

to provide the query results. The results presented in
Table 2 and Figure 2 demonstrate tremendous
improvement in computation time and the number of I/Os
for HAH-Tree over the naïve system. The accuracy, a
very subjective indicator for video retrieval, of HAH-Tree
was satisfactory with an average value of 70%-80%.
Though the exhaustive search framework may have better
retrieval accuracy than that of the HAH-Tree, it is
achieved at the cost of very high computation overhead.
Please also note that due to the small video sizes used in
the experiments, the improvement in the computation
overhead for HAH-Tree may not seem very drastic as
compared to the exhaustive search approach. However,
for videos which consist of several thousands of shots, the
improvement will be dramatic. The sample videos were
chosen to be considerably smaller in sizes so that we can
traverse the videos manually and check the accuracy.

Table 2: Experimental Results for HAH-Tree and

Naive Video Retrieval Framework
of distance
computations

of I/Os
Data Set

HAH-
Tree

Naïve HAH-
Tree

Naïve

1 106 137 50 64
2 94 200 39 83
3 15 197 36 472
4 124 168 51 69
5 113 126 50 56

Figure 2: Graph Comparing the Distance
Computations

6. Conclusion and Future Work

In this paper, a novel tree-based multidimensional
index structure, called Hierarchical Affinity Hybrid Tree,
was proposed to manage video data efficiently. We
further proposed an innovative k-NN search algorithm for
HAH-Tree which supports CBVR by amalgamating low-

Distance Computation Comparison

0

50

100

150

200

250

1 2 3 4 5

Data Set #

of

 D
is

ta
ne

 C
om

pu
ta

tio
ns

HAH-Tree

Naive

level feature similarity and high-level semantic closeness
among videos. The proposed k-NN search algorithm is a
very flexible structure and is capable of accommodating
queries for different video units like frames, shots, and
entire videos. The experimental results demonstrate
encouraging outcome in terms of low computation
overhead and a satisfactory accuracy for queries. We can
conclude that HAH-Tree is a useful framework and has
potential for future investigation and improvement.

As a part of our future work, we plan to include
temporal relationship and event information in the index
structure to improve its performance and broaden its
domain.

REFERENCES

[1] C. Snoek and M. Worring, “Multimodal video indexing: A

review of the state-of-the-art,” Multimedia Tools and
Applications, 25(1), pp. 5--35, 2005.

 [2] C. Colombo, A. Del Bimbo, and P. Pala, “Semantics in
visual information retrieval,” IEEE Multimedia, 7(1), pp. 60-
67, 2000.

[3] A.A. Alatan, A.N. Akansu, and W. Wolf, “Multi-modal
dialogue scene detection using hidden markov models for
content-based multimedia indexing,” Multimedia Tools and
Applications, 14(2), pp. 137-15, 2001.

[4] B. Gunsel, A.M. Ferman, and A.M. Tekalp, “Video indexing
through integration of syntactic and semantic features,” in
Proceedings of 3rd IEEE Workshop on Applications of
Computer Visions, Sarasota, USA, pp. 90-95, 1996.

[5] N. Babaguchi, Y. Kawai, and T. Kitahashi, “Event based
indexing of broadcasted sports video by intermodal
collaboration,” IEEE Transactions on Multimedia, 4(1), pp.
68-75, 2002.

[6] S. Eickeler and S. Muller, “Content-based video indexing of
TV broadcast news using hidden markov models,” in
Proceedings of IEEE International Conference on Acoustics,
Speech, and Signal Processing, Phoenix, USA, pp. 2997-
3000, 1999.

[7] P. Palma, L. Petraglia, and G. Petraglia, “The virtual image
in streaming video indexing,” in Proceedings of
International Conference on Dublin Core and Metadata for
e-Communities, Florence, Italy, pp. 97-103, 2002.

[8] H. Greenspan, J. Golberger and A. Mayer, “Probabilistic
space-time video modeling via piecewise GMM,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
26(3), pp. 384-396, 2004.

[9] J. Robinson, “The k-d-b-tree: A search structure for large
multidimensional dynamic indexes,” in Proceedings of the
1981 ACM SIGMOD International Conference on
Management of Data, Ann Arbor, United States, pp. 10–
18, 1981.

[10] A. Guttman, “R-trees: A dynamic index structure for spatial
Searching,” in Proceedings of the 1984 ACM SIGMOD
InternationalConference on Management of Data, Boston,
Unites States, pp. 47–57, 1984.

[11] N. Katayama and S. Satoh, “Application of
multidimensional indexing methods to massive processing

of multimedia information,” Systems and Computers in
Japan, 31(13), pp. 31-41, 2000.

[12] N. Katayama and S. Satoh, “The SR-tree: an index
structure for high-dimensional nearest-neighbor queries,”
in Proceedings of 1997 ACM SIGMOD, Tucson, pp. 369-
380, 1997.

[13] S.-C. Chen, N. Zhao, and M.-L. Shyu, “Modeling Semantic
Concepts and User Preferences in Content-Based Video
Retrieval,” International Journal of Semantic Computing
(IJSC), 1(3), pp. 377-402, 2007.

[14] K. Chatterjee and S.-C. Chen, “A Novel Indexing and
Access Mechanism using Affinity Hybrid Tree for
Content-Based Image Retrieval in Multimedia Databases,”
International Journal of Semantic Computing (IJSC), 1(2),
pp. 147-170, 2007.

[15] K. Chatterjee and S.-C. Chen, “Affinity Hybrid Tree: An
Indexing Technique for Content-Based Image Retrieval in
Multimedia Databases,” in Proceedings of the IEEE
International Symposium on Multimedia (ISM2006), San
Diego, CA, USA, pp. 47-54, 2006.

[16] S.-C. Chen, M.-L. Shyu, and C. Zhang, ‘‘Innovative Shot
Boundary Detection for Video Indexing,’’ Video Data
Management and Information Retrieval, Edited by S. Deb,
Hershey, PA, USA: Idea Group Publishing, pp.
217-236, 2005.

[17] S.-C. Chen, M.-L. Shyu, C. Zhang, L. Luo, and M. Chen,
‘‘Detection of Soccer Goal Shots Using Multimedia
Features and Classification Rules,’’ in Proceedings of the
4th International Workshop on Multimedia Data Mining,
Washington, DC, USA, pp. 36-44, 2003.

