
Information Reuse and System Integration in the
Development of a Hurricane Simulation System*

Shu-Ching Chen1, Shahid Hamid2, Sneh Gulati3, Guo Chen1, Xin Huang1, Lin Luo1,

Chengjun Zhan1, Chengcui Zhang1
1Distributed Multimedia Information System Laboratory, School of Computer Science

Florida International University, Miami, FL 33199, U.S.A.
{chens, gchen01, xhuan001, lluo0001, czhan002, czhang02}@cs.fiu.edu

2Department of Finance, Florida International University,
Miami, FL 33199, U.S.A.

hamids@fiu.edu
3Department of Statistics, Florida International University,

Miami, FL 33199, U.S.A.
gulati@fiu.edu

* 2003 IEEE

Abstract - This paper presents our effort in designing
and implementing an advanced hurricane simulation
system on the platform of the World Wide Web for the
purpose of supporting decisional processes and hazard
mitigation. The development of the system is based on
amalgamated methodologies which come from diverse
disciplines and is an integration of a variety of
techniques. Superior to other similar systems in hurricane
study, our system assembles and utilizes information and
techniques in a more flexible and robust manner by
taking advantage of system layering technique,
component modeling strategy and database technologies.
Preliminary experiments have been conducted to
demonstrate the performance of the system.

Keywords: Information reuse, component-based design,
system integration, hurricane simulation.

1 Introduction
 Hurricanes are one of the most devastating and costly
natural perils in the U.S. Their accompanying hazards
such as storm-driven surge and hurricane-forced wind can
further aggravate the destructive power, and consequently
incur tremendous property damage and loss of life [8]. For
instance, the insurance industry was totally shaken to the
tune of $15.5 billion losses caused by Hurricane Andrew
[20]. In fact, hurricanes and tropical storms accounted for
the major share of all property insurance losses in the past
years.
 Due to hurricanes’ vast potential to incur property
damage and loss of life, it is imperative that public,
property insurance industries and related government
agencies can be informed of the future occurrence of
hurricanes and consequently are aware of hurricane related
damages.

 Quite a few research works have converged in this
area and resulted in a number of models and tools to
address this issue in both the commercial and public
domains. The most notable commercial products include
RISKLINK [12], AIR [2], ARA [3], CATALYST and
USWIND [7]. Generally, most of those models utilize data
from standard hurricane data resources, and have
functional modules which can perform hurricane forecast,
wind field modeling, damage assessment and financial loss
estimation. HAZUS (Hazards, U.S.) [9], developed by
Federal Emergency Manage Agency, is one of the most
well known methodologies which exist in public domain.
Originally, HAZUS was developed to reckon potential
losses from earthquakes and gradually has been extended
into a multi-hazard methodology with support for wind
and flood hazards. HAZUS has been extensively used for
the purpose of natural hazard loss estimation, mitigation
and emergency preparation.
 Although these models have been widely employed
and produced promising results, they do have the
following disadvantages:
1. Poor data management and data reuse. For data-
intensive applications like hurricane risk and loss
simulation, the following characteristics hold: a) a
tremendous amount of historical and simulated data are
required, b) the data needs to be stored and integrated in a
structured and meaningful way, c) the data needs to be
processed and accessed efficiently. However, most of the
abovementioned systems do not apply real database
management techniques. Their so-called databases are
merely served by groups of data sets that are stored in the
format of text files.
2. Insufficient system portability and flexibility.
Most of the software is written in Fortran or C/C++.
Although they are powerful languages suitable for

engineering and scientific applications, Fortran and C++
provide no or only low-level source code portability due
to their semantic looseness. Therefore, cross-platform
migration of the applications is inconvenient or even
impossible. A lot of effort is required to achieve the
purpose and usually unpredicted errors are introduced.
3. Limited accessibility. Most of the products exist as
stand-alone systems. The associated software has to be
installed and run on every single machine. The access
capacity is limited and it is inconvenient for information
exchange and resource sharing.
 Our system has been designed and implemented
considering all of the aforementioned issues. In our
system, advanced database management and modeling
techniques are employed to facilitate the data reusability
and manageability, and diverse system building languages
are explored and assembled together to achieve system
integration flexibility and efficiency, specifically Java is
utilized as the major programming language for its
promise of portable applications. To support universal and
extensive accessibility, Internet platform is selected to
serve as the running environment for our system.
 The rest of the paper is organized as follows. Section
2 briefly introduces the envisioned system from the system
integration perspective. The database design, specifically
the database reuse is discussed in Section 3. In Section 4,
the advantage of techniques and components reuse is
illustrated through the design and implementation of a
subsystem. System performance is analyzed in Section 5.
Finally, Section 6 concludes this paper.

2 System Integration
 The system is to be used for reckoning hurricane risk
and loss simulation. Such a system is complicated because
of the following issues that need to be addressed: 1)
experts knowledge and techniques from various domains
such as meteorology, civil engineering and insurance, need
to be seamlessly integrated into the system; 2) statistical
rationales and mathematical computing modules are
indispensable for the target system, due to the requirement
of enormous amount of data for simulation and the fact
that there is not enough historical-referenced data
available; and 3) efficient approaches and strategies are
required to be incorporated into the system to store, model
and manipulate the huge volumes of heterogeneous data.

2.1 System Architecture Selection

 Almost all the applications must be equipped with
functionalities that display the interactive user interface,
perform the main application logic, and store/retrieve data.
Although it is possible for all the tasks to be interwined
together within a single module, such an approach is not
preferable due to its high difficulties in maintenance and
deployment. The architecture employed in our system is
derived from the advanced three-tier architecture for its

elegant support in building robust, sharable and extensible
applications.
 The three-tier architecture technology is one of the
most widely used application development architecture. Its
attraction lies in the idea of separating the main tasks into
different layers, and allows the efficient construction of
robust and extensible systems. The essential tiers of the
three-tier architecture are the user interface tier, the
application logic tier and the database tier. Their major
functionalities are briefly summarized as follows:
User Interface Tier: The user interface tier comprises the
entire user experience. This layer provides a graphical
interface to the users for them to interact with the
application, to perform task such as input data and view
the results of the requests. It also handles the data
manipulation and formatting once the client receives the
resulting data from the server.
Application Logic Tier: The application logic tier
realizes all the functionalities of the system. Application
logic and control coordination are performed in this tier.
Application logic can be shared among services with
different user interfaces.
Database Tier: The database tier manages the storage of
data, raw data processing and the access to the data.

2.2 System Environment Selection

 From the service-providing point of view, the system
needs to: 1) provide service to various groups of users
with different domain knowledge. Some groups of users,
such as meteorologists, have certain knowledge
background. Some groups of users do not, for example,
the residents who are interested in knowing hurricane
projection, and the occasional web surfers who visit the
application site by chance; 2) provide hurricane risk and
loss estimation in a fast and convenient manner to the
users. The simulated results should be distributed quickly
and widely so that people can benefit from the system.
 It is natural to prototype the target system in a web
environment. Firstly, Internet is known for its tremendous
capability in information transmitting and exchange, which
suits our system requirement of fast distribution of the
simulation results. Secondly, if designed and implemented
appropriately, web applications are able to encapsulate
complicated technical details and such an ability meets our
intention to serve the general-purpose users as well as the
expert users. Another advantage of Internet is that there is
no need for additional hardware/software installation at
the client side in most cases, which is also very valuable
for our system.

2.3 System Deployment

 The system is prototyped as a web-based system.
Figure 1 depicts the overall architecture of our system.
The users access the system via a conventional web
browser such as Internet Explorer or Netscape Navigator.

System functionalities are provided using Java Beans.
Oracle Database serves as the database tier.

SSL Response
Beans
Java

JDBC

JNI

Oracle9i Database

IMSL Statistical and Mathematic Library

Browser

Browser

Browser
HTTP Response

HTTP Request

SSL Request

HTTP Response

JSP

HTTP Request

Figure 1. Illustration of the Overall System Architecture

2.3.1 Utilized Technologies

 There are a variety of technologies utilized in the
system. Detailed information is summarized in Table 1.

 Table 1: Summary of Utilized Technologies
 Technologies
Front End HTML
Server Side JSP script
Middleware Java Beans
RDBMS Oracle 9i
Application Server Oracle 9i AS
Mathematical Lib IMSL C++ Version
Back End JDBC, JNI

2.3.2 System Architecture Deployment

 The system is designed and deployed with respect to
the three-tier architecture.

User Interface Tier

 The user interface (web page) is rendered
automatically via Java Server Pages (JSP) scripting
language [5][18]. JSP technique [5][18] can easily and
flexibly generate dynamic content of web pages. The basic
idea of JSP is to allow Java codes to be mixed together
with static HTML or XML templates. The Java logic
handles the dynamic content generation while the markup
language manages the layout.
 The user interface contains both the HTML
components to collect the information and the HTML
components to display the results. Components
responsible for collecting the information, such as control
buttons and combo boxes, can obtain user input and
requests. The information-displaying components, for
example text fields, display the results returned by the
system. Information transmission between the clients and
the server are governed via application-level protocols
such as HTTP and SSL. Moreover, the Java Applet
technique is exploited as well to make the web page vivid.

Application Logic Tier

 The application logic tier bridges the gap between
the user interface tier and the underlying database tier. An
Oracle9i Application Server (Oracle9i AS) is deployed in
the system that provides quality of services such as
security and persistence services. Its OC4J container
embeds a web server that responds to events such as data
receiving, translating, dispatching and feed-backing
[6][19]. Functional components in this tier receive the
requests from the interface tier and interpret them into
apropos actions controlled by the pre-defined work flow in
accordance with certain pre-defined rules.
 Java Beans perform the appropriate communication
and calculation activities such as storing/retrieving
information to/from the database, carrying out necessary
computing work with respect to proper statistical and
mathematical models. For the sake of performance,
complex computation tasks are actually achieved by using
C/C++ codes that are seamlessly integrated into the
corresponding Java codes via the JNI (Java Native
Interface) mechanism [4]. In addition, JDBC [11] is
utilized to allow the access from Java Beans to the
underlying physical database.

Database Tier

 The database tier is responsible for modeling, storing
hurricane information, and optimizing the data accesses.
In our system, the object-relational concept is applied to
model the spatial-temporal data for hurricane tracking.
Hence, an oracle9i database is deployed in our system and
acts as the database tier.

3 Database Information Reuse
 Hurricane data used in this system are imported from
the North Atlantic “best track” HURDAT [10]. Currently,
this data set has been extended from 1851 to 2000. One
problem with the original data representation of the storm
tracks of the Atlantic basin is that they are manually
recorded in the text files, and there is no unified format for
the data entries. As a consequence, the contained
hurricane track information cannot be efficiently analyzed
nor fully utilized. In order to overcome this obstacle and
to facilitate the information reuse, we processed the
original data and populated it into the Oracle9i database.
Several programs in a variety of programming languages
(C++, Java, etc.) are developed to automate the processing
and the populating tasks.
 When selecting the suitable database management
system (DBMS) for this system, we take into account the
scalability of the database. For each storm, there is a
collection of tracking records to keep its spatio-temporal
trajectory and strength during its lifecycle. The landfall
information also needs to be stored. Considering that the
tracking data for one hurricane may contain more than one
hundred records, the small-scale and mid-scale DBMSs,
such as MySQL and Microsoft Access, are not suitable for

managing such a large-scale database. Instead, an Oracle9i
database is deployed in our system due to its efficient data
management for large-scale databases. An object-
relational database schema is designed to facilitate the
data reusability and manageability. The major advantage
brought by the object-relational concepts is the ability to
incorporate higher levels of abstraction into our data
models; while current relational databases are usually
highly normalized models but with little abstraction.

3.1 Object-Relational Schema for Hurricane
Database

 Figure 2 shows an overview of the basic structure of
hurricane tracking data. As can be seen from this figure, a
storm may last from 1 up to N days. On each day, there are
4 fix points (0 am, 6 am, 12 noon, 6 pm) recording the
locations and strength of that specific storm at a specific
time instance. In addition to the basic information, landfall
information, such as the landfall states and the
corresponding storm categories, are also recorded. In
HURDAT, the maximum number of lasting days is 35,
while the maximum number of landfall states is 4 for some
storms. Figure 3 depicts the overview of the major part of
the hurricane database schema.

Figure 2. Hierarchy of Hurricane Tracking Data

 For example, the object table, Atmosevent_list, is
used to hold the high-level information for storms and
hurricanes (atmosevent). Such information includes the
storm_id, begin_date, category, storm_name, etc. As for
individual fix points, the table, Stormfix_list, is used to
store the fixes for all the atmosevents. A specific fix
record is related to its corresponding storm via a foreign
key event_id or via a reference field for_event, which
refers to an Atmosevent object. By using the reference
concept in ORDBMS (Object-relational database
management system), it is straightforward to access a
storm's abstract information while accessing only one of
its fix records without the explicit JOIN operation. The
table, Landfall, is used to store the landfall information for
storms. Since a storm may make several landfalls, we
embed a nested table, Landfall_obj, for each storm to hold
the various numbers of landfalls that the storm may make.
In this way, it is very easy to retrieve all the landfall
information for a specific storm. Based on this object-

relational schema, there are also some user defined
procedures (UDP) in the ORDBMS. Applications can
access the data directly or via UDPs. Sometimes, in order
to achieve some level of domain-transparency, UDPs are
more preferred. Intensive schema-driven optimization
work has also been done on the SQL queries, which has
greatly improved the system performance. Our system was
extensively tested by the professionals at Florida
International University, Florida Institute of Technology,
and Hurricane Research Division at NOAA in Miami, and
the results were satisfactory.

Figure 3. Database Schema

3.2 Database Query Performance Tuning

 The performance of the database, especially the
performance of database queries, is the main factor of
consideration during the design of the entire system. The
query language for our database is Structural Query
Language (SQL). Retrieving, querying and updating the
database are achieved by the embedded SQL statements.
Although SQL is a relatively easy language, its non-
procedural nature tends to obscure the performance-
related issues. Since the databases used in this project are
expected to be extremely large (including hurricane
database, simulation database, insurance loss database,
etc.) and are subject to a great deal of ad hoc query
activities, the query performance of SQL statements
becomes a critical issue.
 Oracle SQL tuning is a phenomenally complex
subject. In this paper, our experience and results in SQL

query tuning for two major subsystems, the Annual
Hurricane Occurrence (AHO) sub-module and Storm
Genesis Time (SGT) sub-module, are reported. In both of
these two sub-modules, hurricane data are grouped into
several pre-defined data sets such as year range (1851-
2000), Multi-Decadal year, and ENSO year, etc. The
major queries for AHO and SGT involve the join
operations with more than two tables. We tune the original
queries by using SQL hints and transforming all the
subquery joins to equal-joins. A large number of
experiments were performed on different data sets at
different times across several days to evaluate the
effectiveness of the tuned SQL statements. Table 2 shows
some experiment results for the execution time for AHO.
In this table, the testing cases are for the year range (1851-
2000), Multi-Decadal year, and ENSO year. The dates for
the experiments are October 15, 2002 (10/15/02), October
17, 2002 (10/17/02), October 28, 2002 (10/28/02), and
November 4, 2002 (11/04/02). The time is measured in
seconds. For example, the execution time for the 1851-
2000 data set on 11/04/02 is 0.05 seconds.

 Table 2: Execution Time of the AHO Queries
 10/15/02 10/17/02 10/28/02 11/04/02

1851-2000 0.03 0.04 0.03 0.05

Multi-Decadal 0.02 0.02 0.01 0.02

ENSO 0.01 0.01 0.01 0.02

 According to our experiments, the execution time of
the SQL queries for AHO has been dramatically reduced
by a factor ranging from 4-30 after SQL tuning, and the
execution time for AHO queries is relatively stable.
However, the execution time for SGT queries is not very
stable due to its complex query structure and the high
network usage. In order to improve its efficiency and
maintainability, we use the stored PL/SQL procedure to
generate an intermediate table containing the first fix
records for all the hurricane data in the database, then the
SGT queries can be performed based on this intermediate
table, avoiding the unnecessary table joins each time when
a user query is issued. The consistency of this intermediate
table with its related original tables are maintained
automatically by a stored database trigger. Table 3
demonstrates our experimental results by using the above
mentioned tuning skill. Based on our experiments, the
performance of SGT queries after tuning have been
improved by a factor greater than 30. Also, since it also
reduces the tables accessed and the consumptions of
computer resources, the performance becomes quite stable
even during the peak usage of network.

 Table 3: Execution Time of the SGT Queries
 10/15/02 10/17/02 10/28/02 11/04/02

1851-2000 1.02 1.00 1.04 1.00

Multi-Decadal 1.01 0.09 1.03 1.00

ENSO 0.08 0.06 0.07 0.06

4 System Design and
Implementation Reuse

 Taking advantage of reusability is a important aspect
for effective and robust application construction. Reuse
can be enhanced at different levels of the development
process such as design schemas, content and even physical
application pages [17]. In this section, we address the
issues pertaining to design schemas and components reuse,
and then exemplify the idea with concrete sub-module
implementation.

4.1 Rationales

 To better explore the reuse issue at all levels during
the development process, it is important to investigate the
system, identify its inherent modularity and relations, and
select the suitable design and programming
methodologies.

4.1.1 System Characteristics

 The major tasks and functionalities of the system can
be divided into four essential modules: (1) the Storm
Forecast Module, (2) the Wind Field Module, (3) the
Damage Estimation Module, and (4) the Loss Estimation
Module. The four modules are related to each other in the
sense that the prior module's output serves as the input for
the following module; while they are also independent of
each other in the sense that each module is self-contained
and designed to perform important tasks of the system
independently.
 The process of handling each module is briefly
described below [16]:
• Login and Authentication: An end user needs to

login with username/password pair in order to access
the system. The system has an authentication
procedure to evaluate the login information.

• Simulation and Computation:
� Retrieve data from database;
� Execute required simulation and statistical

computation procedures;
� Restore necessary results back to the database.

• Result Visualization: Present the simulation results
to the end user.

 The proper separation of system functionalities along
with the similar handling process in each module make it
possible for us to reuse one module's design schema and
implementation codes to the others to a great extent.

4.1.2 Methodology Selection

 Two widespread methodologies have been
investigated. The first one is the pure Object-Oriented
methodology. Object Oriented Programming (OOP)
method has been widely used in the past because of its
ease of use, adaptability, maintainability, and reusability
characteristics. However, OOP does not guarantee

reusability and is unsuitable for large-scale projects due to
the complexity of relations among the objects [21].
 The other one is the Component-based methodology
[13][14]. Unlike OOP, the Component-based methodology
is more suitable for large-scale projects since it enables the
cost-efficient construction of large-scale software systems
by reusing and integrating software components that
already exist [15]. Well-defined software components can
perform specific functionalities and usually are error-
pruned. By reusing the well-developed components,
Component-based methodology provides practical
approaches to reduce the development expense and
increase the productivity. System requirements are
established and analyzed, and then the key software
components are identified. Once the fundamental
component interfaces and interactions have been specified,
the actual application is created based on assembly and
reuse of suitable components.
 Considering the advantages of Component-based
methodology over pure Object-Oriented methodology and
our system requirements, Component-based methodology
is a natural choice.

4.2 Case Study

 Two sub-modules of the system, Annual Hurricane
Occurrence (AHO) and Storm Genesis Time (SGT) are
used as examples to illustrate information and
technologies reuse during the design and implementation.
Both sub-modules come from the Storm Forecast Module.
After carefully investigating the requirements of these
example sub-modules, we identify the fundamental
software components. The development of later sub-
module benefits from the design and implementation of
the preceding sub-module.

4.2.1 Design and Implementation of AHO Sub-module

 The goal of the AHO system is to estimate the
number of hurricanes occurring per year based on an
associated hurricane occurrence probability distribution,
which is obtained through statistical analysis and
calculation of the historical hurricane data sets. Hurricane
data sets are induced by categorizing the available
hurricane data records according to the climate cycles or
qualifications. Different data set selections may
significantly influence the estimation of the probability
distribution, and hence greatly impact the final simulation
results. Several statistical models are applied against the
data set to identify the statistical distribution, which can
best approximate the data set according to the domain
knowledge in meteorology. The identified distribution is
then used to perform the actual simulation and predict the
future number of occurrences [16].
 Five major components are identified for AHO,
which are Authentication, Simulation, Statistical Model,
Visualization and Database. The relationships among them
is shown as Figure 4. Database component is the central
part, both the Authentication and Simulation components

need to communicate with the Database component to
retrieve needed information. The Authentication
component is used to verify user login information. The
Simulation component controls the simulation process and
interacts with the end users. It calls the Statistical Model
component to perform the statistical functionalities and
then uses the Visualization component to graphically
display the results to the end users.
 To implement the above software components,
various underlying techniques and third-vendor packages
are integrated into the system. For example, in the
implementation of the Visualization component, the
Ptolemy Applet package from Berkeley [1] is introduced
because of its strong support for drawing diverse kinds of
figures in the web environment.
 The implementation of AHO sub-module has
completed whereas the web pages are dynamically
generated at runtime. Mathematic models are implemented
in C++ program which is compiled as static libraries
called by the Java Beans. Major Java classes and JSP files
used for AHO are summarized in Table 4. Figure 5 and
Figure 6 show the screen dumps of AHO at running time.

 Table 4: Major Java Beans and JSP Files in AHO
Java Beans/JSP Files Description

SystemLogin.jsp For user authentication

Dataselection.jsp Provide dataset information to proceed

Simulation.jsp Simulation control and interface

Plot.jsp Display graphical results

DataBean Retrieve/store data from/to database

SimuBean Simulation control

PlotBean Result plot handling

Database

 <<Applet>>
 Authentication

 Statistical
 Model

 Simulation

 <<Applet>>
 Visualization

Figure 4. Component Diagram for AHO

Figure 5. Snapshot of the Running Interface for AHO:

Simulation Specification

Figure 6. Snapshot of the Running Interface for AHO:
Simulation Result

4.2.2 System Design and Component Reuse of SGT From
AHO

 SGT aims to model the genesis time of the hurricanes
which is defined as the first fix data of the storm [16]. The
basic idea is to analyze and model the occurrence pattern
of the intervals of the genesis time of the hurricanes. Once
being identified, that pattern is used to predict the time
intervals of future storms, and then the storm genesis time
of each storm can be predicted as well.
 The two sub-modules SGT and AHO are similar
except the actual statistical models are different. Hence,
the major parts of the design and components of AHO
could be reused. Basically, SGT contains similar
components as those in AHO, where none or very few
changes are needed for the Authentication, Simulation,
Database and Visualization components. As shown in
Table 5, major Java Beans and JSP files of SGT are very
similar to those of AHO. As a matter of fact, the JSP pages
for User Login are simply the same as in AHO while the
Java Beans and JSP files for data retrieval and simulation
need merely slight modification compared to that of AHO.
 Benefited from the functionalities separation of
three-tier architecture and the reuse of Component-based
developing methodology, both cost and time for
implementing SGT are reduced.

 Table 5: Major Java Beans and JSP Files in SGT
Java Beans/JSP Files Description

SystemLogin.jsp For user authentication

SGTDataselection.jsp Provide dataset information to proceed

SGTSimulation.jsp Simulation control and interface

SGTDataBean Retrieve/store data from/to database

SGTSimuBean Simulation control

5 Performance Analysis
 Experiments have been conducted to evaluate the
system performance. Since the ability to handle high
request rate and intense accesses is of most importance to
Internet-based data-intensive systems, the target system is

evaluated with respect to its response time and access
capabilities under the circumstances of simultaneous
multi-user access scenarios.
 In our experiments, AHO and SGT are used as
testbed. Test cases are designed to simulate 1 user access
scenario, 10 user access scenario and 100 user access
scenario respectively under normal traffic network
condition using different input parameters, such as
different historical hurricane datasets, different number of
simulations, etc. For the multi-user access scenario, the
results are averaged. For example, for the 100 user access
scenario, the average system response time for the 100
users is used as the results. In our experiments, all test
cases are repeated ten times.

7400

7600

7800

8000

8200

8400

8600

8800

1 2 3 4 5 6 7 8 9 10

Sequence Number

Sy
st

em
 R

e
sp

o
ns

e
T

im
e

(m
s

)

one user

10 users

100 users

Figure 7. Performance Experiment Result of AHO

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

Simulation Number

R
es

po
nd

in
g

Ti
m

e(
m

s)

one user

10 users

100 users

Figure 8. Performance Experiment Result of SGT

 The results are presented graphically in a manner of
average response time versus the sequence of simulations.
The unit of response time is millisecond. We simulated
1,000 years’ hurricane occurrence based on the historical
hurricane records from the year 1851 to the year 2000 and
the results are shown in Figure 7. The scenarios of 1 user,
10 users and 100 users are plotted. Although the figures of
other combinations of datasets and number of simulations
are omitted here, they do have almost the same
characteristics as shown in Figure 7. Similarly, Figure 8 is
taken as an example to depict the experimental results of
SGT. The input dataset for this test case is the historical
hurricane records from the year 1851 to the year 2000. We
can observe from both figures that as the number of users
increases exponentially, the system response time does not

increase dramatically. Actually, as shown in Figure 7, the
average response time for the 100 users scenario is only
less than 10 percent slower than that of the one user
scenario. As to Figure 8, although the average response
time for the 100 users scenario is about 20 percent slower
than that of the one user scenario, it is still acceptable
considering the exponential increase of simultaneous
accesses to the system. One thing we need to mention is
that because the underlying statistical model of SGT is less
computation-intensive than that of AHO, the response time
of SGT is much less than that of AHO.
 From the above analysis, we can see that although it
takes a slightly longer time for the system to answer the
users’ request as the number of users grows dramatically,
the overall performance is still satisfactory regarding to
the criteria of response time. The experimental results
show that our system is a scalable high performance
system.

6 Conclusions
 In this paper, we have presented our ongoing
experience in designing and developing a web-based
system for real-time hurricane risk and loss projection
with a real database support, which is built upon an
assembled knowledge base from a variety of disciplines
and utilizes on the collaboration of diverse functionalities.
 To practically and efficiently integrate such a
complicated system requires to pull together various
advanced knowledge and techniques and reuse
information and approaches as much as possible. We
elaborated such issues during our developing endeavor
from three aspects: (1) the aspect of system integration, (2)
the aspect of data modeling and reusing, and (3) the aspect
of information sharing and reusing. Experiments were
conducted and the results have demonstrated the
scalability and efficiency of our system.

7 Acknowledgement
 This work is partially supported by Florida
Department of Insurance under “FIU/IHRC Public
Hurricane Risk and Loss Model Project.” While the
project is funded by the Florida Department of Insurance
(DOI), the DOI is not responsible for this paper content.

References
[1] http://ptolemy.eecs.berkeley.edu/papers/99/HMAD/h

tml/plotb.html.
[2] Applied Insurance Research, Inc. (AIR) page.

http://www.air-
boston.com_public/html/rmansoft.asp.

[3] Applied Research Associates, Inc. (ARA) page.
http://www.ara.com/risk_and_reliability_analysis.ht
m.

[4] Java Native Interface.
http://java.sun.com/docs/books/tutorial/native1.1/.

[5] Java Server Pages (TM) Technology.
http://java.sun.com/products/jsp.

[6] Oracle9iAS Container for J2EE.
http://technet.oracle.com/tech/java/oc4j/content.html

[7] EQECAT home page. http://www.eqecat.com/.
[8] FEMA hurricanes page.

http://www.fema.gov/hazards/hurricanes.
[9] HAZUS manuals page.

http://www.fema.gov/hazus/li_manuals.shtm.
[10] HURDAT.

http://www.aoml.noaa.gov/hrd/hurdat/Data_Storm.ht
ml.

[11] The JDBC API universal data access for the
enterprise.
http://java.sun.com/products/jdbc/overview.html.

[12] RMS home page. http://www.rms.com.
[13] B. Boehm and C. Abts, “COTS Integration: Plug and

Pray?”, IEEE Computer, 32(1), pp. 135-138, Jan.
1999.

[14] P. Brereton and D. Budgen, “Component-Based
Systems: A Classification of Issues”, IEEE Software,
33(11), pp. 54-62, Nov. 2000.

[15] X. Cai, M. R. Lyu and K. Wong, “Component-based
Software Engineering: Technologies, Development
Frameworks, and Quality Assurance Schemes”,
Proc. 7th Asia-Pacific Software Engineering
Conference (APSEC 2000), Singapore, pp. 372-379,
Dec. 2000.

[16] S. Chen, S. Gulati, S. Hamid, X. Huang, L. Luo, N.
Morisseau-Leory, M. Powell, C. Zhan and C. Zhang,
“A Three-Tier System Architecture Design and
Development for Hurricane Occurrence Simulation”,
Proc. IEEE International Conference on Information
Technology: Research and Education (ITRE 2003),
Newark, New Jersey, pp. 113-117, Aug. 2003.

[17] P. Fraternali, “Tools and Approaches for developing
data-intensive web applications: A survey”, ACM
Computing Survey, 31(3), pp. 227-263, Sep. 1999.

[18] N. Morisseau-leroy, M. K. Solomon and J. Basu,
Oracle8i: Java Component Programming with EJB,
CORBA, and JSP, Oracle Press (McGraw-
Hill/Osborne), 2000.

[19] D. Panda, “Oracle Container for J2EE(OC4J)”, Jan.
2002,
http://www.onjava.com/pub/a/onjava/2002/01/16/ora
cle.html.

[20] All Industry Research Advisory Council (AIRAC),
“Catastrophic Losses: How the Insurance Industry
Would Handle Two $7 Billion Hurricanes”, Oak
Brook, Illinois, AIRAC, 1986.

[21] F. T. Sheldon, K. Jerath, Y.-J. Kwon and Y.-W.
Baik, “Case Study: Implementing a Web Based
Auction System Using UML and Component-Based
Programming”, Proc. 26th International Computer
Software and Applications Conference (COMPSAC
2002), Oxford, England, pp. 211-216, Aug. 2002.

