

T2K2: A Type II KASER

Stuart H. Rubin, Senior Member, IEEE, Shu-Ching Chen, Senior Member, IEEE, and James B. Law

Abstract—The transformational methodology
described in this paper induces new knowledge, which
may be open under any deductive process. The method
of transposition is used to maintain a maximum size for
the application as well as meta-rule bases. The “move to
head” method is used by both the application and meta-
rule bases for hypotheses formation. Whenever an
application rule is fired, it is transposed on the
transposition list and also moved to the head on the
other list. If any meta-rule on a solution path
individually leads to a contradiction on the application
rule base, then the offending meta-rule is expunged.
Then, when the system is idle enter dream mode,
whereby rule i ⇒ rule j is generated by the 3-2-1
skewed twister as a candidate most-specific meta-rule.
Candidate most-specific meta-rules are “cored” to
create one generalization per candidate. These candidate
meta-rules are tested for application to each rule in the
application domain rule base. In order to be saved in the
meta base, they may not map any existing rule in the
application domain rule base to one having the same
antecedent as another in this base, but a different
consequent (as found by hashing). In addition, all
candidate meta-rules must map at least one rule in the
application base to another distinct one there, or be
symmetrically induced from meta-rules that so map.

Keywords: Computing with Words, Machine
Learning, Natural Language, Randomization,
Translation

Manuscript received May 02, 2006. This work was supported in
part by the Office of Naval Research (ONR) ILIR program.
S. H. Rubin is with SSC San Diego, CA 92152-5001 USA (phone:
619-553-3554; fax: 619-553-1130; e-mail: stuart.rubin@navy.mil).

S. C. Chen is with the School of Computer Science, Florida
International University, Miami, FL 33156 USA (e-mail:
chens@cs.fiu.edu).

J. B. Law is with SSC San Diego, CA 92152-5001 USA (e-mail:
lawjb@spawar.navy.mil).

I. INTRODUCTION

R andomization is defined to mean any operation,

which increases the density of information [1], [2],
[3]. An expert2 system is a metaphor for an
information-theoretic black hole and performs the
following functions.

a. Uses the semantic normalizer to randomize

natural language for matching purposes.
Application rule consequents should be run
through the semantic normalizer prior to saving.

b. The semantic normalizer may be trained on
procedurally-invoked truth maintenance
operations (e.g., “posting” and “retraction” –
especially in a closed domain using augmented
natural languages) by observing user alterations
to the context in response to the firing of some
procedural consequents.

c. Cognition may result from allowing virtual rules
to post and retract knowledge in a closed loop
system of system pairs.

d. Provides a dump of valid rules, meta-rules, and
virtual rule application sequence(s). Note that
possibility metrics cannot be meaningfully
ascribed because the system, in keeping with the
dictates of the Incompleteness Theorem [4], can
(rapidly) discover axioms that cannot be proven
(or assigned a 100 percent possibility metric).

e. Offers a metaphorical explanation subsystem
based on following a transformational chain.

f. Rules can invoke functional antecedents and
procedural consequents.

g. Offers images and possibly video files and sound
bytes.

h. Offers a professional speech synthesizer.
i. Associatively recalls word and sentence

corrections [5], [6].
j. Can be integrated with a deductive calculus (e.g.,

the Japanese Fifth Generation) along with neural
to sub-symbolic sensory pre-processors.

k. The algorithm is amenable to cluster computing
where the application rule base is global and the

1470-7803-9788-6/06/$20.00 ©2006 IEEE.

meta-rule base and related data structures are
local. The parallel version requires O(r)
processors for efficient computation.

II. ON THE ACQUISITION AND USE OF META-

RULE BASES

The functional LHS {f0, f1, f2, …} of a rule will define
a conjunction of Boolean functions, while the
procedural RHS (p0, p1, p2, …) will define a sequence
(e.g., a rule base to play chess).

There will be two rule bases – one for user-supplied
validated application domain rules and one for meta
rules, which is machine generated for mapping
application rules and meta rules onto new candidates.

Both rule bases apply the method of transposition to
the fired rules so as to allow space occupied by the
least-frequently used (LFU) rules to be reclaimed. In
keeping with the principle of temporal locality, rules
in the application domain and meta-rule bases
maintain a logical pointer, which has a rule “move to
the head” whenever it is properly fired. This is needed
for efficient hypotheses formation. For example, two
distinct rules are:

1. f0, f1, f2, … → p0, p1, p2, …
2. f1, f3 → p1, p3

The meta-rule base comprises a set of
transformation rules, which are automatically created
from the application rule base during dreaming [3].
“Coring” is realized using random search. For
example, a most specific and an unrelated most
general (i.e., “cored” using our statistical mechanical
approach) meta-rule, followed by an induced
symmetric meta rule are:

a. f0, f1, f2, … → p0, p1, p2, …⇒ f’0, f’1, f’2, … →

p’0, p’1, p’2, …(most specific)
b. f1 → p1 ⇒ f’1 → p’1 (a more general meta

rule)
c. f0, f’1, f2, … → p0, p’1, p2, …⇒ f’0, f’1, f’2, …

→ p’0, p’1, p’2, …(apply (b) to (a))

A “cored” rule need map its parent’s LHS to its
RHS. This is necessary to guarantee that at least one
rule in the application domain base will be mapped to
another. Such a complete mapping by the candidate
meta-rule insures that this requirement will be
satisfied in the most computationally efficient
manner. The candidate meta-rule may not map any

application domain rule to another domain rule
already in the base, having a distinct consequent. Note
that most specific meta-rules as well as more general
meta-rules are to be cored. Coring the more general
meta-rules allows for the hill climbing of still more
general meta-rules in a manner that would not
otherwise be computationally efficient. Successful
most-specific and cored meta-rules are created at
relatively great computational cost at chance. Thus, it
follows that these resultant (pseudo) random seeds
need to be extended by way of more economical
symmetric induction [7]. Also, the auto application of
meta-rules enables the evolution of fixed point
transformations in the meta-rule base, where the rule
base is held constant [8]. For example, we may find
that H = m • r2, where H is the number of induced
virtual rules, m is a domain-specific symmetry
constant, and r is the number of rules in the
application domain rule base. Note that we allow for r
application domain rules, meta-rules, and 2r ADT
rules (see below). The reason for this is that given a
finite amount of memory, when the rule base is
young, we favor creativity via meta-rules. Later, when
the system is older, we favor stored application
knowledge and retain only the most frequently used
meta-rules [9]. This is similar to human behavior –
when people are young, they are most creative, but
know the least (and vice versa). We will use the
following meta-rule notation for convenience. L1 →
R1 ⇒ L2 → R2. “Cored” meta rules may be formed
as follows.

1. If a function is in L1 and not in L2, retain it in L1

and omit it from L2.
2. If a function is in L2 and not in L1, omit it from

L1 and retain it in L2.
3. If a set of functions are in both L1 and L2, retain

the same subset in L1 and L2. For example,
starting with the previous most-specific meta
rule, one has f0, f2 → p1 ⇒ f0, f2 → p’1. Note
that there are 2m subsets of F, where m is the
number of functions common to both L1 and L2.

4. Use the Traditional “Coring” Method (TCM) to
generalize R1 ⇒ R2. For example, starting with
a most-specific meta rule: p0, p1, p2 ⇒ p0, p1, p2,
p3, we find that there are three “cored” rules;
namely, p2 ⇒ p2, p3; p1, p2 ⇒ p1, p2, p3, and
p0, p1, p2 ⇒ p0, p1, p2, p3. The TCM requires the
use of contiguous subsequences (i.e., p1, p2 here
– not say p1, p3) because here the space of
candidate meta-rules grows far larger than can be

148

tractably searched in parallel – large-scale
quantum computers not withstanding. Moreover,
the TCM yields more robust meta-rules than is
possible through the use of non-contiguous
subsequences. This is the case because it is better
to have a meta-rule that is less frequently
applicable with higher validity than vice versa.
Also, TCM meta-rules can continue to be
generalized through the intermediary action of
symmetric induction. Thus, correctness can be
approximately preserved through the use of
symmetric transformations, while increasing the
space of possible transformations. New meta-
rules are inserted at the bottom of both pointer
lists because they have yet to compete for
placement via transposition. Moreover, a pair of
meta-rules may have identical antecedents and
distinct consequents (i.e., non-determinism) and
still map an application domain rule to a distinct
pair of potentially valid application domain rules.
For example,

1. f0, f2 → p1 ⇒ f2 → p3
2. f0, f2 → p1 ⇒ f0 → p4

Now, the upper bound or worst case for the

TCM is
(1)

1
2

n n
n

−
+ − , which reduces to,

(1)
1

2

n n +
− , which is O(n2), where n is the min

{|R1|, |R2|}. However, the number of predicates
in the search space is likely to be far less in
practice so that a good estimate of the average
case behavior for the TCM is O(n). Combining
these results with those for L1 and L2, we find
that the worst case behavior for the overall meta
rule is O(2m • n2), where m is the min {|L1|,
|L2|}. Similarly, a good estimate of the average
case behavior for the overall meta rule is
O(2m/2 • n). Note that we used the exponent m/2
because it bears the same relation to m that n
does to n2. The complexity of the overall number
of meta-rules is used to approximate the number
of candidate meta-rules that can be formed for
each visited application domain rule pair. As the
rule base gets larger, an ever-greater percentage
of meta-rules will be rejected. Then, the
remaining candidates will tend to participate in
the formation of ever-better hypotheses; albeit at
the cost of more cpu cycles.

It follows that on the average there will be
about O(r2) meta-rules. This implies O(r3) first-
order candidate hypotheses (i.e., acting on r
application rules), and so on depending upon the
domain symmetry constant [3]. This result
strongly implies the need for a random “dream”
mode to insure a non-skewed (i.e., where move
to the head is not a factor) exploration of the
search space. It similarly insures that there will
be few collisions (i.e., depending on the move to
the head skew), as desired.

III. CANDIDATE META-RULE FORMATION

Next, we describe how to form the candidate meta-
rules. A pair of distinct application domain rules are
selected at random using the Mersenne Twister
algorithm. Rules are selected with due regard to their
logical position in the “move to head” pointer list.
The higher the position of the rule in this list, the
greater the likelihood of selection. A good scheme
(i.e., the 3-2-1 skew) for achieving this with an
application domain base of r rules is to assign the

head rule a probability of being selected of
2

(1)

r

r r +
.

The rule just below the head rule has a probability of

being selected of
2(1)

(1)

r

r r

−

+
. Finally, the tail rule of the

base has a probability of being selected of
2

(1)r r +
.

Meta-rules created during dreaming are properly
inserted at the tail rather than at the head of the move
to head list. This follows because if the meta-rules
were to be inserted at the head, then over time the
fixed point rules would float to the top and result in
wasted cpu cycles as a result of duplicate cored and
symmetric inductions. This methodology may be
indirectly realized using the following algorithm. It is
interesting to note that in accordance with Amarel’s
1968 Machine Intelligence paper [10], this algorithm
(or something equivalently efficient) could not be
found by trying to solve the above equations, but only
through a change of representation of the given
problem. Notice that the method uses an initial skew
to accelerate the results obtained during a short “nap”,
while “long nights” can best be served by a uniform
random search for the “smallest” meta-rule.
Moreover, since search time grows as the square of
the application rule base size and the number of

149

processors is necessarily linear, it follows that the
system will not have time to get into pure uniform
search with scale. This serves to underscore the
importance of transposition in maintaining a quality
meta-rule base. The “smaller” the meta-rules in the
meta-rule base are, the larger will be the virtual rule
space on the average. A highly efficient algorithm for
realizing the 3-2-1 skew is given in Fig. 1. Note that
this algorithm has the added advantage of favoring
just the head of the list during very short naps. Also,
it is proper to stagnate at a uniform search of all
(meta-) rules because skew search time grows as the
order square of the size of the base, while the number
of parallel processors can only grow linearly. Thus, a
point is reached whereupon it is impossible to follow
the skew to its conclusion. Should the skew naturally
conclude in the small, then we may quit, or run in
uniform search mode so as not to waste CPU cycles.
Uniform search mode is to be preferred because it
looks beyond the immediate past, which has been
practically covered.

i = 2;
Repeat

For j = 1 to i
Repeat

Select a pair of rules using a uniform
random number generator (Twister) with
numbers in [1, i]

Until
Wake-Up or the LHS and RHS of the
pair are distinct;

The created pair constitutes a most-specific
meta rule;
If i < current number of rules in the base, i
← i + 1

Until
Wake-Up;

Fig. 1. An efficient algorithm for realizing the 3-2-1 skew. The
distribution is skewed in favor of more recent data.

IV. META-RULE VALIDATION

Having created a most-specific candidate meta-rule,
the next step is to check it against the rule base to
insure that this candidate does not map a rule in the
application domain rule base to another rule already
in this base, which has a different consequent. This is
an O(r) process per meta-rule, which is amenable to

parallel processing. If a violation is found, then this
most-specific candidate is discarded. At the same time
(i.e., using parallel processors), create a candidate
“cored” meta rule of the form, F → P ⇒ F’ → P’
using a 3-2-1 skewed meta distribution of the “move
to head” pointer to select the parent meta-rule. A
single meta rule “core” is generated at random (in
parallel) so as to achieve a more uniform coverage of
the search space, which is necessary since the search
space can grow to an intractable size (i.e., but even
partial explorations here can prove invaluable). The
new candidate meta-rule core must be checked for
contradiction against the application domain rule base
just as were the most-specific meta-rules prior to
saving them in the meta-rule base. In addition, cored
(not symmetric) candidate meta-rules must map at
least one rule in the application base to another
distinct one there. Symmetric meta-rules are of
relatively high quality in comparison with random
cores. In the limit, when they apply they are correct
(and more likely to be one to one with scale) and such
results cannot practically overwrite the meta-rule
base, since this base is gated on minimizing meta-rule
size. Thus, symmetric meta-rules are to be accepted
without any one to one mapping check. However,
symmetric meta-rules need to be checked for
contradiction at the time of their creation for the
following reason. First, symmetric meta-rules tend to
propagate exponentially faster than random, or cored,
rules with scale. Thus, erroneous symmetric rules can
potentially wipe out the meta-rule base before the
next tree search. It follows that since the validity of an
arbitrary meta-rule cannot be guaranteed after
creation that induced symmetric meta-rules need to be
checked for contradiction. In summary, there are at
least three fundamental reasons not to do a one to one
check on symmetrically-induced meta rules:

a. Symmetric meta-rules inherit the validity of their

parents, which itself increases with scale.
b. Partial mappings (transformations) are permitted

and desirable so long as they are of high quality
(e.g., a predictor-corrector methodology).

c. Occam’s razor implies not to introduce new time-
consuming code for one to one checking here.

V. ORDERING THE RULE BASES

The application rule base and meta-rule base are
maintained using transposition ordering and “move to
head” pointers. Unlike new meta-rules, new
application rules are inserted at the head using both

150

pointers. Distinct new meta-rules (i.e., hashed for non
redundancy check) are inserted at the bottom of the
meta-rule “move to head” and transposition lists,
while these lists are not full. Ideally, the transposition
list will move those meta-rules having the greatest
number of successful applications to the top and act
so as to preserve them. However, it would add an
unwarranted order of magnitude complexity to the
rule-verification algorithm (i.e., counting the number
of proper one to one maps) to do this. An excellent
surrogate metric for the number of successful
applications is a meta-rules length, defined by | f + p|
≥ 1, where a meta-rule can transform just the fis or
just the pjs. That is, we need to preserve the shortest
meta-rules because they tend to be the most
applicable. Furthermore, minimizing the length of f
and/or p serves to maximize reuse, which in turn
maximizes the size of the virtual rule space.
Moreover, it follows from the corner point, or
simplest rule; namely, fi → pj that the fis and the pjs
should be equally weighted – in accordance with the
metric given above. Note that the shorter rules, while
more error-prone are subjected to more tests for
contradiction by reason of their proportionately
increased applicability. Now, if the meta-rule base is
filled, search the linked transposition list from the
bottom up for a meta-rule, if any, that has the same
length as the candidate new meta-rule or greater.

The meta-rules induced from the most-recently
fired, or in other words skewed rules are the most
important because they best anticipate the current
needs. Make the replacement so as not to increase the
sum of the lengths of all meta-rules in the base.
Reducing the sum of meta-base lengths takes
precedence over maintaining the existing
transpositional ordering in keeping with the dictates
of statistical mechanics. That is, on the average, the
larger the meta-rule, the further it will lie from the
front of the transposition list. This in turn means that,
on the average, the closer a meta-rule is to the front of
the transposition list the more likely it is to be
preserved. Here, statistical mechanics allows for
exceptions on an individual basis, but not when the
cases are considered in the aggregate. Notice that “out
of order” replacements are self-delimiting and thus,
the more they occur, the less likely they will be able
to occur in the future. In particular, this approach is
necessary where less than O(r2) space is available for
the meta-rule base so as to prevent flushing out
previously proven highly applicable meta rules by
most-specific, newly cored, or new symmetric ones.
The meta-rule base should be of length, O(r) with

scale to balance the need for parallel processors with
that of the application rule base. Finally, small meta-
rules that are not used (i.e., sludge) will fall to the
very bottom of the meta-rule base over time. This
sludge must be removed because it can accumulate
over time and clog the system. This is most efficiently
accomplished by expunging the very last and only
very last rule (i.e., whatever the length of the meta-
rule base happens to be) on the meta-rule base
transposition list every time the system enters napping
or dream mode. Eventually, short meta-rules will
replace the sludge at the very bottom, be fired,
transpose with any sludge above, and iterate.

VI. HYPOTHESES FORMATION

The existing semantic normalizer will normalize the
context so that it can better cover a rule antecedent.
The most-specific, highest transposed rule (i.e., to
break ties) in the application domain rule base is fired
where applicable. Thus, the user will be offered a rule
consequent. For example, if the context were, f0, f1, f2,
f3, then rule (1) would be fired as the most-specific
match. Now, suppose that the context were given as,
f’1, f3. Clearly, no rule in the application domain base
will fire on this context. The context is matched
against the application domain rule antecedents by
hashing subsets of the context in order of non-
increasing cardinality. When application rules of the
same specificity are randomly selected vs. following
move to head pointers, this favors the creation of
more numerous (because of increased diversity in the
skew) and thus ultimately smaller meta-rules, which
tend to increase the size of the virtual rules space.
This means that care should be taken so that
contextual subsets of equal size are hashed in random
order. If and only if no application domain rules can
be fired by this method do we resort to virtual rule
creation. It is more efficient to generate the virtual
rules at runtime than store them because not only is
this greatly conservative of space, but it allows for
ordered/heuristic search, which is conservative of
time. In all cases, the most-specific application rule
covered by the context will be first to be fired.

The best way to break cycles is to listen for an
interrupt and then supply a new rule at that time,
which maps the context to some desired action.
Application domain rules may be non monotonic.
This means that application rule consequents may add
to, modify, and/or delete conjunctive functions in the
context in an iterative fashion to enable or disable the

151

firing of other rules. Hypotheses are generated as
follows.

1. Visit rules in the application domain rule base as

well as in the meta-rule base in order of their
“move to head” pointers.

2. Apply each meta-rule on a candidate solution
path to all matching application domain rules as
guided by heuristic search. Expunge all relevant
meta-rules that lead to a contradiction on the
application rule base. Searching the meta-rules in
order of the move to head list applies the current
highest-probability of correctness meta-rules first.

3. Cycles (i.e., in the form of repeated contextual
states) are detected and prevented using the cycle
detection algorithm of the semantic normalizer.
Cycles in the application of meta-rules will be
implicitly addressed by the tree-search algorithm.
Cyclic application rules are detected using
hashing and are expunged.

4. If such application results in an antecedent, which
is covered by the context, hash this antecedent to
see if its’ consequent differs from that stored in
the application domain rule base, if present. If a
contradiction is found, then if the sequence of
meta-rules is of length one, then delete this meta
rule and continue on. Similarly, rules in the meta
rule base need maintain a logical pointer, which
has a meta rule “move to the head” whenever it is
part of a sequence of meta rules leading to a
correct virtual rule. The same meta-rules are
“moved to the bottom” whenever they are part of
a sequence of meta-rules leading to a contradicted
virtual rule. Here, the fired meta-rules are queued
(FIFO) in both cases. Notice that while blame or
reward cannot be ascribed to any individual meta-
rule in a sequence of meta-rules, the
aforementioned movement routines will allow for
the maintenance of an ordering that approximates
the blame or reward as a consequence of this
statistical mechanical approach. This application-
induced movement of meta-rules serves to make
subsequent dreaming (i.e., skewed meta-rule
induction) more relevant to current application
needs.

In the absence of an interrupt, attempt to find

solutions at virtual levels using hill-climbing in
conjunction with backtracking. Virtual rules are
ascribed a specificity metric, which is defined by
maximizing |{contextual predicates} ∩ {antecedent
predicates}|. The issues surrounding the use of this

metric are a) transformation rules can be directly or
indirectly right recursive for a fixed context and
antecedent – implying runaway expansion of the RHS
using the ADT; b) the consequent predicates should
be randomized to maximize the reuse of any
application rules – thus contributing to maximizing
the size of the virtual rule space; c) the length of the
consequent predicate sequence is a tractable surrogate
metric (e.g., statistical mechanics) for randomness; d)
the longer the consequent predicate sequence, the
more difficult it is to maintain; e) the simplest corner-
point rule is of the form fi → pj, where the length of
the LHS equals that of the RHS, which suggests that
no RHS may exceed the ceiling of twice the average
RHS lengths among the valid rules (if not twice, then
the RHS might be stuck at a length of one – as well as
the need for longer intermediate states in Type 0
transformations) [7]. Notice that i+1 =
2*(1+2+3+…+i)/i. There is a heuristic symmetry here
with the 3-2-1 skew, which suggests that the two
methods could have been co-evolved. Furthermore,
the use of an average serves to smooth the variance
associated with using just the maximum RHS length
in lieu, while allowing for gradual increase in the size
of the RHSs. If the induced virtual rule is pruned as a
result of the length of its RHS exceeding the allowed
maximum, then the transforming sequence of meta
rule(s) are moved to the bottom of the move to head
list to avert recreation and to encourage replacement
or deletion to disrupt cyclic meta-rule groups; and f)
randomizing (i.e., minimizing) the sequence of
applied meta rules would enforce a breadth-first
search – contradicting the use of this most-specific-
first heuristic.

Whenever the application rule base acquires or
loses a valid rule, it is necessary to efficiently re-
compute the average lengths of the RHSs for all the
valid rules and use this integer for pruning the
heuristic search. (Note that the specificity metric
given above is to be preferred to the one defined by
minimizing |{antecedent predicates}| - |{antecedent
predicates} ∩ {contextual predicates}|, where the
selected rule has a minimal metric because a) with
scale, meta-rules tend to be valid allowing for deeper
search; b) a most-specific rule is to be preferred in
any case; c) the specificity metric converges on the
minimal metric in view of statistical mechanics; and
d) the specificity metric allows for noise, or non
monotonic search, which serves to anneal the
heuristic – allowing for the possibly more rapid
discovery of more specific solutions.) Virtual rule
nodes are expanded in the search in order of their

152

non-increasing specificity metrics. In all cases, the
most-specific contextual match is to be taken. The
state space is maintained at length 2r, where r is
defined to be the maximal length of the application
rule base and r space will necessarily be filled with
valid rules and an additional r space is allocated for
virtual rules of which there are O(r2) [11]. Valid rules
are matched such that when equally specific matches
of the context are encountered, the last one matched
going down the move to head list is selected. This is
done because it increases the diversity of the meta-
rule space, which leads to a larger virtual rule space.

Conversely, virtual rules are matched such that
when equally specific matches of the context are
encountered, the first one matched going down the
move to head lists is selected. This is done because
being first on the move to head lists is associated with
increased validity. Note that the use of data-dependent
heuristic search at virtual levels not only insures a
more uniform coverage of the search space than
would be possible exclusively using breadth-first
search at all levels (i.e., even when one allows for
massively parallel processing); but, the loss in the
guarantee of a minimum path length of meta rules is
much more than offset by the increased likelihood of
heuristically finding a solution path, where one exists.

If a most-specific virtual rule is to be fired (and the
user approves), then the virtual rule will have been
checked for contradiction before presentation with the
result that the transforming sequence of meta rule(s)
are moved to the head of the move to head list using a
queue (FIFO) structure to preserve the ordering.
Similarly, if the most-specific virtual rule is found to
be in contradiction with the application rule base (or
if the user disallows), then these meta-rule(s) are
moved to the bottom of the move to head list using a
queue (FIFO) structure. We search to expunge meta-
rules (i.e., if any single meta-rule maps an application
rule to a contradictory application rule) just prior to
their being moved to the head or bottom (where the
transformational sequence is more likely to imbue
erroneous meta-rules) of the move to head list.
Moreover, if any single meta-rule maps a valid rule to
a contradictory virtual rule, then it is immediately
expunged, but the contradictory virtual rule may
continue to undergo transformation as a form of
annealing (without poisoning). It follows that we only
check virtual rules for contradiction at the first level
and prior to firing.

VII. CONCLUSION

The purpose of this paper is to provide the reader with
a model for the development of a computational
creativity that is based on various facets of the theory
of randomization [1], [2], [3]. In particular, the
induction of heuristic knowledge, which is open
under deduction provides a point of departure from
formal logic approaches to the creation of knowledge.
It is argued that even the formal logics themselves
require heuristic search (e.g., a heuristic back-cutting
mechanism for Prolog) for tractable deduction in the
large.

ACKNOWLEDGMENT

The author thanks SPAWAR Systems Center, San
Diego for their financial support of this research. This
work was produced, in part, by a U.S. government
employee as part of his official duties and is not
subject to copyright. It is approved for public release
with an unlimited distribution.

REFERENCES

[1] G.J. Chaitin, “Information-Theoretic Limitations of Formal

Systems,” Journal of the ACM, 21, 403-424, 1974.
[2] G.J. Chaitin, “Randomness and Mathematical Proof,” Sci.

Amer., vol. 232, no. 5, pp. 47-52, 1975.
[3] S.H. Rubin, S.N.J. Murthy, M.H. Smith, and L. Trajković,

“KASER: Knowledge Amplification by Structured Expert
Randomization,” IEEE Transactions on Systems, Man, and
Cybernetics Part B, 34 (6), 2317-2329, 2004.

[4] V.A. Uspenskii, Gödel’s Incompleteness Theorem, Translated
from Russian. Moscow: Ves Mir Publishers, 1987.

[5] S.H. Rubin, “Computing with Words,” IEEE Transactions on
Systems, Man, and Cybernetics, 29 (4), 518-524, 1999.

[6] L.A. Zadeh, “From Computing with Numbers to Computing
with Words – From Manipulation of Measurements to
Manipulation of Perceptions,” IEEE Transactions on Circuits
and Systems, 45 (1), 105-119, 1999.

[7] R.J. Solomonoff, “A Formal Theory of Inductive Inference,”
Inf. Control, 7, 1-22, 224-254, 1964.

[8] S.H. Rubin, “On the Auto-Randomization of Knowledge,”
Proceedings of the IEEE International Conference on
Information Reuse and Integration, Las Vegas, NV, 308-313,
2004.

[9] S.H. Rubin, “New Knowledge for Old Using the Crystal
Learning Lamp,” Proc. 1993 IEEE Int. Conf. Syst., Man,
Cybern., pp. 119-124, 1993.

[10] S. Amarel, “On Representations of Problems of Reasoning
about Actions,” Machine Intelligence, 3, 131-171, 1968.

[11] J-H. Lin and J.S. Vitter, “Complexity Results on Learning by
Neural Nets,” Mach. Learn., vol. 6, no. 3, pp. 211-230, 1991.

153

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

