
Facilitating KMS Reusability by XML Binding Model*

Sheng-Tun Li

Institute of Information
Management

National Cheng Kung
University

No.1, Ta-Hsueh Road,
Tainan 701, Taiwan

stli@mail.ncku.edu.tw

Huang-Chih Hsieh
Department of Information

Management, National
Kaohsiung First University

of
Science Technology
2 Juoyue Rd. Nantz

District, Kaohsiung 811,
Taiwan

jack@ai.nkfust.edu.tw

Shu-Ching Chen
Distributed Multimedia

Information System
Laboratory

School of Computer
Science

Florida International
University

Miami, FL 33199, USA
chens@cs.fiu.edu

Mei-Ling Shyu
Department of Electrical &

Computer Engineering
University of Miami

Coral Gables, FL 33124,
USA

shyu@miami.edu

Abstract - Since knowledge management becomes an
important issue, knowledge management system (KMS) plays
a crucial role to enhance the performance of knowledge
management. It is a difficult work to build a KMS from
scratch. In order to facilitate KMS reusability, we propose a
scheme based on XML binding technology which can
automatically generate the knowledge management
components so that one may reengineer the system to
accommodate with different requirements of other domains. *

Keywords: Knowledge Management System, reusability,
XML Binding Model, JAXB

1 Introduction

Knowledge management (KM) is a complex problem
and is related to many issues, such as socio-organizational,
financial, economical, technical, human, and legal concerns
[1]. The basic activities of KM include identification,
acquisition, development, dissemination, use, and
preservation of the enterprise’s knowledge [2]. No matter
what process is, the objective of KM is to promote
knowledge growth, knowledge communication and
knowledge preservation in an organization [3]. In order to
achieve this goal effectively and efficiently, the information
technology has been considered as an active enabler of KM
[4], and there exist different KMS in facilitating the activities
of KM [5][6][7].

Since knowledge is treated as an important asset of
enterprise, knowledge management system (KMS) becomes
a crucial enabler to facilitate the activity of knowledge
management. To build a complete knowledge management
system is a difficult and arduous task, and it is very time
consuming. The question arises whether we can construct a
new KMS that is based on existing KMS, or to apply existing
KMS to other industries. However, it is not an easy task
because of the different characteristics of domain knowledge.

*  2003 IEEE

Before we apply existing KMS to other industries, we
have to understand the type of KMSs. According to [8],
KMS can be classified into two models: Model 1 KMS is for
routine and structured information processing; Model 2 KMS
is for non-routine and unstructured sense making. The goal
of Model 1 KMS is “getting the right information to the right
person at right time”. In short, model 1 KMS is based on
doing the thing right. In model 2, the KMS can be
characterized as intelligence in action, such as attention,
motivation, commitment, creativity, and innovation. Usually,
model 1 KMS reusability is higher than model 2 KMS due to
routine and structured information processing. Although
model 1 KMS has high reusable, system developers still need
to spend many efforts to redesign the existing KMS parts in
order to fit into the new KMS for other industries. In this
study, we developed a KMS that belongs to model 1 KMS,
and we proposed a XML binding technology scheme which
can automatically generate the knowledge management
components so that one may reengineer the system to
accommodate with different requirements of other domains.

The remaining parts of this paper are organized as
follows. Section 2 gives an overview of developed system.
The XML binding technology is briefly introduced in section
3. Section 4 describes the XML binding model in this study.
The system demonstration is sown in section 5. Section 6
makes a conclusion.

2 System Overview
A knowledge entity can be treated as a knowledge object

(KO). KOs can be numerical data, text streams, validated
models, meta-models, movie clips, or animation sequences
[9]. Since enterprises are interested in the integration of
existed knowledge bases [10], how to integrate and share
KOs among different KMS is in great demand and is a
challenge task. In the literature, metadata has been widely
used in the integration of existing knowledge bases [11]
whereas the ontology has been considered as a meta-level
description of knowledge presentation [12].

Figure 1. The architecture of knowledge management system

In this study, the goal of the proposed KMS is to assist

users in sharing, searching, and managing knowledge
objects. We make use of ontology to enhance the
performance of knowledge search. In our study, ontology is
classified into the information ontology and the domain
ontology so that the semantic match of knowledge search can
be realized. The information ontology is a meta model that
describes knowledge objects and contains generic concepts
and attributes of all information about knowledge objects,
such as the title, authors, date, keywords, and other related
information. The domain ontology consists of the concepts,
attributes and instances of one industry. The purpose of
domain ontology is to achieve the objective of semantic
match when searching for knowledge objects.

The architecture of proposed system is shown in figure
1, which is composed of three layers: Presentation Layer,
Business Logic Layer, and Data Layer. Due to space
limitation, only the kernel components and the design
philosophy of the system will be discussed.

KOManager component is a Java session bean that can
create, share, browse, and remove knowledge objects. Once
knowledge objects has been altered, information ontology
also has been modified by IOManager that is based on JAXB
(Java Architecture for XML Binding) [13] technology, to be
discussed in next section. For knowledge searching, the
KOSearch component provides an ontology-based search
engine, which can search the domain and information
ontology base through the DOManager and IOManager
components, JAXB, and the KAON Service [14]. The
KAON Service provides APIs to access domain ontology

base. The search approach of the KOSearch component
provides two models: the information-ontology that searches
knowledge objects by keyword exact-matching and the
domain-ontology that expands the keyword by the domain
ontology.

The proposed system is developed under a cooperation
project of industry and academia. The objective of this
project is to introduce knowledge management to Metal
Industries Research & Development Centre (MIRDC), a non-
profit organization established in October 1963 for
researching and developing the leading technology of metal
and its related industries in Taiwan. When we apply this
system to other industries, the system developers have to
redesign the KO management components and information
ontology. It is a tedious work. Thus, we proposed a scheme
based on XML binding technology to facilitate the KMS
reusability.

3 XML Binding Technology
There are two standard binding solutions of XML,

namely, the Simple API for XML (SAX) and the Document
Object Model (DOM) API. The parsing approach of SAX is
even-driven, and it does not store data in memory so that it is
appropriate for high-speed processing of XML. DOM, on the
other hand, allows an application to manipulate the content in
memory because it produces a presentation of the data in
memory. However, both SAX and DOM programmer must
provide necessary extra code to handle XML data, it might
be complicated, error-prone, and difficult to maintain. If we
could simply bind an XML document to an object, it would

be much easier to write XML-enabled programs, and the
programmer does not take care of how to parse XML data
anymore. The vision is realized by Java Architecture for
XML Binding (JAXB).

Source
Schema

XML/Java
Customization

Binding Declarations

Binding
Compiler

Schema Derived
Interfaces,

Factory Methods

Package
javax.xml.bind

Implementation
classes, helper

classes, ...

Binding
Framework

Implementation

Application Code

Application

Figure 2. JAXB architecture overview [15]

JAXB is released by Sun Microsystems Inc, which
provides java developers an efficient and convenient way of
mapping between XML and Java code. Figure 2 shows the
architecture of JAXB. In the left hand side, The Source
Schema describes the relationships among elements,
attributes and entities in XML document. The binding
declarations are rules to generate a set of Java codes. When
the default binding rules are insufficient for developers need,
JAXB supports customizations and overrides to default
binding rules. The core of JAXB architecture is the Binding
Compiler, which could transform or bind a source XML
schema to a set of JAXB content classes. Finally, schema-
derived classes and interfaces with necessary Java packages
are generated by JAXB binding compiler in the right hand
side.

4 XML Binding Model for Knowledge
Objects

In this study, we define the information ontology as the
knowledge object meta-data that makes knowledge objects
easy to be understood and read. The most popular markup
language of metadata is XML, and it is an industry-standard
and system-independent way to present data. Thus it can be
seen, XML is appropriate for implementing I nformation
ontology, and it can facilitate the exchange of knowledge
objects between KMSs.

Since Sun Microsystems Inc. releases JAXB, dealing
with XML documents becomes an easy work. JAXB
provides a fast, convenient way to create two-way mapping
between XML documents and Java objects. The developer
gives a XML schema which specifies the structure of XML
data, the JAXB compiler could generate a set of Java classes
according to the specified XML schema. Then, the developer
does not need to take care of complex parsing and processing
code any more. In this study, we make use of JAXB to
manipulate information ontology. Although JAXB provides a
convenient way to bind XML data to Java objects and the
KMS developer could easily deal with XML data, the KMS
developer still need to spend many efforts to rewrite KO
management component when applying existing KMS to

other industries. In order to facilitate the reusability of KMS,
we also propose a scheme based on XML/Java technologies
which can automatically generate the KO management
(KOM) components so that one may reengineer the system to
accommodate with different requirements of other domains.

The following subsections give details of the proposed
scheme. The XML schema of knowledge object is described
in section 4.1. Section 4.2 shows the framework of XML
binding model. The proposed scheme of automatic
component generation is explained in section 4.3.

4.1 XML Schema of Knowledge Object Base
As mentioned previously, information ontology is meta-

data of knowledge objects, and we will bind information
ontology to Java objects by using JAXB. At first, the system
developer specifies the XML schema of knowledge object
(KO) base. The parts of XML schema this study specifies is
shown in Figure 3. As Figure 3 indicates, a KOBase element
contains the Usage element whose type is string, the Owner
element whose type is also string, and the unbounded KO
element whose type is KnowledgeObject. The
KnowledgeObject type, here, is the so-called information
ontology which contains fifteen elements to describe the
information of knowledge objects. Following, the JAXB
compiler can compile this XML schema and generate Java
classes that bind to information ontology. Finally, the system
developer can easy manipulate and maintain information
ontology.

<xsd:schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
jxb:version="1.0">
...
<xsd:complexType name="KOBase">
 <xsd:sequence>
 <xsd:element name="Usage" type="xsd:string"/>
 <xsd:element name="Owner" type="xsd:string"/>
 <xsd:element name="KO" type="KnowledgeObject"
maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="KnowledgeObject">
 <xsd:sequence>
 <xsd:element name="identifier" type="xsd:string"/>
 <xsd:element name="title" type="xsd:string"/>
 <xsd:element name="author" type="xsd:string"

minOccurs="0" maxOccurs="unbounded"/>
… skip …
 </xsd:sequence>
 <xsd:attribute name="shareable" type="xsd:boolean"
default="false"/>
</xsd:complexType>
</xsd:schema>
Figure 3. The part of XML schema of knowledge object base

Figure 4 shows the use cases diagram of parts of the
generated Java classes in the UML. It is obvious that the
generated Java classes are fully mapped to XML schema, and
they provide complete and convenient methods to access KO
base. The ObjectFactory class is a major Java class of JAXB,
which is responsible for creating instances of schema-driven
Java classes. The KOBase and KnowledgeObject classes are
Java interfaces that specify the get/set methods to manipulate
XML documents, and they are mapped to XML schema of
knowledge object base. Because the generated Java classes
can deal with XML documents, the system developer does
not endeavor to write complex and tedious codes to handle
KO base and can concentrate on domain processes.

Figure 4. Use case diagram of information ontology

maintainer

4.2 XML Binding Model
Since we can simply bind XML documents to in-

memory objects, it is much easier to write XML-enabled
programs. Figure 5 shows the framework of XML binding
model in this study. The framework can be divided into three
layers: domain application, Java objects, and XML
documents. The mapping between Java objects and XML
documents is relied on the JAXB technology. In JAXB
technology, there are two major processes to take care of the
translation between Java objects and XML documents:
marshalling and unmarshalling processes. Marshalling Java
objects means converting Java objects to XML documents.
On the contrary, the process, turning XML documents to
Java objects, is named unmarshalling process. After
unmarshalling process, whole KOBase is mapped to in-
memory Java objects, and the KOM components in domain
application layer can manipulate XML documents through
the in-memory KOBase and KnowledgeObject. Finally,
marshalling process converts in-memory Java objects to
XML format and stores in repository.

Although the binding model is efficient and convenient
for manipulating XML documents, the KOM components
lack flexibility to apply to other domains. The system

developer must re-design the KOM components if we deploy
the system to other industries. In order to reduce
complication and error-proneness of development and to
facilitate reusability of the system, we propose a scheme that
can automatically generate the KOM components. The
details will be discussed in next subsection.

KOM Components

KOBase

KOBase

KO

identifier title right
KO KO

getIdentifier()
setIdentifier()
getTitle()

� ..
setRight()

KnowledgeObject

getIdentifier()
setIdentifier()
getTitle()

� ..
setRight()

KnowledgeObject

getIdentifier()
setIdentifier()
getTitle()

� ..
setRight()

KnowledgeObject

m
aping

m
apping

PKOManager CKOManager KOSearch

m
apping

XML
Documents

Java
Objects

Domain
Application

unmarshalling
marshalling

Figure 5. The Framework of XML Binding Model

4.3 A Scheme of Automatic Component
Generation

The development of a new KMS is a time-consuming
and laborious task, and the lack of generic KMS and the
different characteristics of domain knowledge make it
difficult to apply existing KMS to other industries. To
remedy such limitations, we follow the design philosophy of
component reusbility in developing the proposed KMS. In
particular, we propose a scheme based on XML/Java
technologies which can automatically generate the KO
management (KOM) components so that one may reengineer
the system to accommodate with different requirements of
other domains.

Figure 6 shows the conceptual architecture of the
proposed scheme. System developer defines a meta-schema
description (MSD) for describing the format of the
information ontology. The Component Generator reads the
description of meta-schema via the MSD Parser, which is
generated by JAXB, following, the parser binds to the
description of meta-schema. The description of meta-schema
that is a XML file contains the format of a KO, the
description of JavaBean template, and the description of JSP
template. The Component Generator, first, produces the
Information Ontology XML Schema that defines format of
information ontology, and then the Component Generator
externally executes the JAXB compiler which will read the
Information Ontology XML Schema for generating the Java
source code of Information Ontology Maintainer. Next, the

Component Generator invokes the JBGenerator and the
JSPGenerator according to the description. JBGenerator is
responsible for reading JavaBean Template base and
generating Java beans that are in charge of the management
of knowledge object base. The knowledge object base,
KOBase, is a repository whose contents are adherent to the
XML format. The KOBase Manager manages the KOBase

via the Information Ontology Maintainer component, and
they are compiled into a Java package, named KOM Java
Package which is to be deployed in the business logic layer
mentioned in Figure 1. On the other hand, JSPGenerator is
responsible for generating Java server pages that are the user
interface in the presentation layer of Figure 1 according to
the JSP Template base.

MSD Parser

JSP
Template

base

JavaBean
Template

base

Meta Schema
Description

JBGenerator

JSPGenerator

JAXB Compiler Java Compiler

KOM
Java Beans

Information
Ontology

XML Schema

Information
Ontology

Maintainer
(Java Code)

KOBase
Manager

(Java Code)

KOM UI
(JSP)

KOM
Java Package

object developed in this
study

automatically generated
object

vendor-provided
object

KOM Generator
Components in

Presentation Layer

Information
Ontology

Components in
Business Logic Layer Data Layer

database

Component
Generator

MSD

produces

Figure 6. A scheme for automatic component generation

Figure 7 and 8 show an example of meta-schema

description and JavaBean template. There are three major
parts of meta schema description. First part is
<InformationOntology> tag that specifies XML schema of
information ontology. Second part describes what and where
elements should be filled in. As shown in Figure 7, the Title,
Author, and others elements should be filled in actions 1 and
3 in KOBean.tpl template file. An example of action is
shown in Figure 8, which is a part of template code of
KOBean.tpl. Last part is the description of JSP template that
is similar to JavaBean template. Therefore, the system
developer could only specify the meta schema description to
automatically generate KOM components and then can
reduce the complication and error-proneness of development.

<KOM>
 <InformationOntology>

 <Element name="identifier" type="string"/>
 <Element name="title" type="string"/>
 <Element name="author" type="string"

minOccurs="0"
maxOccurs="unbounded"/>

 </InformationOntology>
 <JavaBean>
 <Template filename="KOBean.tpl">
 <Action Id="1, 3">
 <Element>Title</Element>
 <Element>Author</Element>
 <Element> … </Element>
 </Action>

 </Action Id="2, 4">
 <Element> ... </Element>
 </Action>
 <ForAllElement>
 <Action Id="A">
 <Except> Identifier </Except>
 </Action>
 <Action Id="B"/>
 </ForAllElement>
 </Template>
 </JavaBean>
 <JSP>
 <Template filename="create.tpl">
 …
 </Template>
 </JSP>
</KOM>

Figure 7. The meta schema description of automatic
component generation

…
 public KOBean(KnowledgeObject ko) {
 koHashtable = new Hashtable();
 <Action id=1>
 putToHashtable("<Element>", ko.get<Element>());
 </Action>
 <Action id=2>
 putToHashtable("<Element>",
List2String(ko.get<Element>()));
 </Action>
 shareable = ko.isShareable();
 }
…
 <ForAllElements Id="B">
 public String get<Element>() {
 return (String)koHashtable.get("<Element>");
 }
 public void set<Element>() {
 putToHashtable("<Element>", <Element>);
 }
 </ForAllElements>
…

Figure 8. A example of JavaBean template

5 System Demonstration
So far, we already developed a prototype of ontology-

based knowledge management system, which runs on JBoss-
3.0.3_Tomcat-4.1.12 EJB server in SUN Ultra 10
Workstation. The snapshots of system demonstration are
shown in Figures 9, 10, and 11.

Figure 9 is the entry point of the system. User has to
login the system first as an individual member or group
member, and then start to engage in the activities of
knowledge management including creating, editing,
browsing, and searching knowledge objects. The creation of
knowledge object with information ontology is shown in

Figure 10, which is for system administrator. As Figure 10
indicates, user needs to select a knowledge object in advance,
and then fills up the information ontology. Finally, the
knowledge object and information ontology will be
submitted to server and saved in common knowledge base
and information ontology base.

Figure 9. The entry of knowledge management system

Figure10. Building a knowledge object with information

ontology

As section 4 discussed, the system can be easy applied to
other industry as shown in figure 11. It is obvious that
information ontology is different between figure 10 and
figure 11. Thus it can be seen that one may easy reengineer
the system to accommodate with different requirements of
other domains by proposed scheme in this study.

Figure 11. Applying to other industry

6 Conclusions
In this study, we developed a KMS for metal industry in

Taiwan. It is a difficult task to develop a KMS from scratch.
In order to enhance the reusability of KMS, we proposed a
scheme that can automatically generate KOM components to
reduce the overhead in developing this KMS and increase its
applicability to other domains. In addition, the XML binding
model for knowledge object can facilitate the readability and
exchangeability of KOs. That is to say, the KMS can easily
get the information of KOs and does not arduously parse
KOs, and it is very convenient to exchange KOs between
KMSs.

7 Acknowledgements
This work presented was in part supported by Metal

Industries Research & Development Center, Taiwan, under
contract number 91B00021.

Reference
[1] J.-P. Barthés, “ISMICK and Knowledge Management,”

In J. F. Schreinemakers ed, Knowledge Management:
Organization, Competence and Methodology, Proc. Of
ISMICK’96, Rotterdam, the Neth., Wurzburg:Ergon
Verlag, pp. 9-13, 21-22 October, 1996.

[2] A Abecker, A. Bernardi, K. Hinkelmann, O. Kühn, and
M. Sintek, “Toward a Technology for Organizational
Memories,” IEEE Intelligent System, pp. 40-48, 13,
May/June, 1998.

[3] L. Steels, “Corporate Knowledge Management,” Proc.
Of ISMICK’93, Compiégne, France, 1993, pp. 9-30

[4] A. Okunoye and H. Karsten, “IT as Enabler of
Knowledge Management: Empirical Perspective from
Research Organisations in Sub-Saharan Africa,” 35th
Annual Hawaii International Conference on System
Sciences (HICSS'02), 04, 07-10 January, 2002.

[5] S. S. R. Abidi, “Knowledge Management in Healthcare:
Towards ‘Knowledge-Driven’ Decision-Support
Services,” International Journal of Medical Informatics,
63, 2001, pp. 5-18

[6] J.-P. A. Barthès and C. A. Tacla, “Agent-Supported
Portals and Knowledge Management in Complex R&D

Projects,” Computers in Industry, vol. 48 (1), 2002, pp.
3-16

[7] K.W. Chau, C. Chuntian, and C.W. Li, “Knowledge
Management System on the Flow and Water Quality
Modeling,” Expert System with Applications, vol. 22 (4),
2002, pp. 321-330

[8] Y. Malhotra, “Why Knowledge Management Systems
Fail? Enablers and Constraints of Knowledge
Management in Human Enterprises,” In Holsapple, C.W.
(Ed.), Handbook on Knowledge Management 1:
Knowledge Matters, Springer-Verlag, Heidelberg,
Germany, 2002, pp. 577-599.

[9] H.R. Nemati, D.M. Steiger, L. S. Iyer, and R.T. Herschel,
“Knowledge Warehouse: an Architectural Integration of
Knowledge Management, Decision Support, Artificial
Intelligence and Data Warehousing,” Decision Support
Systems, Vol. 33, 2002, pp. 143-16

[10] A. Waterson and A. Preece, “Verifying Ontological
Commitment in Knowledge-based Systems,”
Knowledge-Based System, vol. 12, 1999, pp. 45-54

[11] A. Tiwana and B. Ramesh, “Integrating Knowledge on
the Web,” IEEE Internet Computing, Vol. 5, No. 3,
2001, pp. 32-39

[12] N. Guarino, “Understanding, Building, and Using
Ontologies: A Commentary to Using Explicit Ontologies
in KBS Development by van Heijst, Schreiber, and
Wielinga,” International Journal of Human and
Computer Studies, 46, 1997, pp. 293-310

[13] Sun Microsystems Inc., Java Architecture for XML
Binding. Available: http://java.sun.com/xml/jaxb

[14] The University of Karlsruhe, The Karlsruhe Ontology
(KAON) tool suite. Available:
http://kaon.semanticweb.org/

[15] Sun Microsystems Inc., The Java Architecture for XML
Binding (JAXB) User’s Guide. Available:
http://java.sun.com/xml/docs.html

