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Abstract 
 

Multimedia data, especially videos, have gained 
enormous popularity in the recent years. Data 
management techniques for traditional text-based data 
are inadequate to handle multimedia data efficiently due 
to their atypical characteristics. Thus, to have a robust 
data management framework for complex multimedia 
data like videos, comparable in efficiency and capability 
to the traditional data management approaches, 
components like multimedia data storage, index, and 
query engines need to be developed with dedicated 
abilities to handle the characteristics of multimedia data 
like multidimensional representation and semantic gap. 
In this paper, we investigate the design of the second 
component, i.e., a multimedia index, and propose a novel 
tree-based multidimensional hierarchical index structure 
called Hierarchical Affinity Hybrid-Tree (HAH-Tree) 
which addresses the critical issues of multidimensionality 
and semantic gap. The index structure accommodates 
different levels of video relationships during Content-
Based Video Retrieval (CBVR) by utilizing a probabilistic 
approach called the Hierarchical Markov Model 
Mediator (HMMM), which is also responsible for 
managing the high-level semantic content of the video 
components. In addition, a computationally efficient k-
Nearest Neighbor (k-NN) algorithm is proposed, which 
supports CBVR for different video units with a high 
precision level.   
 
1. Introduction 
 

Multimedia data, like videos, have gained popularity 
in the recent years due to the proliferation of internet 
technology and availability of cheap storage. The atypical 
nature of multimedia data, viz. its high dimensionality, 
the varied semantic interpretation and the gap between the 
low-level features and high-level semantic contents, 
necessitate dedicated research to be able to efficiently 

manage them. Traditional database management systems 
are not capable of handling multimedia data efficiently. 
Thus, a robust data management framework for complex 
multimedia data like videos requires components like 
multimedia data storage, index, and query engines to be 
developed which should be comparable in efficiency and 
capability to the traditional data management approaches, 
and should have dedicated abilities to handle 
multidimensional representation and semantic gap. 
Indexing is one of the pivotal issues in designing efficient 
data management frameworks as it is basically the bridge 
between the storage system and the query engine, which 
accesses the storage system to provide query results. 
Therefore, an index structure should be able to handle the 
characteristics of both the storage system as well as the 
retrieval requirements to be submitted to the query 
engine. For multimedia data, the storage system should 
accommodate the multidimensional representation of the 
multiple features of the multimedia data, and the retrieval 
system, comprising of the query engine, should be able to 
handle the issue of high level relationship and semantic 
gap associated with multimedia data. Hence, an efficient 
index structure for complex multimedia data like videos 
should have the capability to handle the multi-
dimensional aspect of the data and should be able to 
efficiently bridge the semantic gap as well.  

In the past, the concept of video indexing mainly 
dealt with the process of classifying the video content and 
assigning content-based labels to them for the ease and 
precision of retrieval processes. As pointed out in [1], 
three main issues arise while classifying the video content 
viz. granularity, modality, and type. There are different 
video indexing techniques like [2][3][4] etc. from the 
traditional video classification point of view. For 
example, [2] tends to index videos based on single 
modality; whereas [3][5][6] use a more advanced 
multimodal approach to index the videos. [4] proposes 
another content-based video indexing system which 
achieves the purpose of automatic management of the 



video data by syntactic and semantic features. Other 
similar video techniques were proposed in [7][8] etc. 
where concepts like virtual image and Dublin core 
metadata [7] were used and statistical frameworks [8] 
were engaged for modeling and segmenting video content 
into coherent space-time segments. 

However, none of the above techniques attempted to 
address the issue of indexing the video data from the true 
database point of view. They classify the video data into 
units and design a way to identify useful information 
from them, but internally they need to perform exhaustive 
search of the entire database to locate the video objects of 
interest. This increases the computation overhead and has 
increasing negative effects on the overall retrieval 
performance, especially for large video retrieval systems.  
To develop a robust multimedia database management 
system, designing an index structure, just as efficient and 
useful as index structures like kDB-Tree [9], R-Tree [10] 
etc., is crucial. A set-based nearest neighbor approach 
applied on a multidimensional index structure, to index 
and retrieve videos based on their feature information, 
was proposed in [11]. Though [11] attempts to enable 
index structures like SR-Tree [12] to support multimedia 
object indexing, it has a major drawback. That is, the 
nearest-neighbor algorithm proposed by [11] does not 
consider the high-level semantic interpretation of 
multimedia objects, which might have huge degradation 
in the precision of the query results due to the semantic 
gap, an inherent characteristic of multimedia data. 

To address the issue of efficiently managing video 
data, we propose a novel hierarchical tree-based 
multidimensional index structure, called Hierarchical 
Affinity Hybrid-Tree (HAH-Tree) which indexes the 
data, in a multidimensional space, based on feature-level 
information. We further propose a computationally-
economic nearest-neighbor algorithm that enables 
content-based video retrieval by considering both the 
feature-level and semantic-level similarity. Additionally, 
the framework of HAH-Tree supports various levels of 
video-unit similarity search and retrieval like frame-level 
similarity search, shot-level similarity search, and entire 
video-level similarity search. To define and accommodate 
the high-level similarity among different levels of video 
objects and to bridge the gap between the feature and 
semantic information, we utilize the HMMM framework 
[13] and embed it seamlessly within the k-NN similarity 
search. 

The rest of the paper is organized as follows: Section 2 
describes the overall structure of HAH-tree. In Section 3, 
we briefly discuss video units, video features, and the 
HMMM model. It is followed by Section 4, which 
presents the k-NN algorithm facilitating the similarity 
search. Section 5 presents the experimental results. In 
Section 6, a brief conclusion and the scope of future work 
are given. 

 
2. Hierarchical Affinity Hybrid Tree 
 

Hierarchical Affinity Hybrid-Tree is an elaborate 
extension of the basic framework of Affinity Hybrid-Tree 
[14][15] which is an index structure developed to manage 
images efficiently. Videos are more complex to handle 
than images because they carry more information both at 
feature-level as well as at semantic level. Each video can 
be considered as an ensemble of a large number of 
images, called frames, which might carry a number of 
semantic information or events in them. For example, a 
piece of soccer video might have a goal event and a foul 
event among its frames/shots, either of which might be of 
interest to the user. Additionally, a video can be 
represented as different units like frames, shots, concepts 
etc, which is discussed in Section 3. These special 
characteristics of video data made the existing AH-Tree 
inadequate to handle it efficiently.  

 

 
Figure 1: HAH-Tree Structure 

 
As depicted in Figure 1, HAH-Tree is basically a two-

level index structure, where Level 0 indexes the shots of 
the videos and Level 1 indexes the information about the 
concepts/events associated with individual videos. Hence, 
it is called hierarchical.  One of the major differences of 
HAH-Tree from its predecessor AH-Tree, besides the 
hierarchical structure, is the type of indexing 
methodologies utilized. Whereas AH-Tree utilizes both 



feature-based and distance-based index structures within 
its framework, HAH-Tree utilizes only a distance-based 
index structure. The reason for excluding the feature-
based index structure in HAH-Tree is that the feature-
level index structure was utilized in AH-Tree mainly as a 
filtering mechanism to reduce the number of distance 
computations. However Level 1 in HAH-Tree already 
performs the required filtering process by building the 
index trees for the lower-level based on the conceptual 
information that identifies candidate video shots to a 
submitted query.  

The top level or level 1 indexes the video-level 
information and stores the features of the key shot, which 
identifies a video, in a multidimensional tree index, called 
the video_level_tree. Generally, the key shot is the first 
shot of a group of shots identifying an event in a video. 
There can be multiple key shots in a video if there are 
multiple events associated with it. On the other hand, if 
no event has been identified in a video yet, the first shot 
of the video is set as the key shot by default. The lower-
level or level 0, indexes the shot level information 
associated with each video event, comprising of multiple 
shots. Level 0 can be considered as a collection of several 
multidimensional index trees, one for each video/video 
event built with the shot nodes. The root of each such a 
shot_level_tree tree is linked to each video via the key 
shot of the video_level_tree. Another important 
characteristics of HAH-Tree is that each node is linked to 
its siblings, which ensures across-video or across-shot 
traversal during the retrieval process. 

HAH-Tree has the following eight types of nodes:  
• root: This node is the root of the HAH-Tree. 
• video_node: This node stores the pointer to the 

object ids of the videos. 
• key_shot_node: This node stores the information 

of the key shot for each video. 
• router_key_shot_node, leaf_key_shot_node: 

These nodes store the feature-level information of 
the key_shots identifying the video and form the 
video_level_tree.  

• root_level0: This node is the root of the individual 
tree-structures for each shot.  

• router_shot_node, leaf_shot_node: These nodes 
store the feature-level information of each shot for 
each video shot and form the shot_level_tree.  

Each router node of the HAH-Tree (both the 
router_key_shot_node as well as the router_shot_node) 
has an associated pointer which references the root of a 
subtree. All objects in the subtree should be within a 
specified radius r from the routing object. For the leaf 
nodes (both the leaf_key_shot_node and the 
leaf_shot_node), there are no associated covering radii 
and they store the pointer to the root of the 
shot_level_tree and the object id of the video object, 
respectively.  

HAH-Tree is a balanced tree structure and is dynamic 
in nature. Insertion and deletion of a new video object can 
be achieved without re-shuffling the entire tree structure. 
To insert a new video object, one needs to traverse the 
HAH-Tree recursively to find the most suitable location 
to insert a leaf node which can accommodate it. The most 
suitable subtree, where a new leaf node can be inserted, is 
generally identified as one which will not increase its 
covering radius. If no such candidate subtree can be 
identified, the goal is to choose one, which on inserting a 
new leaf node pointing to a video object, will have the 
minimum increase in its covering radius. When a leaf 
node storing the pointer to the video object is deleted, the 
covering radius of the corresponding subtree should be 
updated and the pointer to the leaf node is set to null. The 
entire tree structure will not be updated for each deletion, 
but is updated after a certain number of deletion 
procedures for efficiency and optimization. 

 
3. Video Representation 
 

The novelty of HAH-Tree is the approach which 
seamlessly integrates and includes both the low-level 
features and high-level semantic interpretations of videos 
in its index and retrieval framework. Thus, it is 
imperative to understand the techniques which capture the 
required information from videos. It should be pointed 
out here that HAH-Tree is a very flexible and dynamic 
structure and should be able to accommodate different 
representations of low-level and high-level video 
information without imposing considerable overhead. 

 
3.1. Video unit classification 
 

Temporal segmentation of a video sequence into 
meaningful units is called video unit classification. There 
are various levels of video units that have been proposed 
viz. shot level, frame level, scene level, and clip level. 
Among them, shots are the most self-contained and well 
defined units. A shot-based approach categorizes a video 
sequence into a collection of frames, where each 
collection represents a continuous camera action in time 
and space while sharing a close high-level semantic as 
well as low-level feature similarity. In this paper, we used 
video shots as the lowest conceptual unit of videos. Video 
shot detection is mainly performed by adopting the three-
level filtering architecture viz. pixel-histogram 
comparison, segmentation map comparison, and object 
tracking as discussed in [16]. Each video shot consists of 
a number of temporally related video frames, one of 
which called the key frame, serves as a representative of 
the shot.  For the purpose of ease, in this work, we 
identified the first frame of each shot as the key frame, 
but other techniques can be used as well like selecting the 
frame which best describes the overall concept of the 



shot.  The average of the low-level features of all the 
frames comprising a shot is used to represent each shot’s 
feature vector. 

 
3.2. Low-level features 

 
There are two main approaches towards extracting the 

low-level features/visual descriptors from videos viz. 
unimodal and multimodal. The unimodal approach 
utilizes the features of a single modality such as visual, 
audio or textual; whereas the multimodal approach uses 
more than one modality for representation. In this work, 
we utilized multimodal features (visual and audio) as 
proposed in [17] for each shot. Some important shot-level 
visual feature descriptors utilized for indexing purposes in 
this paper are pixel change, histogram change, average 
volume, average energy, flux, etc. 
 
3.3. High-level semantic video interpretation 
 

In order to capture and utilize the high-level 
relationship among the different video units and bridge 
the gap between the low-level features and high-level 
semantic concepts attached to each video unit, a 
mathematical construct, called Hierarchical Markov 
Model Mediator (HMMM) [13] is used. It is represented 
by an 8-tuple ( , , , , , , , )d S F A B O Lλ = Π , where each 
element of the tuple is discussed in details in [13]. The 
element d represents the number of levels in an HMMM 
and the purpose and representation of the other elements 
vary within the level under consideration. In this research, 
we set d as 2 and are mainly concerned with the 
following three elements of the tuple viz. ,F A , and 
B during the similarity searches. F represents the set of 
distinct features in level 0 and semantic concepts in level 
1, A  represents the affinity matrix which denotes the 
similarity measurement between video units as perceived 
by the users and collected over time, and B represents the 
low-level feature information for each frame at level 0 
and concept matrices at level 1. The matrices ,F A , and 
B are constantly updated, for each iteration, through a 
learning process by utilizing users’ feedback. 

 
4. Similarity Search 
 

Similarity searches for video data are mainly based on 
two different similarity criteria viz. low-level feature 
similarity and high-level semantic or conceptual 
similarity. As discussed earlier, HAH-Tree is a distance-
based index structure where multimedia data (here 
videos) are indexed based on a distance function like 
Euclidean or Manhattan in a metric space. When a query 

in the form of a video shot or a complete video is 
submitted, the k-NN search algorithm traverses the HAH-
Tree and produces k most similar video objects to the 
user. During querying the HAH-Tree, the proposed k-NN 
search algorithm considers both the distance or 
(dis)similarity between the indexed nodes (video_node, 
key_shot_node, etc.) and the query object (also 
represented as  feature vectors with the same data 
structure as the index tree nodes),  as well as  the high-
level semantic relationships among them. A threshold 
value (affinity), specifying the minimum high-level 
similarity expected in the query result, is supplied with 
the query. This value is utilized to further prune the 
candidate nodes which have passed the distance criterion 
or the low-level similarity condition. It should be 
mentioned here that the k-NN search algorithm for HAH-
Tree can handle different video units as queries. For 
example, HAH-Tree can be queried in frame-level, shot-
level, or entire video-level. It totally depends on the video 
units chosen by the users to classify the videos. Frame-
level queries may be issued to find frames similar to the 
submitted frame from within the same video or across 
multiple videos. This is useful when a video is large in 
size and users may be interested to find similar frames 
from within the video. Similarly, shot-level and video-
level queries can be issued with the same efficiency. The 
k-NN algorithm presented in Table 1 discusses the video-
level query processing. The frame-level and shot-level 
query processing are merely subsets of the presented 
algorithm and can be easily reproduced from it.  

The k-NN algorithm, supporting CBVR, starts with 
extracting features from the key shots representing the 
videos and the frames constituting a shot of the submitted 
query object, and represents them as multidimensional 
feature vectors. Then, depending upon the video unit of 
the submitted query, it proceeds to the corresponding 
portion of the retrieval algorithm. If an entire video is 
submitted and is associated with a concept, at first the 
pointers of the videos with similar concepts are stored in 
a queue by querying the video_nodes. Next, the 
video_level_tree in Level 1 of HAH-Tree is searched for 
similar key_shot_nodes based on both the low-level 
feature similarity and high-level semantic closeness 
(obtained from the A matrix for level 1 of HMMM). dkKey 
is the dynamic radius which stores the radius of the 
current kth nearest neighbor. If the examined 
key_shot_node satisfies both the conditions, it qualifies as 
a candidate node and is pushed into the priority queue. 
The value of dkKey is also updated.  Once the candidate 
key shots or in other words, the candidate video shots are 
short-listed, the same pruning criteria, applied for key 
shots, are used at the shot_level_tree. dkShot is also 
dynamic in this case and the high-level semantic 
closeness is obtained from A(ShotLevel0,ShotQuery). Once the 
priority queue associated with the shot_level_tree is 



exhausted, the result set consisting of shots is sorted 
based on the temporal information (since the result set 
obtained is sorted based on the distance or (dis)similarity 
measurement). The users’ feedback is collected for each 
iteration and the affinity matrix at each level is updated 
accordingly. This ensures that a constant learning loop is 
executed to improve the high-level semantic relationship 
captured metric.   

 
Table 1: k-NN search algorithm supporting CBVR 

1. Extract the key shot (keyquery) and the low-level 
feature descriptor vector (Bquery) from the query 
video shot (Vquery). 

2. For each video_node in HAH-Tree 
3. Obtain the key_shot_node.   
4. For each key_shot_node in video queue 
5.        If ((d(key_shot_node, keyquery) ≤  dkKey) && 

(A(KeyShotLevel1,KeyQuery) ≥  affinity )) 
6.            Add key_shot_node to the key shot queue. 
7.        endif 
8. endfor 
9. endfor    
10. For each candidate key shot in key shot queue 
      // search the corresponding shot-level tree at level 0 
11. If  ((d(shot_node, shotquery) ≤  dkShot) &&  
                  (A(ShotLevel0,ShotQuery) ≥  affinity )) 
12.      Add shot_node to the shot priority queue. 
13. endif 
14. endfor 
15. Sort the shot priority queue for each candidate video 

with respect to the temporal information and 
generate the result set. 

16. Collect users’ feedback for each result set and 
update the A matrix at each level. 

 
5. Experiments 
 

In our experiments, 10 soccer videos were collected 
from different sources with total time duration of almost 2 
hours. For each video, shot boundary detection was 
performed utilizing the concepts presented in [16]. For 
each shot, the key frame is set as the first frame and 20 
multimodal features (as discussed in Section 3.2) are 
extracted. Ten queries comprising of video-level and 
shot-level were issued. Since, to the best of our 
knowledge, there is no comparable video indexing 
framework like HAH-Tree, we could not compare the 
performance with any other tree-based video indexing 
strategy. However, we compared our system with the 
traditional exhaustive video retrieval strategy which does 
not have any underlying index structure from the storage 
point of view and depends only on the video classification 
technique to provide search result. Essentially, the 
exhaustive search traverses the entire video shot-by-shot 

to provide the query results. The results presented in 
Table 2 and Figure 2 demonstrate tremendous 
improvement in computation time and the number of I/Os 
for HAH-Tree over the naïve system. The accuracy, a 
very subjective indicator for video retrieval, of HAH-Tree 
was satisfactory with an average value of 70%-80%. 
Though the exhaustive search framework may have better 
retrieval accuracy than that of the HAH-Tree, it is 
achieved at the cost of very high computation overhead. 
Please also note that due to the small video sizes used in 
the experiments, the improvement in the computation 
overhead for HAH-Tree may not seem very drastic as 
compared to the exhaustive search approach. However, 
for videos which consist of several thousands of shots, the 
improvement will be dramatic. The sample videos were 
chosen to be considerably smaller in sizes so that we can 
traverse the videos manually and check the accuracy.  

 
Table 2: Experimental Results for HAH-Tree and 

Naive Video Retrieval Framework 
# of distance 
computations 

# of I/Os  
Data Set 

HAH-
Tree 

Naïve HAH-
Tree 

Naïve 
 

1   106        137   50             64 
2     94             200         39             83 
3     15             197   36           472 
4   124             168   51             69 
5   113             126   50             56 

 
 

Figure 2: Graph Comparing the Distance 
Computations 

 
6. Conclusion and Future Work  
 

In this paper, a novel tree-based multidimensional 
index structure, called Hierarchical Affinity Hybrid Tree, 
was proposed to manage video data efficiently. We 
further proposed an innovative k-NN search algorithm for 
HAH-Tree which supports CBVR by amalgamating low-
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level feature similarity and high-level semantic closeness 
among videos. The proposed k-NN search algorithm is a 
very flexible structure and is capable of accommodating 
queries for different video units like frames, shots, and 
entire videos. The experimental results demonstrate 
encouraging outcome in terms of low computation 
overhead and a satisfactory accuracy for queries. We can 
conclude that HAH-Tree is a useful framework and has 
potential for future investigation and improvement. 

As a part of our future work, we plan to include 
temporal relationship and event information in the index 
structure to improve its performance and broaden its 
domain. 
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