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Abstract
     The advent of intelligent network technology has
brought a kind of new challenge to the database commu-
nity, especially on the heterogeneous database integration
techniques. These advances in public network technology
enable the implementation of a new type of distributed
database systems with new demand for improved query
distribution and query optimization algorithms. Query
response time is no longer the only key point regarding
distributed query execution. In stead, more and more peo-
ple are concerning more about their monetary cost for the
communication. A research topic that immediately arises
is cost minimization for network usage. Previous research
on distributed database systems has produced results that
can be utilized for this purpose. Nevertheless, Intelligent
Network and ISDN usage requires current knowledge to
be adapted and extended. In this paper, we present both
our database integration methodology over intelligent
networks and our prototyping system over ISDN.

1. Introduction

     Today, the network technology develops extremely
fast to meet the requirement of information sharing
among customers and business organizations. From time
to time, new versions of these networks are expected to be
available to business and consumers because people are
always expecting to retrieve information across the net-
works with faster speed and less payment.  For example,
Intelligent public networks, such as ISDN, have become
available in North America during the recent a couple of
years. These networks can be used to provide distributed
computing to those who have found it too expensive in
the past, and can provide cost savings over traditional
distribution techniques. In the mean time, this phenome-

non is significant to the database research because it ren-
ders many assumptions and parameters in conventional
distributed database systems obsolete, and database re-
searchers need therefore to pay more attention to the new
challenges brought by those newly emerging technolo-
gies.

     There have been many theoretical studies in database
integration [1][2][3], as well as a number of prototyping
systems, such as, Information Manifold [4], Multibase
[5], MRDSM [6], Pegasus [7], Carnot [8], SIMS [9],
TSIMMIS [10][11], and SEMHDB [15][16], each repre-
senting a different methodology. However, all these pre-
vious work were performed on basis of traditional distrib-
uted database environments where the databases are con-
nected by privately owned networks. As intelligent net-
work technology, for example ISDN, emerges, the dis-
tributed databases can now communicate through public
networks provided by the telecommunication companies.
The transition from private networks to intelligent public
networks has changed the characteristics of the networks
from static to dynamic in the sense that the network re-
sources can now be dynamically allocated and manipu-
lated by the database systems so as to achieve best utili-
zation and performance. This change requires rethinking
of the database integration techniques including the dis-
tributed query optimization techniques because the as-
sumptions that were usually made about the networks in
the previous studies are no longer true. Therefore, new
efforts are desired for database integration over intelligent
networks.

     This paper will present our new database integration
methodology over intelligent networks, By further devel-
oping our original idea in [12], it extends the current



knowledge of database integration techniques to include
methods that optimize queries for these new networks. A
prototyping system that has been implemented based on
our approach will be introduced in this paper as well.

     The remainder of the paper is organized as follows.
Section 2 presents our proposed query distribution meth-
odology by discussing some main research issues such as
our basic model, how to reduce search space for distrib-
uted join queries, ISDN bandwidth allocation techniques,
how to balance query response time and monetary cost,
and the immediate assembly of join results. Section 3
gives a brief overview of the prototyping system that de-
ploys the techniques mentioned in this paper. Finally, in
Section 4, we give the conclusion of our work.

2. Query Distribution Methodology

     The key point of the query distribution is to find effi-
cient ways to evaluate queries with either reduced com-
munication costs or query response time. It has been
known as a class of hard problems, for which no efficient
algorithms have yet been found. Nevertheless, efficient
algorithms have been proposed for special cases of the
problem. Usually, these algorithms solved only very re-
strictive versions of the general problem. To tackle the
general problem, the ideas behind those special case algo-
rithms were adapted as heuristics to find close-to-optimal,
or at least good solutions. In this section, an algorithm
will be introduced, which is optimal (in respect to certain
restrictions on the search space) for a special class of que-
ries called chain queries. The algorithm can be applied to
general queries as heuristic to find efficient, if not opti-
mal, query execution plans.

     For distributed join queries that involve multiple data-
base sites, the search space of the optimization is defined
by many factors, including the join strategies (full versus
semi-join), the order in which the tables are drawn into
the join tree, the ISDN channel allocation strategies, the
number of database sites involved, and etc.  As will be
shown in this section, the complexity of an exhaustive
search is significantly increased due to the new factor of
ISDN management.

2.1 Basic Model

     The distributed database system can be modeled as a
directed graph, denoted G(V,E), which contains of a col-
lection of nodes V and a set of edges E. Each node in the
graph represents a site. An edge <v, w> , which connect
node v to node w, indicates that a direct ISDN connection
can be established from site v to site w. The cost imposed
on an ISDN call can be expressed by a formula which is a
“step”  function of the duration of the call.  The cost typi-
cally consists of a fixed charge for call setup (including
the first time unit), and a variable component that is

charged against additional time units based on a fix rate.
The rate can vary depending on the time when the call is
initiated. Thus, for each edge <v, w> in the graph, we
associate it with a cost formula:

comm-cost =
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where:
t: time when the call is made;
∆t: duration of the call;
SC(t): fixed cost charged for call  setup (including first

time unit) at time t;
FTU: length of first time unit;
UC(t): cost rate per additional time unit;
TU: length of an additional time unit;

][x⊥ : lowest integer ≥ x.

     The above information defines the static parameters of
the system. To best utilize the ISDN network, dynamic
information regarding the ISDN resource allocation must
be maintained. Each mode will keep track of the informa-
tion of the usage of its ISDN lines, for example which
channels are currently busy, idle, or available, and to
which destinations those established calls are connected.
Sometimes, there is a portion of the currently billed time
unit remaining after a data transfer completes. It is always
beneficial to keep the connection open until this time unit
expires, because other queries might be able to utilize the
idle connection to transfer data without additional charge.
Even if the new transfer extends into another time inter-
val, the setup cost, which is typically higher than the rate
for additional time units, can be avoided. Consequently,
for those idle connections, we also need to keep track of
the surplus time before the last charged time unit expires.

2.2 The search space for join queries

     Join queries are queries with join operation involved.
As a starting point, we consider only “chain”  queries.  A
chain query involves N tables, each on a distinct database
site, that is defined as R1 Join R2 … Join RN.  We define
the search space for a chain with the following assump-
tions:
•  The query is evaluated as a sequence of binary joins,

and only linear join trees are considered.  A linear
join tree (or a left-deep first tree, as it may be referred
to in some of the literature) has the restriction that,
for each binary join in the tree, at least one operand
must be a base relation (i.e. one of R1,…, RN).  This
restriction limits the otherwise explosive space of
join trees to search.

•  For each binary join, both full join and semi-join
methods are considered. Either site can be the data
assembling site (i.e. the site at which the result of the
join will be placed). Note that the decision of data as-
sembling site implies the data transfer direction.



•  To send a table from one site to another, a shortest
path must be used.  The shortest path would incur the
lowest ISDN communication cost among all possible
paths.  Note that the least-cost path between two sites
is not necessarily the direct connection.

     An exhaustive search would explore all the alternatives
within the search space.  To begin, a relation Rk must first
be selected, then an adjacent relation is drawn to join with
Rk to produce an intermediate result.  The procedure con-
tinues, with each adjacent relation being added into the
intermediate result one at a time, until all relations are
included.  Thus, it is not hard to derive that the number of
possible join orders, denoted J(N), is:

J(N) = Σk=1 to N  (N-1)!/(k-1)! (N-k)!

     For each binary join, there are two join methods (full
join and semi-join), this amounts to 2N-1 combinations of
join methods for each fixed join order.  In addition, the
least-cost path search algorithm will contribute to each
data transfer a complexity of O(|V|2), where |V| is the
number of sites in the network.  Taking all together, the
complexity of an exhaustive search algorithm would be in
the order of J(N) *  2N-1 *  |V|2.

     Using an exhaustive algorithm that searches the entire
space of alternative query execution plans is time-
consuming, and in many cases prohibitive because the
complexity grows quicker than exponential as the number
of tables increases.  Pruning techniques can be used to
reduce the search spaces for both join order and shortest
paths.  Below, a kind of pruning technique for obtaining
efficient join order is presented.

2.3 Pruning techniques to reduce the search space

     The technique we used to prune the join order space is
called dynamic programming – a widely known and use-
ful technique in reducing combinatorial search space.
The algorithm explores the space of linear processing
trees by stages.  At stage k, the best order to join k adja-
cent tables, along with the join methods for each binary
join in the partial tree, is found.  The determination of the
optimal join order at stage k, however, depends only on
the optimal join orders found at stage k-1 (for any k-1
adjacent tables).  It is this specific feature of dynamic
programming that prunes most of the inferior candidates
off the search space.  We will explain the principle and
analyze the complexity of the dynamic programming al-
gorithm next.

     Let R(I,j,m), where 1 ≤ I ≤ m ≤ j ≤ N, denote the inter-
mediate result of joining Ri, Ri+1,…, Rj, with the result
being placed on site m.  Let P(I,j,m) be the optimal join
execution plan (including the join order and the join
method for each binary join) for R(I,j,m).  It can be

proved that P(I,j,m) can be obtained by selecting the join
plan with the lowest cost from among the following join
plans:

�  If I < m < j, consider among: P(I,j-1,m) Join Rj, and
Ri Join P(I+1, j, m)

�  If I = m, consider among: P(I,j-1,m) Join Rj, and Ri
Join P(idq +1, j, m’), for all I <  m’  ≤  j

�  If j = m, consider among: Ri Join P(I+1, j, m), and
P(I, j-1, m’) Join Rj, for all 1 ≤ m’  < j

     Note that for each join operation considered above, the
costs for both full join and semi-join will be estimated,
and the one with the lower cost will be selected as the join
method for the join operation. The method, as mentioned
earlier, is indeed implemented in an iterative fashion.  At
stage k, it computes R(I,I+k,m) for all values of I and m
such that 1 ≤ I ≤ m ≤ I+k < N.

     By fixing k and I, it is not hard to see that there are
O(k) candidates plans for P(I,I+k,m) (there are indeed
4(k-1) + 2(k+1) + 2(k+1) = 8k options, considering both
full and semi-join). Therefore, the complexity of the dy-
namic programming search, excluding the cost of the
shortest path algorithm, is:
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8k = 4/3 *  (N 3 – N)  = O(N 3)

     If the shortest path algorithm is invoked for each data
transfer, then the final complexity becomes O(N 3 *  |V|2).
This can also be very expensive if both n and |V| are large.
However, it is much better than before.  A more efficient
way could be to find the shortest paths between every two
sites involved in the query at the very beginning of the
algorithm.  This can be done in a time complexity of O(N
* |V|2) by modifying the well-know all-pair shortest paths
algorithm. The final complexity would then be reduced to
O (N *  |V|2 + N 3) = O (N *  |V|2).

2.4 ISDN bandwidth allocation techniques

     The ISDN is different from the traditional networks
with its dynamic properties. Therefor, several strategies
are used to take advantages of ISDN’s tariff structure.
These include the following:
•  Intelligent connect/disconnect strategies: For long-

distant ISDN connections, the charge is based on us-
age increments, regardless of whether one uses up all
the bandwidth of the entire increment or not.  Thus,
the connection must be kept until the current incre-
ment expires so that the remaining increment can be
used for another possible data transfer without addi-
tional cost.

•  Dynamic channel allocation: Weighing between
query response time and ISDN monetary cost, tech-



niques are developed to determine how many chan-
nels should be allocated to achieve a maximum
weighted cost.  More details are provided in the next
section.

•  Least-cost data transfer paths: To minimize the ISDN
monetary cost incurred, the least-cost path must be
found for each data transfer.  We have modified the
conventional shortest path algorithm to take into ac-
count both ISDN cost and transfer time.  Our algo-
rithm not only determines the path via which the data
should be routed; it also determines how many chan-
nels should be allocated for each direct edge along
the path.

2.5 Balance the query response time and monetary
cost

     Ideally, one would expect to obtain the best perform-
ance at the lowest cost.  Unfortunately, reducing query
response time usually means paying more for bandwidth
aggregation.  In most cases, minimum communication
cost (defined as the minimum cost needed to execute a
query) and minimum response time (defined as the mini-
mum time to execute a query) can not be achieved at the
same time.  An execution plan that bears the minimum
communication cost may take, for example, ten times
longer to execute the query than does the one with the
minimum response time.  To balance between communi-
cation cost and response time, we use a weighted cost as
the objective function for minimization.
The weighted cost function we use bears the following
form: Wcomm *  comm_cost + Wresp *  α *  resp_time,
where comm_cost (in dollars) and resp_time (in minutes)
refer, respectively, to the estimated ISDN communication
cost and response time incurred by an operation. α is an
adjusting constant that makes response time comparable
with communication cost.  The value of α depends on
how much the user thinks his time is worth. For example,
if the user is getting paid $30 an hour, then he can assign
AJST_CONS to be 30/60 = 0.5 dollar/min. This way, the
response time of a query can be converted into a unit
compatible with the communication cost.  For instance, a
two-minute query would cost, in addition to the ISDN
cost, an equivalent of 0.5*2 = 1.0 dollar to the user. Wcomm

and Wresp are the weights for communication cost and
response time respectively.  Their values are to be deter-
mined by the user based on the relative importance of
communication cost to response time.  In our algorithm,
we enforced a constraint that requires the sum of the two
weights to be 1.0, i.e., Wcomm + Wresp = 1.0.

     It is easy to see that setting Wcomm = 1.0 would instruct
the algorithm to find the execution plan with the mini-
mum communication cost, while setting Wresp = 1.0 in-
structs the algorithm to find the execution plan with the
minimum response time at any cost.  Setting Wcomm  any-

where between 0 and 1 would instruct the algorithm to
find the execution plan of the least weighted cost.

     We have devised an optimization algorithm based on
the dynamic programming technique stated in section 2.2
and 2.3 that aims at minimizing the weighted cost.  The
shortest path algorithm was also modified to consider the
weighted cost.  The modification, however, is non-trivial
as one of the cost components – response time – is not
additive.  The reason is that a node may start processing
the incoming data as soon as the first byte arrives and
sending the output to the next node, affecting both ISDN
cost and query response time.

2.6 Immediate assembly of join results

     When constructing the execution plans, the algorithm
requires the immediate results of each pure or semi- join,
which are comprised of combined tuples from both oper-
and tables, to be placed at one of the operand sites.  This
eliminates the options of restricting the tables first (with-
out producing the combined tuples) and deferring the as-
sembly of the final query result until the very last stage.
For example, to evaluate R1 join R2 join R3 with result to
be stored at destination site 4, a possible deferred assem-
bly strategy may do the following:
(1) Restrict R1 by join attributes of R2

(2) Restrict R2 by join attributes of R1 and R3

(3) Restrict R3 by join attributes of R2

(4) Send the three restricted tables to site 4, and perform a
regular join

     In the above plan, step (1), (2), and (3) can be proc-
essed concurrently.  The result is assembled in the final
step at the destination site.  The advantage is that we may
be able to avoid repetitive transfer of projected attributes
over the network. It is, however, not always superior to a
linear search tree.  For example, if all of the table sites are
within a local call area on the east coast, the destination
site is on the west coast, and the size of the final result is
small, then it costs less to join the tables within the local
call area and send the final result to the remote destination
than sending restricted tables (which could be larger than
the final result) to the destination site.

     Due to the latency of query compilation and optimiza-
tion, the weighted graph that is used by the algorithm to
find the shortest paths could have changed by the time the
query is presented for execution.  For example, a con-
nected line might have been broken, or an available chan-
nel might have been preempted. Because the time to op-
timize a query (ranging from hundreds of milliseconds to
a few seconds for less than five join tables) is usually
much less than the smallest ISDN charge time unit (usu-
ally one minute), this is unlikely.  If it ever happens that
the shortest paths planned by the algorithm can not be set
up at query execution time, then we can rerun the shortest



path algorithm on the updated graph to find an alternate
path.

3. Prototyping System

     Based on the methodology introduced before, we have
implemented a prototyping system, which deployed all
the aforementioned ideas and works well over ISDN. In
this section, a brief introduction of our prototype system
is given.
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Figure 3.1. System Architecture of the Prototype System.

     Figure 3.1 illustrates the basic architecture of our
loosely coupled multi-database environment. Each site in
the figure runs a DBMS that operates autonomously, and
among them, one is designated as the coordinator whose
responsibility is to receive inter-database query requests
from the other sites and generate the corresponding global
execution plan. There are two different kinds of software
components in the system. They are the Application Man-
ager Interface Program (AMIP) that runs on the coordi-
nator site and the Local Interface Program (LIP) that runs
on the remaining sites. We use ODBC to resolve the po-
tential heterogeneity among the different kinds of
DBMSs. The LIP is a kind of specific ODBC driver. The
application program first submits ODBC compliant SQL
queries to the LIP by means of the ODBC manager. If the
queries are only related to the local database, the LIP will
select another ODBC driver that is provided by the local
DBMS through the ODBC manager to access the local
database. If the queries need to access one or more remote
databases, the LIP will send the queries to the AMIP via
the ISDN network. The AMPI parses and decomposes the
received queries into a global execution plan that is com-
posed of a set of sub-queries. The AMPI coordinates the
processing of each sub-query by opening ISDN connec-
tions among the involved local sites. To reduce ISDN
costs, queries and control messages are communicated
through D channels while the query results are routed
through B channels.

     The major components of the AMIP are shown in Fig-
ure 3.2. The communication module is responsible for
controlling the operations of the corresponding ISDN
hardware so as to send and receive necessary information,
including messages, intermediate results, query requests,
etc, between the AMIP and certain LIPs via the ISDN

network. Once a message reaches the AMIP from an LIP
site, the message dispatcher interprets it and forwards it to
the corresponding module for further processing. If the
message consists of SQL query statements, the SQL
parser will be invoked to parse and validate the query. If
the incoming message concerns query coordination, it will
be passed to the coordinator module. The query distribu-
tion algorithm in the query optimization module produces
a global execution plan for each query request, and the
execution plan will subsequently be passed to the coordi-
nator for further executions among the involved LIP sites.
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Figure 3.2. System Architecture of AMIP

     There is a knowledge base running in the AMIP that
contains a collection of essential knowledge, including
global schemata and mapping information, to resolve the
possible heterogeneity [13], determining schematic and
data conflicts between the global schema and local sche-
mata [14]. Usually, such conflicts occur when semanti-
cally equivalent data is represented in different ways. In
our prototyping system we mainly focus on the four major
types of conflicts that are most often cited in the litera-
ture. They are:
•  Structural heterogeneity. Logical data structures (i.e.

the number of relations and the foreign key joins
between the relations) may vary across databases that
contain similar data. This is due to different prefer-
ences on how data should be organized and due to
variations in database contents.

•  Abstraction heterogeneity. This class of heterogene-
ity arises when two databases use different levels of
generalization and aggregation and retain different
levels of information detail.

•  Naming heterogeneity. Naming variations can appear
in two levels: the relation level and attribute level.
Differences in the names of two similar relations or
attributes will make them appear different to the da-
tabase system, thus requiring semantic reconciliation.

•  Domain heterogeneity. Even for same-named attrib-
utes, the underlying domains may be different.

     Figure 3.3 presents the architecture of the LIP. The
LIP accepts query and sub-query requests from both local
users and the AMIP. It accesses the local database
through the ODBC driver provided by the corresponding
database vendor. The communication module deals with
all the communication affairs between the LIP and the



other software components. It receives messages as well
as queries from either the AMIP or local application pro-
grams, and also receives intermediate row sets from the
AMIP for the involved inter-database queries. As shown
in Figure 4, all incoming information is considered to be a
message. The message dispatcher module is able to iden-
tify its contents, and therefore dispatch intermediate row
sets and sub-queries to the two corresponding modules.
Data access modules retrieve data from local databases
and send results to the query-processing module, which
performs inter-database joins.
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Figure 3.3. System Architecture of LIP.

4. Conclusion

     In this paper, a new database integration methodology
over intelligent networks has been presented. The contri-
butions of our work in this paper include:
•  Principles of optimization process for the ISDN-

enabled distributed environment.
•  Defining the search space of the optimization and the

complexity of an exhaustive search.
•  Pruning techniques to avoid exhaustive search of all

execution plans.
•  Query optimization heuristics to minimize weighted

cost by balancing query response time and monetary
cost over ISDN.

•  An ISDN-enabled distributed database prototype.

     Future research direction will include the database
integration over hybrid networks, which include Internet,
Intranet, and intelligent networks.
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