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Abstract—The transformational methodology 
described in this paper induces new knowledge, which 
may be open under any deductive process. The method 
of transposition is used to maintain a maximum size for 
the application as well as meta-rule bases. The “move to 
head” method is used by both the application and meta-
rule bases for hypotheses formation. Whenever an 
application rule is fired, it is transposed on the 
transposition list and also moved to the head on the 
other list. If any meta-rule on a solution path 
individually leads to a contradiction on the application 
rule base, then the offending meta-rule is expunged. 
Then, when the system is idle enter dream mode, 
whereby rule i ⇒  rule j is generated by the 3-2-1 
skewed twister as a candidate most-specific meta-rule. 
Candidate most-specific meta-rules are “cored” to 
create one generalization per candidate. These candidate 
meta-rules are tested for application to each rule in the 
application domain rule base. In order to be saved in the 
meta base, they may not map any existing rule in the 
application domain rule base to one having the same 
antecedent as another in this base, but a different 
consequent (as found by hashing). In addition, all 
candidate meta-rules must map at least one rule in the 
application base to another distinct one there, or be 
symmetrically induced from meta-rules that so map. 
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I. INTRODUCTION 

R andomization is defined to mean any operation, 

which increases the density of information [1], [2], 
[3]. An expert2 system is a metaphor for an 
information-theoretic black hole and performs the 
following functions. 
 
a. Uses the semantic normalizer to randomize 

natural language for matching purposes. 
Application rule consequents should be run 
through the semantic normalizer prior to saving. 

b. The semantic normalizer may be trained on 
procedurally-invoked truth maintenance 
operations (e.g., “posting” and “retraction” – 
especially in a closed domain using augmented 
natural languages) by observing user alterations 
to the context in response to the firing of some 
procedural consequents. 

c. Cognition may result from allowing virtual rules 
to post and retract knowledge in a closed loop 
system of system pairs. 

d. Provides a dump of valid rules, meta-rules, and 
virtual rule application sequence(s). Note that 
possibility metrics cannot be meaningfully 
ascribed because the system, in keeping with the 
dictates of the Incompleteness Theorem [4], can 
(rapidly) discover axioms that cannot be proven 
(or assigned a 100 percent possibility metric). 

e. Offers a metaphorical explanation subsystem 
based on following a transformational chain. 

f. Rules can invoke functional antecedents and 
procedural consequents. 

g. Offers images and possibly video files and sound 
bytes. 

h. Offers a professional speech synthesizer. 
i. Associatively recalls word and sentence 

corrections [5], [6]. 
j. Can be integrated with a deductive calculus (e.g., 

the Japanese Fifth Generation) along with neural 
to sub-symbolic sensory pre-processors. 

k. The algorithm is amenable to cluster computing 
where the application rule base is global and the 
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meta-rule base and related data structures are 
local. The parallel version requires O(r) 
processors for efficient computation. 

 
II. ON THE ACQUISITION AND USE OF META-

RULE BASES 
 
The functional LHS {f0, f1, f2, …} of a rule will define 
a conjunction of Boolean functions, while the 
procedural RHS (p0, p1, p2, …) will define a sequence 
(e.g., a rule base to play chess). 

There will be two rule bases – one for user-supplied 
validated application domain rules and one for meta 
rules, which is machine generated for mapping 
application rules and meta rules onto new candidates. 

Both rule bases apply the method of transposition to 
the fired rules so as to allow space occupied by the 
least-frequently used (LFU) rules to be reclaimed. In 
keeping with the principle of temporal locality, rules 
in the application domain and meta-rule bases 
maintain a logical pointer, which has a rule “move to 
the head” whenever it is properly fired. This is needed 
for efficient hypotheses formation. For example, two 
distinct rules are: 
 
1. f0, f1, f2, … →  p0, p1, p2, … 
2. f1, f3  →  p1, p3 
 

The meta-rule base comprises a set of 
transformation rules, which are automatically created 
from the application rule base during dreaming [3]. 
“Coring” is realized using random search. For 
example, a most specific and an unrelated most 
general (i.e., “cored” using our statistical mechanical 
approach) meta-rule, followed by an induced 
symmetric meta rule are: 
 
a. f0, f1, f2, … →  p0, p1, p2, …⇒  f’0, f’1, f’2, … →  

p’0, p’1, p’2, …(most specific) 
b. f1  →  p1 ⇒  f’1  →  p’1  (a more general meta 

rule) 
c. f0, f’1, f2, … →  p0, p’1, p2, …⇒  f’0, f’1, f’2, … 

→  p’0, p’1, p’2, …(apply (b) to (a)) 
 

A “cored” rule need map its parent’s LHS to its 
RHS. This is necessary to guarantee that at least one 
rule in the application domain base will be mapped to 
another. Such a complete mapping by the candidate 
meta-rule insures that this requirement will be 
satisfied in the most computationally efficient 
manner. The candidate meta-rule may not map any 

application domain rule to another domain rule 
already in the base, having a distinct consequent. Note 
that most specific meta-rules as well as more general 
meta-rules are to be cored. Coring the more general 
meta-rules allows for the hill climbing of still more 
general meta-rules in a manner that would not 
otherwise be computationally efficient. Successful 
most-specific and cored meta-rules are created at 
relatively great computational cost at chance. Thus, it 
follows that these resultant (pseudo) random seeds 
need to be extended by way of more economical 
symmetric induction [7]. Also, the auto application of 
meta-rules enables the evolution of fixed point 
transformations in the meta-rule base, where the rule 
base is held constant [8]. For example, we may find 
that H = m •  r2, where H is the number of induced 
virtual rules, m is a domain-specific symmetry 
constant, and r is the number of rules in the 
application domain rule base. Note that we allow for r 
application domain rules, meta-rules, and 2r ADT 
rules (see below). The reason for this is that given a 
finite amount of memory, when the rule base is 
young, we favor creativity via meta-rules. Later, when 
the system is older, we favor stored application 
knowledge and retain only the most frequently used 
meta-rules [9]. This is similar to human behavior – 
when people are young, they are most creative, but 
know the least (and vice versa). We will use the 
following meta-rule notation for convenience. L1 →  
R1 ⇒  L2 →  R2. “Cored” meta rules may be formed 
as follows. 
 
1. If a function is in L1 and not in L2, retain it in L1 

and omit it from L2. 
2. If a function is in L2 and not in L1, omit it from 

L1 and retain it in L2. 
3. If a set of functions are in both L1 and L2, retain 

the same subset in L1 and L2. For example, 
starting with the previous most-specific meta 
rule, one has f0, f2  →  p1 ⇒  f0, f2  →  p’1. Note 
that there are 2m subsets of F, where m is the 
number of functions common to both L1 and L2. 

4. Use the Traditional “Coring” Method (TCM) to 
generalize R1 ⇒  R2. For example, starting with 
a most-specific meta rule: p0, p1, p2 ⇒  p0, p1, p2, 
p3, we find that there are three “cored” rules; 
namely, p2 ⇒   p2, p3; p1, p2 ⇒  p1, p2, p3, and 
p0, p1, p2 ⇒  p0, p1, p2, p3. The TCM requires the 
use of contiguous subsequences (i.e., p1, p2 here 
– not say p1, p3) because here the space of 
candidate meta-rules grows far larger than can be 
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tractably searched in parallel – large-scale 
quantum computers not withstanding. Moreover, 
the TCM yields more robust meta-rules than is 
possible through the use of non-contiguous 
subsequences. This is the case because it is better 
to have a meta-rule that is less frequently 
applicable with higher validity than vice versa. 
Also, TCM meta-rules can continue to be 
generalized through the intermediary action of 
symmetric induction. Thus, correctness can be 
approximately preserved through the use of 
symmetric transformations, while increasing the 
space of possible transformations. New meta-
rules are inserted at the bottom of both pointer 
lists because they have yet to compete for 
placement via transposition. Moreover, a pair of 
meta-rules may have identical antecedents and 
distinct consequents (i.e., non-determinism) and 
still map an application domain rule to a distinct 
pair of potentially valid application domain rules. 
For example, 

 
1. f0, f2 →  p1 ⇒  f2 →  p3 
2. f0, f2 →  p1 ⇒  f0 →  p4 

 
Now, the upper bound or worst case for the 

TCM is 
( 1)

1
2

n n
n

−
+ − , which reduces to, 

( 1)
1

2

n n +
− , which is O(n2), where n is the min 

{|R1|, |R2|}. However, the number of predicates 
in the search space is likely to be far less in 
practice so that a good estimate of the average 
case behavior for the TCM is O(n). Combining 
these results with those for L1 and L2, we find 
that the worst case behavior for the overall meta 
rule is O(2m • n2), where m is the min {|L1|, 
|L2|}. Similarly, a good estimate of the average 
case behavior for the overall meta rule is 
O(2m/2 • n). Note that we used the exponent m/2 
because it bears the same relation to m that n 
does to n2. The complexity of the overall number 
of meta-rules is used to approximate the number 
of candidate meta-rules that can be formed for 
each visited application domain rule pair. As the 
rule base gets larger, an ever-greater percentage 
of meta-rules will be rejected. Then, the 
remaining candidates will tend to participate in 
the formation of ever-better hypotheses; albeit at 
the cost of more cpu cycles. 

It follows that on the average there will be 
about O(r2) meta-rules. This implies O(r3) first-
order candidate hypotheses (i.e., acting on r 
application rules), and so on depending upon the 
domain symmetry constant [3]. This result 
strongly implies the need for a random “dream” 
mode to insure a non-skewed (i.e., where move 
to the head is not a factor) exploration of the 
search space. It similarly insures that there will 
be few collisions (i.e., depending on the move to 
the head skew), as desired. 

 
III. CANDIDATE META-RULE FORMATION 

 
Next, we describe how to form the candidate meta-
rules. A pair of distinct application domain rules are 
selected at random using the Mersenne Twister 
algorithm. Rules are selected with due regard to their 
logical position in the “move to head” pointer list. 
The higher the position of the rule in this list, the 
greater the likelihood of selection. A good scheme 
(i.e., the 3-2-1 skew) for achieving this with an 
application domain base of r rules is to assign the 

head rule a probability of being selected of 
2

( 1)

r

r r +
. 

The rule just below the head rule has a probability of 

being selected of 
2( 1)

( 1)

r

r r

−

+
. Finally, the tail rule of the 

base has a probability of being selected of 
2

( 1)r r +
. 

Meta-rules created during dreaming are properly 
inserted at the tail rather than at the head of the move 
to head list. This follows because if the meta-rules 
were to be inserted at the head, then over time the 
fixed point rules would float to the top and result in 
wasted cpu cycles as a result of duplicate cored and 
symmetric inductions. This methodology may be 
indirectly realized using the following algorithm. It is 
interesting to note that in accordance with Amarel’s 
1968 Machine Intelligence paper [10], this algorithm 
(or something equivalently efficient) could not be 
found by trying to solve the above equations, but only 
through a change of representation of the given 
problem. Notice that the method uses an initial skew 
to accelerate the results obtained during a short “nap”, 
while “long nights” can best be served by a uniform 
random search for the “smallest” meta-rule. 
Moreover, since search time grows as the square of 
the application rule base size and the number of 
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processors is necessarily linear, it follows that the 
system will not have time to get into pure uniform 
search with scale. This serves to underscore the 
importance of transposition in maintaining a quality 
meta-rule base. The “smaller” the meta-rules in the 
meta-rule base are, the larger will be the virtual rule 
space on the average. A highly efficient algorithm for 
realizing the 3-2-1 skew is given in Fig. 1. Note that 
this algorithm has the added advantage of favoring 
just the head of the list during very short naps. Also, 
it is proper to stagnate at a uniform search of all 
(meta-) rules because skew search time grows as the 
order square of the size of the base, while the number 
of parallel processors can only grow linearly. Thus, a 
point is reached whereupon it is impossible to follow 
the skew to its conclusion. Should the skew naturally 
conclude in the small, then we may quit, or run in 
uniform search mode so as not to waste CPU cycles. 
Uniform search mode is to be preferred because it 
looks beyond the immediate past, which has been 
practically covered. 
 

 
i = 2; 
Repeat 

For j = 1 to i 
Repeat 

Select a pair of rules using a uniform 
random number generator (Twister) with 
numbers in [1, i] 

Until 
Wake-Up or the LHS and RHS of the 
pair are distinct; 

The created pair constitutes a most-specific 
meta rule; 
If i < current number of rules in the base, i 
←  i + 1 

Until 
Wake-Up; 

 
 
Fig. 1.  An efficient algorithm for realizing the 3-2-1 skew. The 
distribution is skewed in favor of more recent data. 
 

IV. META-RULE VALIDATION 
 
Having created a most-specific candidate meta-rule, 
the next step is to check it against the rule base to 
insure that this candidate does not map a rule in the 
application domain rule base to another rule already 
in this base, which has a different consequent. This is 
an O(r) process per meta-rule, which is amenable to 

parallel processing. If a violation is found, then this 
most-specific candidate is discarded. At the same time 
(i.e., using parallel processors), create a candidate 
“cored” meta rule of the form, F →  P ⇒  F’ →  P’ 
using a 3-2-1 skewed meta distribution of the “move 
to head” pointer to select the parent meta-rule. A 
single meta rule “core” is generated at random (in 
parallel) so as to achieve a more uniform coverage of 
the search space, which is necessary since the search 
space can grow to an intractable size (i.e., but even 
partial explorations here can prove invaluable). The 
new candidate meta-rule core must be checked for 
contradiction against the application domain rule base 
just as were the most-specific meta-rules prior to 
saving them in the meta-rule base. In addition, cored 
(not symmetric) candidate meta-rules must map at 
least one rule in the application base to another 
distinct one there. Symmetric meta-rules are of 
relatively high quality in comparison with random 
cores. In the limit, when they apply they are correct 
(and more likely to be one to one with scale) and such 
results cannot practically overwrite the meta-rule 
base, since this base is gated on minimizing meta-rule 
size. Thus, symmetric meta-rules are to be accepted 
without any one to one mapping check. However, 
symmetric meta-rules need to be checked for 
contradiction at the time of their creation for the 
following reason. First, symmetric meta-rules tend to 
propagate exponentially faster than random, or cored, 
rules with scale. Thus, erroneous symmetric rules can 
potentially wipe out the meta-rule base before the 
next tree search. It follows that since the validity of an 
arbitrary meta-rule cannot be guaranteed after 
creation that induced symmetric meta-rules need to be 
checked for contradiction. In summary, there are at 
least three fundamental reasons not to do a one to one 
check on symmetrically-induced meta rules: 
 
a. Symmetric meta-rules inherit the validity of their 

parents, which itself increases with scale. 
b. Partial mappings (transformations) are permitted 

and desirable so long as they are of high quality 
(e.g., a predictor-corrector methodology). 

c. Occam’s razor implies not to introduce new time-
consuming code for one to one checking here. 

 
V. ORDERING THE RULE BASES 

 
The application rule base and meta-rule base are 
maintained using transposition ordering and “move to 
head” pointers. Unlike new meta-rules, new 
application rules are inserted at the head using both 

150



  

pointers. Distinct new meta-rules (i.e., hashed for non 
redundancy check) are inserted at the bottom of the 
meta-rule “move to head” and transposition lists, 
while these lists are not full. Ideally, the transposition 
list will move those meta-rules having the greatest 
number of successful applications to the top and act 
so as to preserve them. However, it would add an 
unwarranted order of magnitude complexity to the 
rule-verification algorithm (i.e., counting the number 
of proper one to one maps) to do this. An excellent 
surrogate metric for the number of successful 
applications is a meta-rules length, defined by | f + p| 
≥  1, where a meta-rule can transform just the fis or 
just the pjs. That is, we need to preserve the shortest 
meta-rules because they tend to be the most 
applicable. Furthermore, minimizing the length of f 
and/or p serves to maximize reuse, which in turn 
maximizes the size of the virtual rule space. 
Moreover, it follows from the corner point, or 
simplest rule; namely, fi →  pj that the fis and the pjs 
should be equally weighted – in accordance with the 
metric given above. Note that the shorter rules, while 
more error-prone are subjected to more tests for 
contradiction by reason of their proportionately 
increased applicability. Now, if the meta-rule base is 
filled, search the linked transposition list from the 
bottom up for a meta-rule, if any, that has the same 
length as the candidate new meta-rule or greater. 

The meta-rules induced from the most-recently 
fired, or in other words skewed rules are the most 
important because they best anticipate the current 
needs. Make the replacement so as not to increase the 
sum of the lengths of all meta-rules in the base. 
Reducing the sum of meta-base lengths takes 
precedence over maintaining the existing 
transpositional ordering in keeping with the dictates 
of statistical mechanics. That is, on the average, the 
larger the meta-rule, the further it will lie from the 
front of the transposition list. This in turn means that, 
on the average, the closer a meta-rule is to the front of 
the transposition list the more likely it is to be 
preserved. Here, statistical mechanics allows for 
exceptions on an individual basis, but not when the 
cases are considered in the aggregate. Notice that “out 
of order” replacements are self-delimiting and thus, 
the more they occur, the less likely they will be able 
to occur in the future. In particular, this approach is 
necessary where less than O(r2) space is available for 
the meta-rule base so as to prevent flushing out 
previously proven highly applicable meta rules by 
most-specific, newly cored, or new symmetric ones. 
The meta-rule base should be of length, O(r) with 

scale to balance the need for parallel processors with 
that of the application rule base. Finally, small meta-
rules that are not used (i.e., sludge) will fall to the 
very bottom of the meta-rule base over time. This 
sludge must be removed because it can accumulate 
over time and clog the system. This is most efficiently 
accomplished by expunging the very last and only 
very last rule (i.e., whatever the length of the meta-
rule base happens to be) on the meta-rule base 
transposition list every time the system enters napping 
or dream mode. Eventually, short meta-rules will 
replace the sludge at the very bottom, be fired, 
transpose with any sludge above, and iterate. 
 

VI. HYPOTHESES FORMATION 
 
The existing semantic normalizer will normalize the 
context so that it can better cover a rule antecedent. 
The most-specific, highest transposed rule (i.e., to 
break ties) in the application domain rule base is fired 
where applicable. Thus, the user will be offered a rule 
consequent. For example, if the context were, f0, f1, f2, 
f3, then rule (1) would be fired as the most-specific 
match. Now, suppose that the context were given as, 
f’1, f3. Clearly, no rule in the application domain base 
will fire on this context. The context is matched 
against the application domain rule antecedents by 
hashing subsets of the context in order of non-
increasing cardinality. When application rules of the 
same specificity are randomly selected vs. following 
move to head pointers, this favors the creation of 
more numerous (because of increased diversity in the 
skew) and thus ultimately smaller meta-rules, which 
tend to increase the size of the virtual rules space. 
This means that care should be taken so that 
contextual subsets of equal size are hashed in random 
order. If and only if no application domain rules can 
be fired by this method do we resort to virtual rule 
creation. It is more efficient to generate the virtual 
rules at runtime than store them because not only is 
this greatly conservative of space, but it allows for 
ordered/heuristic search, which is conservative of 
time. In all cases, the most-specific application rule 
covered by the context will be first to be fired. 

The best way to break cycles is to listen for an 
interrupt and then supply a new rule at that time, 
which maps the context to some desired action. 
Application domain rules may be non monotonic. 
This means that application rule consequents may add 
to, modify, and/or delete conjunctive functions in the 
context in an iterative fashion to enable or disable the 
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firing of other rules. Hypotheses are generated as 
follows. 
 
1. Visit rules in the application domain rule base as 

well as in the meta-rule base in order of their 
“move to head” pointers. 

2. Apply each meta-rule on a candidate solution 
path to all matching application domain rules as 
guided by heuristic search. Expunge all relevant 
meta-rules that lead to a contradiction on the 
application rule base. Searching the meta-rules in 
order of the move to head list applies the current 
highest-probability of correctness meta-rules first. 

3. Cycles (i.e., in the form of repeated contextual 
states) are detected and prevented using the cycle 
detection algorithm of the semantic normalizer. 
Cycles in the application of meta-rules will be 
implicitly addressed by the tree-search algorithm. 
Cyclic application rules are detected using 
hashing and are expunged. 

4. If such application results in an antecedent, which 
is covered by the context, hash this antecedent to 
see if its’ consequent differs from that stored in 
the application domain rule base, if present. If a 
contradiction is found, then if the sequence of 
meta-rules is of length one, then delete this meta 
rule and continue on. Similarly, rules in the meta 
rule base need maintain a logical pointer, which 
has a meta rule “move to the head” whenever it is 
part of a sequence of meta rules leading to a 
correct virtual rule. The same meta-rules are 
“moved to the bottom” whenever they are part of 
a sequence of meta-rules leading to a contradicted 
virtual rule. Here, the fired meta-rules are queued 
(FIFO) in both cases. Notice that while blame or 
reward cannot be ascribed to any individual meta-
rule in a sequence of meta-rules, the 
aforementioned movement routines will allow for 
the maintenance of an ordering that approximates 
the blame or reward as a consequence of this 
statistical mechanical approach. This application-
induced movement of meta-rules serves to make 
subsequent dreaming (i.e., skewed meta-rule 
induction) more relevant to current application 
needs. 

 
In the absence of an interrupt, attempt to find 

solutions at virtual levels using hill-climbing in 
conjunction with backtracking. Virtual rules are 
ascribed a specificity metric, which is defined by 
maximizing |{contextual predicates} ∩  {antecedent 
predicates}|. The issues surrounding the use of this 

metric are a) transformation rules can be directly or 
indirectly right recursive for a fixed context and 
antecedent – implying runaway expansion of the RHS 
using the ADT; b) the consequent predicates should 
be randomized to maximize the reuse of any 
application rules – thus contributing to maximizing 
the size of the virtual rule space; c) the length of the 
consequent predicate sequence is a tractable surrogate 
metric (e.g., statistical mechanics) for randomness; d) 
the longer the consequent predicate sequence, the 
more difficult it is to maintain; e) the simplest corner-
point rule is of the form fi →  pj, where the length of 
the LHS equals that of the RHS, which suggests that 
no RHS may exceed the ceiling of twice the average 
RHS lengths among the valid rules (if not twice, then 
the RHS might be stuck at a length of one – as well as 
the need for longer intermediate states in Type 0 
transformations) [7]. Notice that i+1 = 
2*(1+2+3+…+i)/i. There is a heuristic symmetry here 
with the 3-2-1 skew, which suggests that the two 
methods could have been co-evolved. Furthermore, 
the use of an average serves to smooth the variance 
associated with using just the maximum RHS length 
in lieu, while allowing for gradual increase in the size 
of the RHSs. If the induced virtual rule is pruned as a 
result of the length of its RHS exceeding the allowed 
maximum, then the transforming sequence of meta 
rule(s) are moved to the bottom of the move to head 
list to avert recreation and to encourage replacement 
or deletion to disrupt cyclic meta-rule groups; and f) 
randomizing (i.e., minimizing) the sequence of 
applied meta rules would enforce a breadth-first 
search – contradicting the use of this most-specific-
first heuristic. 

Whenever the application rule base acquires or 
loses a valid rule, it is necessary to efficiently re-
compute the average lengths of the RHSs for all the 
valid rules and use this integer for pruning the 
heuristic search. (Note that the specificity metric 
given above is to be preferred to the one defined by 
minimizing |{antecedent predicates}| - |{antecedent 
predicates} ∩  {contextual predicates}|, where the 
selected rule has a minimal metric because a) with 
scale, meta-rules tend to be valid allowing for deeper 
search; b) a most-specific rule is to be preferred in 
any case; c) the specificity metric converges on the 
minimal metric in view of statistical mechanics; and 
d) the specificity metric allows for noise, or non 
monotonic search, which serves to anneal the 
heuristic – allowing for the possibly more rapid 
discovery of more specific solutions.) Virtual rule 
nodes are expanded in the search in order of their 
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non-increasing specificity metrics. In all cases, the 
most-specific contextual match is to be taken. The 
state space is maintained at length 2r, where r is 
defined to be the maximal length of the application 
rule base and r space will necessarily be filled with 
valid rules and an additional r space is allocated for 
virtual rules of which there are O(r2) [11]. Valid rules 
are matched such that when equally specific matches 
of the context are encountered, the last one matched 
going down the move to head list is selected. This is 
done because it increases the diversity of the meta-
rule space, which leads to a larger virtual rule space. 

Conversely, virtual rules are matched such that 
when equally specific matches of the context are 
encountered, the first one matched going down the 
move to head lists is selected. This is done because 
being first on the move to head lists is associated with 
increased validity. Note that the use of data-dependent 
heuristic search at virtual levels not only insures a 
more uniform coverage of the search space than 
would be possible exclusively using breadth-first 
search at all levels (i.e., even when one allows for 
massively parallel processing); but, the loss in the 
guarantee of a minimum path length of meta rules is 
much more than offset by the increased likelihood of 
heuristically finding a solution path, where one exists. 

If a most-specific virtual rule is to be fired (and the 
user approves), then the virtual rule will have been 
checked for contradiction before presentation with the 
result that the transforming sequence of meta rule(s) 
are moved to the head of the move to head list using a 
queue (FIFO) structure to preserve the ordering. 
Similarly, if the most-specific virtual rule is found to 
be in contradiction with the application rule base (or 
if the user disallows), then these meta-rule(s) are 
moved to the bottom of the move to head list using a 
queue (FIFO) structure. We search to expunge meta-
rules (i.e., if any single meta-rule maps an application 
rule to a contradictory application rule) just prior to 
their being moved to the head or bottom (where the 
transformational sequence is more likely to imbue 
erroneous meta-rules) of the move to head list. 
Moreover, if any single meta-rule maps a valid rule to 
a contradictory virtual rule, then it is immediately 
expunged, but the contradictory virtual rule may 
continue to undergo transformation as a form of 
annealing (without poisoning). It follows that we only 
check virtual rules for contradiction at the first level 
and prior to firing. 
 
 
 

VII. CONCLUSION 
 
The purpose of this paper is to provide the reader with 
a model for the development of a computational 
creativity that is based on various facets of the theory 
of randomization [1], [2], [3]. In particular, the 
induction of heuristic knowledge, which is open 
under deduction provides a point of departure from 
formal logic approaches to the creation of knowledge. 
It is argued that even the formal logics themselves 
require heuristic search (e.g., a heuristic back-cutting 
mechanism for Prolog) for tractable deduction in the 
large. 
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