Function Approximation using Robust Wavelet Neural Networks
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Abstract

Wavelet neural networks (WNN) have
recently attracted great interest, because of
their advantages over radial basis function
networks (RBFN) as they are universal
approximators but achieve faster convergence
and are capable of dealing with the so-called
“curse of dimensionality.” In addition, VWNN
are generalized RBFN. However, the
generalization performance of WNN trained by
least-squares approach deteriorates when
outliers are present. In this paper, we propose a
robust wavelet neural network based on the
theory of robust regression for dealing with
outliers in the framework of function
approximation. By adaptively adjusting the
number of training data involved during
training, the efficiency loss in the presence of
Gaussian noise is accommodated. Smulation
results are demonstrated to validate the
generalization ability and efficiency of the
proposed network.

Keywords: Wavelet neural network, wavelet
transform, outlier, least trimmed squares,
function approximation.

1. Introduction

Function approximation involves
estimating (approximating) the underlying
relationship from a given finite input-output data
set has been the fundamental problem for a
variety of applications in pattern classification,
data mining, signal reconstruction, and system
identification [1, 5, 6, 8]. For instance, the task
of pattern recognition is a function mapping

whose objective is to assign each pattern in a
feature space to a specific label in a class space.
The problem of system identification is to
estimate the underlying system characteristics
using empirical input-output data from the
system. In signal processing, it is desired to
determine adaptively nonstationary system
parameters through the input-output signals.
Recently, feedforward neural networks such as
multilayer perceptrons (MLP) and radial basis
function networks (RBFN) have been widely
used as an aternative approach to function
approximation since they provide a generic
black-box functional representation and have
been shown to be capable of approximating any
continuous function defined on a compact set in
R" with arbitrary accuracy [6]. Following the
concept of locally supported basis functions
such as RBFN, a class of wavelet neural
networks (WNN) which originate from wavel et
decomposition in signal processing has become
more popular lately [2, 4, 8, 9, 10]. In addition
to the salient feature of approximating any
non-linear function, WNN outperforms MLP
and RBFN due to its capability in dealing with
the so-called “curse of dimensionality” and
non-stationary signals and in faster convergence
speed [3, 9]. It has aso been shown that RBFN
isagpecia case of WNN.

The task of training WNN involves
estimating parameters in the network by
minimizing some cost function, a measure
reflecting the approximation quality performed
by the network over the parameter space in the
network. The least squares (LS) approach is the
most popularly used in estimating the synaptic
weights which provides optimal results if the
underlying error distribution is Gaussian.
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However, in red-world applications, the
distribution of the noise is often unknown or
highly disturbed and thereby more seriously
contaminated data such as outliers may occur.
Therefore, it is desirable to develop a robust
learning rule insengitive to outliers.

In this paper, we propose a hovel learning
algorithm by applying least trimmed squares
(LTS) method to increase the robustness of
WNN. In contrast to most present robust
learning rules, our approach neither is dependent
upon any assumptions about error distribution
nor is it necessary to estimate the error
distribution. In order to compensate for the loss
of efficiency, an adaptive verson of the
proposed learning rule is developed. The
advantage of the proposed method is
demonstrated by computer simulations. This
paper is organized as follows. Section 2 presents
the WNN framework used in this study. Section
3 illustrates the reason why a robust WNN is
needed. We propose the robust WNN based on
robust regression in Section 4. Section 5
demonstrates the simulation results on two
function approximation problems. Section 6
concludes this paper.

2. Wavelet neur al networks

Wavelets occur in family of functions and each
is defined by dilation & which control the
scaling parameter and trandation t; which
controls the position of a single function, named
the mother wavelet (¢/(x). Mapping functions
to a time-frequency phase space, WNN can
reflect the time-frequency properties of function
more accurately than the RBFN. Given an
n-element training set, the overall response of a
WNN is:
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where N, is the number of wavelet nodes in the
hidden layer and w; is the synaptic weight of
WNN. A WNN can be regarded as a function
approximator which estimates an unknown
functional mapping:
y=fx)+ &,

where f is the regression function and the error
term £ is a zero-mean random variable of
disturbance.

There are a number of approaches for
WNN construction (a brief survey is provided in
[10]), we pay specia attention on the model
proposed by Zhang [10] due to its notable
feature in dealing with the sparseness of training
data. Following [10], constructing a WNN

involves two stages: First, construct a wavelet
library W of discretely dilated and translated
versions of wavelet mother function ¢ :
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where X, is the sampled input, and L is the
number of wavelets in W. Then select the best
M wavelets based on the training data from
wavelet library W , in order to build the

regression

fp (%) =D Ui (%),
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where | is an M-element subset of the index set
{3,2,...,L} andM=L.
Secondly, to minimize the cost function
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Zhang derives two heuristic algorithms, namely,
stepwise selection by orthogonalization for
deciding appropriate wavelets in the hidden
units and backward elimination for choosing the
number of hidden units. The number of wavelets,
M, is chosen as the minimum of the so-called
Akaike's final prediction error criterion (FPE)
[10]:
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where ng, is the number of parameters in the

estimator.

After the initial WNN is constructed, it is
further trained by the gradient descent
algorithms like least mean squares (LMS) to
minimize the mean-squared error:

I(w) :%i(yi —gw))?

where is the real output from a trained WNN at
the fixed weight vector w.

3. The need for robust waveet neural
networks

The LMSbased training approach
provides an asymptotically optimal solution
with minimum variance, which assumes that the
error distribution is identically independent, and
Gaussian. However, this assumption usually
fails to hold in real-world application since
either a priori information about the error



distribution is generally unavailable, or the data
are contaminated by non-Gaussion noise
whereby some data points fall far outside of the
majority of the data so that outliers are
encountered.

Outlier may be introduced in different
ways. For example, in computer vision, the
outliers may be the result of clutter, large
measurement errors, or impulse noise corrupting
the data. In general, there are two kinds of
outliers [7]; leverage points and vertical outlier.
Leverage points result from contamination in the
input space X due to some of the inputs x failing
to obey the environmental probability rule p(x).
Since the outputs y are uncontaminated in the
training set, the effects of horizontal outliers do
not directly contribute to residuas.
Contamination in the output space Y leads to
vertical outliers due to the output y failing to
obey the conditional probability rule p(y[x).
Such deviations in the output space directly
contribute to residuals. Both anomalies may
result in an aberrant and biased WNN since it is
trained to fit these significant fluctuations by
interpolation instead of approximating the
underlying model in an attempt to compensate
for outliers with least squared residuals. That is,
WNN is greatly sensitive to the presence of
outliers.

4. Robust wavelet neural networks

In order to enhance the robustness of
WNN, the training procedure of the initial WNN
is performed by the least trimmed squares (LTS)
in robust regression. LTS is a famous robust
estimator, which has been shown to have the
highest possible breakdown point (=<50%) [5, 7].
The breakdown point of an estimator, without
being confined to any assumed distribution of
errors, gives a global measure of stability in
terms of the fraction of outlying data it can
tolerate. Instead of minimizing the sum of all
squared residuals, the LTS estimator only
considers the sum of the smallest order squared
residuals up to the rank h,

h
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where (rZ)J_'n S (rz)h:n <= (rz)n:n ae
obtained by sgquaring the residuals first, and then
ordering them. The principal difference between
the LTS and the LS methods is that, at the true
parameter vector w, those n-h outlying
observations are left out of the cost function
defined in Equation (7) since (at that w) they
possess the largest residual. It follows that the

WNN reachesits optimal break down point
&= L(n_ p)/2J+l
n
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(The notation |q| stands for the largest integer

when

less than or equal to g.)

The efficiency of the rule when small
perturbations are encountered can be improved
by adaptively adjusting the number of residuals
contributing to weight updates h [5]. This is
inspired by the observation that the more
training data are involved in the beginning of
training, the quicker the network can fit the
underlying model. To accommodate both
requirements of robustness against outliers of
efficiency in the presence of Gaussian noise, we
propose the specific value of h at time t
according to the following rule:

ht+2) = 7)n]+[A-7)(p+D], (2

where
T {1 ,l}
2

is a free parameter that determines the
proportion of observation involved in error
backpropagation and a function of the
commonly used criterion normalized
root-mean-squared error  (NRMSE) on an
uncontaminated test set V since it keeps track of
the generalization ability of the work:
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At the very beginning of training, 7=1 dueto
larger NRMSEs; if this were maintained
congtant, it would degenerate to the traditional
WNN rule. On the other hand, if smaler
NRMSEs are reached, 7 goes to 1/2; a
non-adaptive rule based on the classic LTS
method is obtained.

The difference between Equations (1) and
(2) is that Equation (2) is adaptive in tuning the
parameter h, however Equation (1) fixed it
aways.

5. Experiments

In this section, we present two experimental



results of the proposed robust WNN on
approximating two functions. First, simulations
on the 1-D function  approximation
f(x)=0.5xsin(x)+cos’(x) are conducted to
validate the robustness of the proposed robust
WNN. The input X is constructed by the uniform
distribution on [-6 6], and the corresponding
output y is functional of y = f(x) and is
artificially contaminated by stochastic errors
according to the Cauchy distribution with
location 0 and scale 0.05. The training and test
data are composed of 100 points and 300 points,
respectively (see Figure 1). Mexican Han
wavelet,

1
Yx) =(1-x"x) eXIO(-EXTX)

is chosen as the mother wavelet for training
WNN.
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Figure 1. Theregression function
f(x)=0.5xsin(x)+cos’(x) and the contaminated
data
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Figure 2. The reconstruction result by the
conventional WNN

Figures 2 and 3 show the generalization
results by Zhang's WNN and by the robust
WNN after 500 and 300 training epochs,
respectively. Both networks are powered with 10
hidden units, which are determined by Akaike's
FPE criterion, and the parameters 7 are fixed
at 0.003 for impartiality. One can see that, in
Figure 2, the curve shape predicted is pulled
toward the larger outliers due to the interpolative
character of WNN. On the other hand, in Figure

3, seven mgjor outliers having larger residuals
have been successful trimmed by the proposed
method. The NRMSEe4 of the proposed WNN is
0.0641, comparing to 0.1327 the traditional
WNN achieved. These results confirm that the
proposed robust WNN is resistant to outliers.
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Figure 3. The reconstruction result by the
proposed robust WNN

Next, the two-dimension function
f(xe, %) = (%°-%:))siN(5xy)
is approximated to illustrate the validity of the
proposed learning rule. The training set D and
the test set V are constructed by evenly spaced
21x21 and 22x22 grid on [-1, 1] x[-1,1]. The
data set D is contaminated by stochastic errors
according to the Cauchy distribution with scale
0.1, Figures 4 and 5 show the original surface
and the highly contaminated surface for the
corrupted training set D’, respectively. The
mother wavelet is chosen as follows:

1
Y(x)=(2-x"x) exp(—ExTx) .

original data

Figure4. Theoriginal function: f(xy, X5) =
(X4%%2?)sin(5xy)

Based on the Akaike's FPE criterion, the number
of hidden units is determined as 12. The
parameter v = 0.03 is used again in the
LT S-based method. The breakdown point of this
network is 0.489, and it may tolerate 214 large
outliers. The surface reconstructed by the
conventional WNN, which reaches



NRMSE,, =0.291 after 4000 epochs, is
described in Figure 6, and the relatively residual
surface is depicted in Figure 8. On the other
hand, the proposed robust WNN reaches
NRMSE,, =0.231, and its reconstructed
surface and residual surface are plotted in
Figures 7 and 9. One notes that, from the two
residual surfaces, the proposed approach makes
the reconstructed surface smoother, i.e, the
influence of outliers can be effectively filtered.

contaminated data

Figure 5. The surface contaminated by
Cauchy-distributed errorswith scale 0.1

Figure 6. Thereconstructed surface after 4000
training-epochs by the 2-12-1 WNN

Figure 7. The reconstructed surface after
4000 training-epochs by therobust 2-12-1
WNN

residual of WWNMN

Figure 8. Theresidual surface by the 2-12-1
WNN

residual of Adaptive LTS-based WiNM

Figure 9. Theresidual surface by the robust
2-12-1 WNN

6. Conclusions

This paper presented a novel robust wavelet
neural network for function approximation from
a contaminated training set in which outliers or
gross errors may occur. By appealing to the
breakdown point approach in robust regression,
neither a priori information about the error
distribution nor estimating is required. An
adaptive robust learning algorithm is aso
derived for improving the efficiency of the
network. Simulation results demondtrate its
superiority over the conventional WNN in
function approximation from outlying data
Experimentation on real-world applications is
undergoing.
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