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Abstract 

In our previous work, a multimedia augmented 
transition network (ATN) model together with its 
multimedia input strings were proposed to model and 
structure video data. The multimedia ATN model is based 
on the ATN model that has been used in the artificial 
intelligence (AI) areas for natural language 
understanding systems and its inputs are modeled by the 
multimedia input strings. The temporal and spatial 
relations of semantic objects are captured by an 
unsupervised video segmentation method called 
simultaneous partition and class parameter estimation 
(SPCPE) algorithm and are modeled by the multimedia 
input strings. However, the segmentation method used is 
not able to identify the objects that are overlapped 
together within video frames. The identification of the 
overlapped objects is a great challenge. For this purpose, 
a backtrack-chain-updation split algorithm that identifies 
the split segment (object) and uses the information in the 
current frame to update the previous frames in a 
backtrack-chain manner is developed in this paper. The 
proposed split algorithm provides more accurate 
temporal and spatial information of the semantic objects 
for video indexing.  

 
Key words: Multimedia Augmented Transition Network 
(ATN), Multimedia Input String, Backtrack-Chain-
Updation Split Algorithm, Multimedia Browsing, and 
Multimedia Database Systems. 

1. Introduction 

As more information sources become available in 
multimedia systems, the need for efficient modeling, 
browsing, searching, and retrieving information,1 
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especially for video data, increases. Digital video has 
been widely used in many multimedia applications such 
as education and training, video on demand, video 
conferencing, and so on. Instead of sequential access to 
the video contents, how to structure and model video data 
so that users can quickly and easily browse and retrieve 
interesting materials becomes an important issue in 
designing multimedia information systems [Yeo97]. To 
better model and structure video data, a multimedia 
augmented transition network (ATN) model that is based 
on the augmented transition network (ATN) together with 
its inputs, the multimedia input strings, were proposed to 
model and structure video data [Chen99]. The augmented 
transition network (ATN), developed by Woods 
[Woods70], has been used in natural language 
understanding systems and question answering systems 
for both text and speech. Multimedia input strings are 
similar to regular expressions [Kleene56] and are used to 
represent the presentation sequences of temporal media 
streams, spatio-temporal relations of semantic objects, 
and keyword compositions. In our previous studies, we 
have already shown that the multimedia ATN model and 
multimedia input strings can model the multimedia 
presentations, multimedia browsing, multimedia database 
searching, and the temporal, spatial, or spatio-temporal 
relations of various media streams and semantic object 
[Chen99, Chen00]. 

Moreover, a multimedia information system should 
allow users to retrieve their interested video materials via 
database queries. To answer multimedia database queries 
related to the temporal or relative spatial positions of 
semantic objects, it is necessary to have object-based 
representation of video data.  For this purpose, more and 
more attention has devoted to segmenting video frames 
into regions such that each region, or a group of regions, 
corresponds to an object that is meaningful to human 
viewers [Courtney97, Ferman97]. Therefore, key frame 
selection based on object-based representation is an 
important issue for video data [Arman94, Day95, 



Flickner95, Oomoto93, Yeo97]. A key frame selection 
approach that is based on the number, temporal, and 
spatial changes (represented by multimedia input strings) 
of the semantic objects in the video frames was developed 
in [Chen99]. 

The proposed key frame selection approach is based 
on the temporal and spatial relations of semantic objects 
in each shot and employs the simultaneous partition and 
class parameter estimation (SPCPE) algorithm [Sista99] 
to facilitate the multimedia ATN model. The temporal 
and spatial relations of semantic objects are captured by 
the SPCPE algorithm and are modeled by the multimedia 
ATNs and multimedia input strings. However, the SPCPE 
algorithm is not able to identify the objects that are 
overlapped together within video frames. In other words, 
the SPCPE algorithm cannot distinguish the overlapped 
objects, which may cause inaccurate answers to 
multimedia queries. Hence, if we can extend the 
functionality of the algorithm to allow the identification 
of the overlapped objects, more accurate information can 
be obtained to answer more detailed multimedia queries.  

In this paper, we propose a backtrack-chain-updation 
split algorithm that can find the split segment (object) and 
use the information in the current frame to update the 
previous frames in a backtrack-chain manner. This split 
algorithm is an enhancement of the SPCPE algorithm to 
allow the distinguishing of two separate objects that were 
overlapped previously. That is, the proposed split 
algorithm provides more accurate temporal and spatial 
information of the semantic objects for video indexing. 
Hence, this algorithm can enhance the efficiency of the 
current ATN model by saving the storage and improving 
the accuracy of multimedia database queries related to the 
relative spatial positions of the semantic objects. 
Moreover, the proposed split algorithm is applied to a 
portion of a soccer game video clip and the experimental 
results show that our algorithm can recover the 
overlapped situation successfully and automatically 
without user intervention.  

This paper is organized as follows. Section 2 gives a 
brief review of how to use ATNs and multimedia input 
strings to model video indexing and browsing. Section 3 
discusses the mechanism of the proposed backtrack-
chain-updation split algorithm. Conclusions are given in 
Section 4.    
 
2. Using Multimedia ATNs and Multimedia 
Input Strings for Video Indexing and 
Browsing 
 

As mentioned earlier, the multimedia ATNs and 
multimedia input strings are used to model the temporal 
and relative spatial relations of various media streams and 
semantic objects, multimedia database searching, 

multimedia browsing, and multimedia presentations. 
Multimedia input strings are the inputs for the multimedia 
ATNs and represent the presentation sequence of 
temporal media streams, spatio-temporal relations of 
semantic objects, and keyword compositions. Moreover, a 
key frame selection approach based on the temporal and 
spatial relations of semantic objects is adopted as low 
level indexing for video streams. The unsupervised video 
segmentation method, i.e., the SPCPE algorithm, can 
obtain the temporal and spatial relations of semantic 
objects required in the key frame selection approach. In 
the following subsections, we will first give an overview 
of the SPCPE algorithm, then briefly describe how to use 
multimedia ATNs and multimedia input strings to model 
video key frames. A portion of the soccer video clips is 
used to demonstrate how video indexing and browsing are 
modeled by the multimedia ATNs and multimedia input 
strings. 
 
2.1 Overview of the SPCPE Algorithm 
 

The SPCPE (Simultaneous Partition and Class 
Parameter Estimation) algorithm is an unsupervised video 
segmentation method to partition video frames. In the 
SPCPE algorithm, the partition and the class parameters 
are treated as random variables. The method for 
partitioning a video frame starts with an arbitrary partition 
and employs an iterative algorithm to estimate the 
partition and the class parameters jointly [Sista99]. Since 
the successive frames in a video do not differ much, the 
partitions of adjacent frames do not differ significantly. 
Each frame is partitioned using the partition of the 
previous frame as an initial condition so the number of 
iterations in processing can be greatly reduced. A 
randomly generated initial partition is used for the first 
frame since there is no previous frame available. 

Suppose we have two classes. Let the partition 
variable be c = { c1, c2}  and the classes be parameterized 
by θ = { θ1, θ2} . Also, suppose all the pixel values yij (in 
the image data Y) belonging to class k (k=1,2) are put into 
a vector Yk. Each row of the matrix Φ is given by (1, i, j, 
ij) and ak is the vector of parameters (ak0 , …, ak3 )

T.  
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We estimate the best partition as that which maximizes 
the a posteriori probability (MAP) of the partition variable 
given the image data Y. Now, the MAP estimates of c = 
{ c1, c2}  and θ = { θ1, θ2}  are given by 
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Let J(c , θ ) be the functional to be minimized. With 
appropriate assumptions, this joint estimation can be 
simplified to the following form: 
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The algorithm starts with an arbitrary partition of the 
data and computes the corresponding class parameters. 
Using these class parameters and the data, a new partition 
is estimated. Both the partition and the class parameters 
are iteratively refined until there is no further change in 
them. After the segmentation, the minimal bounding 
rectangle (MBR) concept in R-tree [Guttman84] is 
adopted so that each semantic object is bounded by a 
rectangle (as shown in Figures 1(d), 1(e), and 1(f)). 
Moreover, the centroid point of each semantic object is 
mapped to a point object for spatial reasoning.  
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           (a) Frame 1                   (d) Partition           (g) Bounding Boxes 

Multimedia input string for frame 1:  
G1&P10&P10&P4&P4&P19 
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           (b) Frame 5                   (e) Partition           (h) Bounding Boxes 

Multimedia input string for frame 5:  
G1&P10&P10&P4&B4&P4&P19 
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           (c) Frame 8                   (f) Partition           (i) Bounding Boxes 

Multimedia input string for frame 8:  
G1&P10&P10&P13&B4&P4&P19 

Figure 1: Key frames 1,5 and 8 for a soccer game video 
shot and their corresponding multimedia input strings. (a)-
(c) are the original frames 1, 5 and 8; (d)-(f) are the 
segmentation results for frames 1, 5 and 8; (g)-(i) show 
the segments with bounding boxes and centroids for 
frames 1, 5 and 8. For each frame, there is a 
corresponding multimedia input string for it. 
 
2.2 Using Multimedia ATNs and Multimedia 
Input Strings to Model Video Key Frames 
 

A multimedia ATN can be represented 
diagrammatically by a labeled directed graph, called a 
transition graph. A multimedia input string is accepted by 
the grammar if there is a path of transitions which 
corresponds to the sequence of symbols in the string and 
which leads from a specified initial state to one of a set of 
specified final states.  

A multimedia ATN can build up a video hierarchy 
[Chen99]. A video clip can be divided into scenes, a scene 
contains a sequential collection of shots, and each shot 
contains some contiguous frames that are at the lowest 
level in the video hierarchy [Yeo97]. It is advantageous to 
use several key frames to represent a shot instead of 
showing all these frames. Key frames play as the indices 
for a shot. The key frame selection approach proposed in 
[Chen99] is based on the number, temporal, and spatial 
changes of the semantic objects in the video frames. Other 
features may also be possible for the key frame selections, 
but we focus on the number, temporal, and spatial 
relations of semantic objects. Therefore, spatio-temporal 
changes in each shot can be represented by these key 
frames. For example, in each shot of a soccer game, 
players may change positions in subsequent frames and 
the number of players appearing may change at the time 
duration of the shot. 

Figure 1 is an example of how to use multimedia 
input strings to model video key frames. A soccer game 
video shot from frames 1 to 10 is used as the inputs of the 
SPCPE video segmentation method. Frames 1, 5 and 8 are 
chosen as the key frames by using the key frame selection 
method introduced in [Chen99]. Figures 1(a)-(c) show the 
original frames, and Figures 1(d)-(f) give the resulting 
partitions (segments) for the frames. Since only the ball 
and the players are important from the content-based 
retrieval perspective, we use Figure 1(g)-(i) to simplify 
the segments for each frame. As introduced in [Chen00], 
one semantic object is chosen as the target semantic 
object in each video frame and the minimal bounding 
rectangle (MBR) concept is also used. In order to 
distinguish the relative positions, twenty-seven numbers 
multiple players. In the following sections of this paper, 
we will describe how to use the proposed split algorithm 
to identify the overlapped players. For this example, each 
frame is divided into nine subregions. 

Each key frame is represented by an input symbol in 
a multimedia input string and the “&”  symbol between 
two semantic objects is used to denote that the semantic 
objects appear in the same frame. The subscripted 
numbers are used to distinguish the relative positions of 
the semantic objects relative to the target semantic object 
“ground” . So the multimedia input string to represent 
these three key frames is as follows: 
( )

����� ������ ��

1

194410101 &&&&&
K

PPPPPG ( )
������� �������� ��

2

1944410101 &&&&&&
K

PPBPPPG ( )
������� 	������� 
�

3

19441310101 &&&&&&
K

PPBPPPG

 



As shown above, there are three input symbols that 
are K1, K2 and K3. The appearance sequence of the 
semantic objects in an input symbol is based on the spatial 
locations of the semantic objects in the video frame from 
left to right and top to bottom. For example, frame 1 is 
represented by input symbol K1. G1 indicates that G is the 
target semantic object. P10 means the first and the second 
P is on the left of G, P4 means that the third and the 
fourth P is above G, and P19 means that the fifth P is on 
the right of G. For frame 5 (K2), its multimedia input 
string is almost the same as that of frame 1 except that in 
which the soccer ball B appears above G. So the number 
of semantic objects increases from six to seven. This is an 
example to show how a multimedia input string can 
represent the change of the number of semantic object. 

Figure 2 is the multimedia ATN for the key frames of 
the example soccer game video clip. The starting state 
name for this multimedia ATN is S/. As shown in Figure 
2, there are three arcs with arc labels the same as the three 
input symbols in [1]. For example, the arc symbol K1 
corresponds to the first input symbol of [1]. The different 
state nodes in the multimedia ATN model the temporal 
relations of the selected key frames. The relative spatial 
relations of the semantic objects are modeled by the 
multimedia input strings.  

 
Figure 2: Multimedia Augmented Transition Network and 
multimedia input strings for modeling the key frames of 
soccer game video shot S. 
 
3. Improve the Segmentation Method Using 
Backtrack-Chain-Updation Split Algorithm 

 
As mentioned earlier, the current SPCPE algorithm 

cannot distinguish the overlapped segments within video 
frames. Since a multimedia database query may involve 
information about moving objects and their locations in 
video sequences, it is very crucial to be able to distinguish 
the overlapped objects. The more accurate the 
segmentation algorithm is, the more efficient the key 
frame selection mechanism is (will be shown in section 
4). The ability to distinguish the overlapped objects in the 
video sequences is beneficial for searching/retrieving 
multimedia information. Here we proposed a backtrack-
chain-updation split algorithm that can find the split 
segment (object) and use the information in the current 
frame to update the previous frames in a backtrack-chain 
manner. This split algorithm is an enhancement of the 
SPCPE algorithm to be able to distinguish two separate 
objects that were overlapped previously. We applied the 
proposed algorithm on a soccer game video. The 

experimental results show that our algorithm can recover 
the separate situation successfully and automatically 
without any user intervention, which can well comply 
with the unsupervised feature of the SPCPE algorithm. 
 
3.1 The Proposed Backtrack-Chain-Updation 
Split Algorithm 
 

In this section, the backtrack-chain-updation split 
algorithm is proposed to enhance the functionality of the 
current SPCPE algorithm. The proposed backtrack-chain-
updation split algorithm considers the situation when 
overlapping happens between two objects that separate 
from each other in a later frame. Assume that there are no 
major differences on the sizes and the shapes of those two 
objects, and the sizes and shapes of the same object do not 
change a lot in the consecutive frames. 
 
3.1.1 Object Tracking 
 

In order to detect the situation of overlapping, first 
we must have the ability to track the objects (segments) 
within the successive video frames. Note that we use the 
partition of the previous frame as initial condition in 
partitioning the current frame. Intuitively, we connect two 
segments that are spatially the closest in the adjacent 
frames. Euclidean distance is used here to measure the 
distance between their centroids. Let ctrk  and ctr l be the 
centroids of segments k and l. 

δ≤−=− 2||||)( lklk ctrctrctrctrdist  

Besides using Euclidean distance, we also apply 
some size restriction into the process of object tracking. If 
two segments in successive frames represent the same 
object, the difference between their sizes should not be 
large. 

Let us think about what happens when overlapped 
segments separate from each other in successive frame. 
When the split happens, some segment with overlapping 
in the previous frame may not find its corresponding part 
in the current frame since either the centroid or the size 
changes a lot. As a result, there may be some segments in 
the current frame that cannot be tracked back to the 
segments in the previous frame. We call these segments 
as the unidentified segments. Then, we try to build up the 
relationship between those in previous frame and those in 
current frame based on the information (i.e., the size and 
position information of those unidentified segments) we 
get. In our algorithm, the concept of MINDIST in 
[Roussopoulos95] is adopted. 
Definition 1: A bounding box B (of dimension 2), will be 
defined by the two endpoints S and T of its major 
diagonal: 

B=(S, T), where 
S=[s1, s2] and T=[t1,t2] and si ≤ ti for i=1,2. 

S/K2 S/K3 
K2 

1944410101 &&&&&& PPBPPPG

S 
K 1 

194410101 &&&&& PPPPPG

K3 

19441310101 &&&&&& PPBPPPG

S/K1 



 
Definition 2: The distance of a point P = [p1, p2] from a 
rectangle B in the same space, denoted MINDIST(P, B), is 
defined as follows.  
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The MINDIST is a variation of the classic Euclidean 

distance applied to a point and a rectangle. When the 
point is inside the rectangle, the distance between them is 
zero. Whereas when the point is outside the rectangle, the 
square of the Euclidean distance between the point and 
the nearest edge of the rectangle is used. The square of the 
Euclidean distance is used since fewer and less costly 
computations are involved. 
 
3.1.2 Backtrack-Chain-Updation Split Algorithm 
 

Let ctrk and BBk be the centroid and bounding box of 
segment k in frame i-1, ctr l and BBl be the centroid and 
bounding box of segment l in current frame i. The 
backtrack-chain-updation split algorithm is given as 
follows. Figures 3(a)-(c) are used to illustrate the 
algorithm. 

Step 1: Identify the related segments as many as possible. 

If δ≤−=− 2||||)( lklk ctrctrctrctrdist  AND  

|size (BBk) – size (BBl)| ≤  β, where  
β is a threshold value for sizes, then segment l in frame i 
is related to segment k in frame i-1. Mark segments l and 
k as “ Identified” . Let segment k be the “parent”  of 
segment l, and let segment l be the “child”  of segment k. 
 
Step 2: Find out the split segments in current frame 
Select one segment that is not identified in frame i-1. Let 
its centroid and bounding box be ctrk and BBk. Based on 
the size of BBk, find out all the unidentified segments in 
frame i whose bounding box BBl overlaps with BBk and 
βMin<(size(BBk)/size(BBl))< βMax. Note that we apply a 
size restriction to avoid the interference of some small 
segments (“noise” ). Select the first 2 segments (say BBl1 
and BBl2) whose MINDIST(ctrk, BBl1) and MINDIST(ctrk, 
BBl2) are the smallest and the second smallest, and mark 
them as “ Identified” . Then build up the parent-child 
relationship between BBk and BBl1, and between BBk and 
BBl2.  
 

        Frame i-1          Frame i 
 (a): Bounding boxes of segment k in frame i –1 and 
segments l1, l2 in frame i. 

        Frame i-1          Frame i 
(b): Find out the split segments in frame i. 

       Frame i-1          Frame i 
        (after updatioin) 
(c): To find out the recovery vertexes for BBl1 and BBl2 
and update BBk  in frame i-1. 

Figure 3: The basic workflow of the backtrack-chain-
updation algorithm. 

 
In Figure 3(b), it shows how to map BBk into frame i 

and to find out all the unidentified segments in frame i 
whose bounding boxes overlap with BBk. BBl1 and BBl2 in 
frame i overlap with the boundary of BBk, and they are 
selected as the children segments of segment k in frame i-
1. Now there is a parent segment with bounding box BBk 
in frame i-1, and there are two children segments with 
bounding boxes BBl1 and BBl2 in frame i (as shown in 
Figure 3(a)). The vertices of each bounding boxes are 
given with the subscripts “UR”, “UL” , “BR” , “BL”  which 
represent the upper-right, upper-left, bottom-right, and 
bottom-left, respectively. 
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ABL 

AUL AUR 

ABR 

update BBk  



Step 3: Do segmentation on the next frame and get the 
parameter for size adjustment in step 4 

Once the split segments are identified, we can use the 
information we get so far to update the parent segment k’s 
bounding box in frame i-1. The main idea is to find the 
recovery vertex in parent segment’s bounding box, then 
“paste”  the children’s bounding boxes into the previous 
frame without changing their sizes and shapes. Remember 
we assume that the sizes and shapes of the same object 
(segment) do not change a lot in the consecutive frames, 
but we do allow some small changes in length or width of 
its bounding box. In such cases, sometimes the changes 
may exceed the updated bounding boxes which results in 
unsatisfactory recovery results if no adjustment is applied.  

Let the current frame be frame i, and the previous one 
be frame i-1. In this step, we do segmentation on frame 
i+1 and build up the parent-child relationship between 
frame i and frame i+1. For the split segments we just 
identified in frame i, there may exist their children 
segments in frame i+1. If that is true, then the ratios of 
size changes on length and width for each split segment in 
frame i are calculated. For example, suppose the parent 
segment in frame i is segment l (BBl), and the 
corresponding child segment in frame i+1 is segment p 
(BBp). Then for segment l, its parameters are 

l

lp

l

lp

BB

BBBB

l

BB

BBBB

l

Length

LengthLength
ySensitivitLength

Width

WidthWidth
ySensitivitWidth

−
=

−
=

_

_ .  

If lySensitivitWidth_  > lySensitivitLength_ , we 

say that segment l is more width-sensitive. This means the 
ratio of width changes is more than that of length 
changes, or the width changes of that segment/object may 
be more frequent and significant than that of length 
changes. Otherwise, it is said to be more length-sensitive. 
There is another possibility that we cannot find the 
corresponding child segment in frame i+1 due to object 
merging or disappearing. In this case,  

l

l

l

l

BB

BB
l

BB

BB
l

Width

Length
ySensitivitLength

Length

Width
ySensitivitWidth

=

=

_

_ .
 

In step 4, we will show how to use this sensitivity 
parameter for size adjustment during the backtrack-chain-
updating process. 

 
Step 4: Backtrack and update the previous frames plus 

size adjustment 
After we find out the split segments (i.e., the children 
segments BBl1 and BBl2) in frame i, we can use this 
information to update the previous frame i-1. The goal is 

to distinguish the separate bounding boxes on the parent 
segment k (BBk) with overlapping. First check the 
MINDIST from the four vertices of BBk’s to the children’s 
bounding boxes respectively. For BBl1, the vertex P on 
BBk with the minimum MINDIST(P, BBl1) is selected as 
the recovery vertex for BBl1. According to this recovery 
vertex, there is a corresponding vertex in BBl1. So the next 
step is to move the corresponding vertex to the recovery 
vertex, and to copy the bounding box BBl1 within the 
boundary of BBk in frame i-1. The same procedures are 
applied to BBl2. 

As shown in Figure 3(b), BBk is mapped to frame i 
and used to computer MINDIST. For example, for BBl1, 
compute MINDIST(Avex, BBl1), where vex is one of “UR”, 
“UL” , “BR” , and “BL” . Choose the one with minimum 
MINDIST as the recovery vertex for BBl1. Here, AUL is 
chosen as the recovery vertex for BBl1, and BUL is chosen 
as the corresponding vertex. Similarly, for BBl2, ABR and 
CBR are selected as the recovery vertex and the 
corresponding vertex. To update the bounding box BBk in 
frame i-1, the bounding box BBl1 is copied into BBk with 
BUL overlapping with AUL and BBl2 is copied into BBk with 
CBR overlapping with ABR. Notice that all the “copy”  
should be within the boundary of BBk. By doing so, the 
updated version of frame i with separate bounding boxes 
can be obtained (as shown in Figure 3(c)). 

 

   Frame i-1    Frame i 
 

(a) Update frame i-1 without size adjustment 
 

   Frame i-1    Frame i 
 

(b) Bounding boxes of frame i-1 after size adjustment 

Figure 4: Size adjustment after updation for frame i-1 
 

In many cases, it seems satisfactory to just copy the 
children’s bounding boxes to their parent’s bounding box 
without any size adjustment. But there are also lots of 
situations which require necessary size adjustments to 

 

updation 

 

updation 



reduce the recovery error and achieve better results. For 
example, as shown in Figure 4(a), we can see separate 
bounding boxes in frame i-1, but the upper bounding box 
seems a little narrow due to the length change of that 
bounding box. It seems somewhat unsatisfactory for 
human eyes and for the purpose of video indexing. The 
parameters obtained in step 3 will be helpful for size 
adjustment. In this case, we can decide the upper segment 
in frame i-1 is length-sensitive, so what we do is to adjust 
the length of that bounding box to best fit its shape in 
frame i-1. Figure 4(b) shows the result after size 
adjustment. It looks pretty good.  

This algorithm can be applied to update more 
previous frames by utilizing the information obtained so 
far. This is called backtrack-chain-updation.  

 
3.2 Results of Applying Backtrack-Chain-
Updation Split Algorithm on Video Segmentation 
 

The proposed backtrack-chain-updation split 
algorithm is applied to an example soccer game video. 
The soccer game video is a gray scale video that shows 
the part of the game. Each frame is of size 146 rows and 
240 columns. We use frames 1 to 10 to illustrate how the 
split algorithm works.  

 

   
      Frame 5        Frame 6        Frame 7 

  
       Frame 8        Frame 9 

Figure 5: Original soccer video Frames 5 to 9 

The soccer game video frames are partitioned using 
the SPCPE algorithm with 2 classes. Frames 5 to 9 are 
chosen to demonstrate the effects of the split algorithm. 
Figure 5 shows the original Frames 5 to 9, while the 
original segmentation for Frames 5 to 9 are shown in 
Figure 6(a). Notices that Frame 9 consists of the split 
segments (objects) and Frames 5 to 8 are the pervious 
frames that have the overlapped segment. First we use the 
information available in Frame 9 to adjust the 
corresponding objects in Frame 8. Then update Frames 7 
to 5 one by one in a chain-updation manner. The centroid 
of each segment is marked with an “x”  and the segment is 
shown with a bounding box around it. Figure 6(b) shows 
the segmentation results using our backtrack-chain-
updation split algorithm without size adjustments, while 

the segmentation results with size adjustments are given 
in Figure 6(c). 

As can be seen from Figure 6(a), the upper-left two 
players are overlapped in Frame 8 but are separated in 
Frame 9. Under the original SPCPE algorithm, there is no 
way to distinguish these two players in Frame 8 even 
though they are separated in Frame 9. However, after 
applying our proposed split algorithm on Frame 8, these 
two objects can be identified successfully and 
automatically (as shown in Frame 8 on Figure 6(b)). In 
addition, the same procedure has been applied to any 
previous frame that has the overlapped segment to 
identify the separated objects based on the information in 
the current frame in a backtrack-chain manner. In other 
words, our proposed split algorithm can distinguish two 
separate objects that were overlapped previously.  
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Frame 9    Frame 9         Frame 9 

(a) Original        (b) Split Algorithm     (c) Split Algorithm 
 Segmentation      Without Adjustment    With Adjustment 

Figure 6: Applying backtrack-chain-updation split 
algorithm on soccer game video segmentation 

 
However, even though our split algorithm can 

identify the overlapped objects successfully, the effects of 
recovery are not such satisfactory since the bounding 



boxes with fixed sizes do not always fit the changing 
shapes of those segments (objects) (as shown in Figure 
6(b)). Based on the split algorithm, the size adjustments 
can be applied to refine the segmentation results. As 
Figure 6(c) shows, the sizes of recovered bounding boxes 
are not fixed any more. In fact, the size adjustments let 
the sizes of bounding boxes dynamically fit the changing 
shapes of segments during the process of backtrack-chain-
updation.  

 
4. Conclusions and Future Work 
 

In this paper, a backtrack-chain-updation split 
algorithm is presented. The proposed split algorithm can 
distinguish two separate objects that were overlapped 
previously in video sequences to provide more accurate 
temporal and spatial relations of the semantic objects. The 
temporal and spatial relations of the semantic objects are 
captured by the unsupervised SPCPE video segmentation 
method, and are modeled by the multimedia ATN model 
and its multimedia input strings. The proposed split 
algorithm is an enhancement of the SPCPE method. By 
obtaining more accurate temporal and spatial relations of 
the semantic objects from the proposed split algorithm, 
more accurate multimedia database queries can be 
answered. A portion of a soccer game video clip is used to 
demonstrate the effectiveness and accuracy of the 
proposed split algorithm. The experimental results show 
that the proposed split algorithm can recover the 
overlapped situation successfully and automatically 
without any user invention. 

Currently, the proposed split algorithm works on 
splitting two overlapped semantic objects in video 
sequences. In our future work, a more general way to 
solve the object overlapping problem as well as the 
merging situations so that the video indexing information 
obtained from segmentation can be more accurate and 
provide more semantic meaning.  
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