
Maintenance Scheduling of Oil Storage Tanks using Tabu-based
Genetic Algorithm *

Sheng-Tun Li1, Chuan-Kang Ting2, Chungnan Lee2, Shu-Ching Chen3

1 Department of Information Management, National Kaohsiung First University of

Science and Technology, Kaohsiung, Taiwan, ROC, stli@ccms.nkfust.edu.tw
2 Department of Computer Science and Engineering, National Sun Yat-Sen University,

Kaohsiung, Taiwan, ROC
3School of Computer Science, Florida International University, Miami, FL 33199,

USA

* This research was supported in part by NSC90-2416-H-327-012, Taiwan, ROC.

Abstract

Due to the entry of Taiwan into WTO and
the recently liberalized Petroleum Management
Law, the oil market in Taiwan is liberalized and
thus is becoming more competitive. However,
the space limitation and the residents’
increasing awareness of environmental
protection issues in the island make
international vendors unavoidably have to rent
tanks from domestic oil companies. In order to
help the leaseholder maximize revenue by
increasing the availability of tanks, an efficient
maintenance scheduling is needed. This paper
introduces a tabu-based genetic algorithm (TGA)
and its implementation for solving a real-world
maintenance scheduling problem of oil storage
tanks. TGA incorporates a tabu list to prevent
inbreeding and utilizes an aspiration criterion
to supply moderate selection pressure so that
the selection efficiency is improved, and the
population diversity is maintained. The
experimental results validate that TGA
outperform GA in terms of solution quality and
convergence efficiency.
Keywords: Tabu-based genetic algorithm,
maintenance scheduling, tabu search, genetic
algorithm.

1. Introduction

In accordance with of Taiwan’s WTO
entry and the recently issued Petroleum
Management Law, the barrier of oil market in
Taiwan has been removed. International

petroleum vendors can sell their oil products in
Taiwan now. This liberalization results in high
competition in the oil market. To keep a
cutting-edge position, competitors have to
efficiently and effectively control the
distribution channel of products, which consists
of gas stations, pipelines, and storage tanks. Due
to the space limitation and the residents’
increasing awareness of environmental
protection issues in the island, the construction
of storage tanks is the toughest obstacle for
international vendors. In addition, according to
the Petroleum Management Law, refining
vendors or importers must always maintain
reserves of 60 days or 50,000 kiloliters.
Therefore, they unavoidably have to rent tanks
from the domestic oil companies.

On the other hand, following the
American Petroleum Institute (API) standard
650, storage tanks must be inspected every two
years. Depending upon the corrosion degree
inside the tanks, a so-called “open inspection”
procedure will be conducted every five to ten
years. Each tank will take 60 to 240 days of
outage for open inspection based on different
capacity and construction type. As a result, a
well-devised maintenance schedule of storage
tanks will substantially help the leaseholder
increase revenue attributed to the availability of
tanks but assure the statutory reserves without
constructing new tanks.

Currently, there are two domestic oil
vendors in Taiwan. We conducted a case study
of maintenance scheduling tanks on the
dominating vendor in this study. In the past, the
maintenance scheduling relies on the tacit



knowledge of senior engineers or the package of
linear programming. For a larger number of
tanks, the increasing complexity is too high for
men to handle. In the literature, genetic
algorithms (GA) have been shown able to tackle
complicated scheduling problems [1, 3, 5, 6, 7, 9,
10]. In particular, GA outperforms other
heuristic search approaches, such as simulated
annealing and tabu search due to the fact that it
is relatively easy to encode in heuristic space
and problem space [4]. However, GA is subject
to suffer the premature convergence, which
makes it tend to fall into local optimum. To
amend such limitation, we propose to apply the
tabu-based genetic algorithm (TGA) [11] to deal
with this real-world scheduling problem. In
Section 2, we formulated the
maintenance-scheduling problem of storage
tanks. Section 3 presents a detailed description
of the proposed algorithm. In Section 4,
experimental results of TGA are presented and
compared with that of GA to justify the
advantages of TGA. Finally, conclusions are
given in Section 5.

2. Problem statement

The case in this study is that the process of
petroleum refinement automatically runs 24
hours a day. At first the refined oil is stored in
storage tanks and then transported from tanks to
gas stations through pipelines or by tank trucks.
According to API STD 650, the storage tanks
must go through a periodic open inspection. The
objective is to find a satisfying maintenance
scheduling for the outage caused by open
inspection in one year. In the refining system,
the outage of storage tanks will affect the
stability of oil supply. The level of effect is
determined by the net reserve of this company.
The net reserve in certain month m is defined:
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Nm: the obtained net reserve in month m,
C: the total capacity of this company,
ηi,m: the capacity of outage of the i-th tank in
month m,
T: the number of tanks, and
ωm: the forecasting maximum load in month m.

In addition, there are two constraints for this
maintenance scheduling problem:
• The process of maintenance must begin on

the first day of a month and end on the last
day of a month. Furthermore, the
maintenance should be on schedule and
cannot be abandoned.

• The volume of net reserve must be greater
than zero at any time. The objective is to
keep the net reserve maximum during
maintenance.

The period of maintenance scheduling under
investigation is one year in this study; that is to
say, there will be 12 monthly net reserves in one
year. Based on conservative estimation, we
determined the lowest of net reserves as the
fitness of the schedule, i.e.
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3. The proposed algorithm

To overcome the defect of premature
convergence of GA, a new optimization search
algorithm integrating the characteristics of tabu
search (TS), tabu-based genetic algorithm
(TGA), recently had been proposed [11]. TS is
another class of meta-heuristic algorithms,
which are based on explicit memory structures
[2]. It makes use of memory to record the search
trajectory and to guide the search direction so
that both the intensification and diversification
are considered. Many studies have confirmed
the encouraging ability of TS in combinatorial
optimization problems [2, 8]. In TGA, the
structure of tabu list is incorporated to prevent
inbreeding so that population diversity can be
maintained [11]. In the following subsections,
we briefly describe the philosophy of TGA and
the organization of applying GA-like algorithms
to this scheduling problem.

3.1. Tabu-based genetic algorithm

The tabu-based genetic algorithm is built
upon the evolutionary structure of GA and the
restrictive characteristics of TS. Instead of
running GA and TS alternately, the mating
schemes of GA are combined with the memory
structure and search strategy of TS for
augmenting the salient features of both
algorithms.

Table 1 presents the concept of TGA in
pseudocode. Most steps of TGA follow the same
framework with those of original GA except the
process of sieving out acceptable offspring
according to the strategies of tabu search. The
ones determined as acceptable must not violate
tabu restriction or be good enough to meet the
aspiration criterion. If the produced offspring is
not acceptable, the process will re-select and
re-generate offspring until the predefined
number of deadlock is reached. At that point, we
decided that the deadlock occurs and terminates



this repetition. If the deadlock occurs, the
system will perform mutation to activate the
population for increasing the acceptance rate in
next generation.

Table 1. The pseudocode of TGA
TGA()

{

t = 0;

initialize population P(t);

evaluate P(t);

while not terminated do

t = t + 1;

while (population P(t) not fulfilled)

do

n = 0;

repeat

n = n + 1;

select parents from P(t-1);

crossover;

until (not tabu) or (aspiration) or

(n > deadlock);

if (n>deadlock) then mutation;

endwhile;

survive P(t-1), P(t);

endwhile;

}

3.2. Chromosome representation

In this study, the complete schedule for
open inspection is represented as a fixed string
length (chromosome). In terms of the number of
storage tanks, a chromosome will be pieced up
by an identical amount of genes, which contain
the information of maintenance schedule of each
tank. A gene, the minimal inseparable unit, is
encoded in 12 bits to indicate the months of
outage caused by maintenance in one year. To
confirm to the constraint that the maintenance
cannot be terminated half way, the months of
outage traditionally are scheduled as successive
bits. Figure 1 (a) lists the possible variations for
a tank with 6 months of maintenance. From this
figure, we find that there is an unbalanced
distribution in the occurrence frequency of
scheduled outage: the load will be centralized on
middle year because of the effect of normal
distribution in statistics. To overcome this flaw
and take into consideration that the schedule in
practice is continuous; namely, the period of
maintenance for one tank may be carried over
one year, the sequence of outage bits is
accordingly devised as a ring structure.
Although it will increase the complexity of
problem from ( )Tϕ−13 to ( )T12 , where ϕ is
the average of maintaining months, the ring
structure presents a more reasonable monthly

distribution of outage as shown in Figure 1 (b).
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(a) Successive bits
encode

(b) Ring-structure
encode

Figure 1. Structure of genes encode and the
corresponding occurrence frequency

A complete example of 5-tank
chromosome is given in Figure 2. The first gene
indicates that the maintenance of first tank takes
place from this August to March of next year. In
addition to preceding five genes of schedule
information, the subsequent gray parts indicates
that this chromosome belongs to clan 5 and is
forbidden to mate with chromosomes whose
clan are 2, 1, and 7. A more detailed description
about the tabu list is given in following
subsection.

3.3. Tabu list

According to the TGA, a memory
structure, consisting of the clan number and the
tabu list, is introduced to operate the strategy of
TS. The clan number, a unique number for clan
identification, is assigned at the state of
initialization with each chromosome. Offspring
will inherit the clan from parents during
evolution. As the surnames in human society,
the clan also offers a similar symbol for
indication of evolutionary trajectory.
Furthermore, we join the tabu list with this clan
number to restrict some mating: when two
chromosomes are selected as a pair of parents,
each of them must check if its clan is listed in
the tabu list of the mate.

If the answer is yes, this mating is



classified as ‘tabu’ and is not acceptable. An
aspiration criterion is further examined for a
tabooed mating.

111000011111 000000111100 111111000001 111111000000001111100000 5 2170

genes clan tabu list

Figure 2. Example of chromosome
representation

Child 1

Parent 1

Parent 2 011111111000 000111100000 111000001111 000000111111000000011111 8 6200

5 2170

Child 2

5 8217000111100000 111000001111

011111111000 000000111111000000011111 8 5620

Figure 3. Example of crossover

111000011111 111111000000001111100000 5 8217111000001111

111000011111 111111000000001111100000 9 0000111000001111

Mutation

Figure 4. Example of mutation

The aspiration criterion provides an
opportunity for the superior solution to override
the tabu restriction. If the tabooed mating could
produce offspring superior to the best solution
so far, this mating is allowed, despite tabu
classification. The tabu restriction contributes
the diversification in population while the
aspiration criterion encourages the
intensification in convergence. These two forces
constitute a harmonious mating strategy and
improve the solution quality and convergence
speed beyond. These factors of TGA will be
applied in dealing with the maintenance
scheduling problem, so as to obtain better results
than the results of simple GA.

3.4. Genetic operators

The design of genetic operators has
significant impact upon the scheduling
performance. How to design a set of effective
operators becomes one of the most important
issues in tackling with such a practical problem.
On the basis of the chromosome representation
in Section 3.2, any variation in certain gene
caused by crossover or mutation represents a
reorganized maintenance schedule for the
corresponding tank.

Figure 3 illustrates how the crossover
operates. Here we adopt 2-points crossover. First,
the selected parents exchange the genes between
two cutting points from each other. Next,
parents add their mate’s clan to their respective
tabu list. Finally offspring are generated by
combining the exchanged genes with the clan
inherited from one of the parents and the update

of this parent’s tabu list.
The mutation operator is designed to

randomly change one of the genes. The altered
gene must also obey the constraints; in other
words, this gene should be one of the 12
possible arrangements of ring structure
mentioned in Section 3.2. Moreover, because
mutation more or less disrupts the genetic
information, we view the mutated individual as
newborn and assign it a new clan number.
Hence, there is a coincidence between the
genetic information and clan identification. An
example is presented in Figure 4. The second
gene is altered by the mutation operation;
simultaneously, the clan number of this mutated
chromosome is reassigned a new number and
the tabu list is all purged.

4. Experiments

According to the company’s maintaining
experience, there is a roughly linear relation
between the capacity of storage tank and the
needed months for maintenance as shown in
Table 2.

Table 2. The capacity of tank and the needed
months for maintenance

Tank Capacity
(kiloliter)

10 20 30 40 50 60 70

Maintenance
(month)

2 3 4 5 6 7 8

In addition, on the basis of the marketing
experiences over 50 years, the company predicts
the maximum loads every month in one year as
illustrated in Table 3.

Table 3. The maximal loads in a year
Month 1 2 3 4 5 6

Maximum Loads 860 850 850 840 830 820
Month 7 8 9 10 11 12

Maximum Loads 830 820 810 850 830 840

4.1. Experimental design

In order to evaluate the performance of
proposed approach, we adopt two kinds of data
about storage tanks. First, we use the practical
data of 10 tanks that are arranged to be
maintained in certain year according to the
dominating petroleum company’s program. The
capacities of these tanks and the corresponding
month required are shown in Table 4. Second,
for the issue of data confidentiality, the proposed
algorithm is experimented on larger scale of
problems by simulating 20- and 100-tank cases.



The fitness function plays a key role in
evaluating the proposed algorithm. One must
determine an effective function to evaluate the
level of advantage that a chromosome possesses.
To achieve this, here we use a simple way to
evaluate the merit of chromosome. As
aforementioned in Section 2, the net reserve
determines the stability of oil supply at some
time; therefore, we simply define the minimum
net reserve of 12 months as the fitness of
chromosome. For example, if one chromosome
has respective values of net reserve in 12 months:
{70, 130, 150, 60, 110, 110, 90, 70, 140, 130,
100, 90}, the fitness will be the minimum value
60 in April.

Table 4. The attributes of 10 tanks
Tank number 1 2 3 4 5
Capacity (kiloliter) 50 70 30 50 50
Maintenance (months) 6 8 4 6 6
Tank number 6 7 8 9 10
Capacity (kiloliter) 30 20 10 40 70
Maintenance (months) 4 3 2 5 8

Three sets of data: one of them is the
official data (10 tanks) from the dominating
company’s program in this year; the others (20
and 100 tanks) are generated randomly to
simulate the performance in larger-scale
problems. The population is randomly generated
every time. The population sizes (p) are set to 20
and 100; the crossover rate (pC) is set to 1.0. In
TGA, we further define that the size of tabu list
(TL) equals to 0.2 proportional to the population
size and the number of deadlock (DL) equals the
population size, but we do not have to set the
mutation rate, which is controlled adaptively
according to the mating conditions.

4.2 Performance evaluation

To evaluate the performance of proposed
approach, we also adopted GA to compare with
TGA. The parameters of GA are the same with
TGA except that the mutation rate (pM) is set to
0.005.

Figures 5 (a)~(c) depict the convergence
on different population size for GA and TGA.
The results show that both convergence speed
and solution quality of TGA are better than those
of GA. In regard to solution quality, TGA
averagely achieves better solutions than GA on
different population sizes for the three sets of
tank data. To further examine the probability of
obtained superior results, we gather statistics
from the results of 20 trials. Table 5 presents the
probability of obtaining best two solutions. For

both GA and TGA, the probability of best
solution increases with the population.
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Figure 5. The convergence of GA and TGA on
different population size p

It demonstrates that increasing population size is
helpful to enhance the solution quality.
Furthermore, in most cases, TGA possesses a
higher probability to gain the best solutions than
GA. Relative to scheduling by man, both GA and
TGA can obtain satisfying solutions in this
problem, but the higher probability and
convergence further validate the effectiveness of
TGA in seeking better results.

As far as convergence speed is concerned,
TGA converges obviously faster than GA,



especially in the first half time. Even TGA with
lower population size (20, 50 chromosomes) can
converge faster than GA with 50 and 100
chromosomes. Although these results show that
TGA performs better than GA, it cannot prove
amply TGA’s superiority in convergence speed
at this point because the difference of
computation for GA and TGA during one
generation is not taken into consideration. To
verify this, we further examined the
convergence in terms of running time.
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Figure 6. The convergence of GA and TGA in
terms of running time on different population

size p

The comparison results are shown in
Figure 6. For 10 and 20 tanks, the advantage of
TGA is more evident. Compared with the
outperformance of GA, the level of TGA’s
outperformance increases with relative
population size, especially in the population size
of 100 chromosomes. In the 100 tanks problem,
we find that TGA does not perform entirely
better than GA although TGA does converge
faster than GA in the first half. The reason is that
the computation in large scale of tank numbers
consumes TGA in more time, which then
decreases its efficiency. Nevertheless, the
previous results in Figure 5 demonstrate that
TGA will find better solutions in a lower rate
confirmed in Figure 6 (c).

5. Conclusions

We have presented a tabu-based genetic
algorithm, TGA, and an approach for its
implementation in solving a real-world oil-tank
maintenance scheduling problem adhering to the
government’s Petroleum Management Law. The
main feature of the TGA algorithm is the
application of adaptation and parallelism in GA,
and the incorporation of the memory structure
and search strategy of TS. As a result, TGA is
able to give consideration to efficient mating for
intensification and prohibition against
inbreeding for diversification. We conduct
experiments of TGA for a leading oil refinement
company in Taiwan with one practical and two
simulated data sets of tanks. The results validate
that both GA and TGA can achieve acceptable
scheduling solutions. However, the comparison
of GA and TGA demonstrates that TGA
outperform GA in terms of solution quality and
convergence efficiency. With the help of the
proposed scheduling algorithm, the utilization of
oil tanks of the company can be maximized, and
better revenue can be obtained; thus higher
competitiveness can be maintained in the
pressure of international liberalization. Future
work should continue to explore the feasibility
of handling all tanks for the company, say one
thousand tanks, to confirm the effectiveness of
TGA.
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Table 5. The probability of obtaining the best solutions

10 tanks (practical) 20 tanks (simulation) 100 tanks (simulation)
Population

size
Algorithm

Fitness
(130)

Fitness
(140)*

Fitness
(410)

Fitness
(420)*

Fitness
(1820)

Fitness
(1830)*

GA 65% 30% 25% 0% 35% 5%20
TGA 85% 10% 35% 0% 25% 15%
GA 60% 40% 65% 0% 45% 25%50

TGA 50% 50% 85% 10% 65% 25%
GA 30% 70% 95% 0% 35% 65%100

TGA 0% 100% 90% 10% 40% 60%
*: the best solution known from results


