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ABSTRACT 
 
This paper describes an implementation of vertex 
weighting for real-time animation of 3D trees as a result of 
wind force and direction. This method improves over 
similar techniques because it incorporates individual 
branch animation on 3D models, whereas previous works 
perform animations on the model as a whole or use planar 
billboards to visualize the tree. Our tree animation is used 
in an interactive system that visualizes the effects caused 
by a hurricane’s impact on a virtual city. The system uses 
models created with 3D Studio Max and the animations 
are implemented in OpenGL and the nVidia Cg shader 
language. 

 
 

1. INTRODUCTION 
 
Keeping the general public informed to the dangers of 
natural disasters, such as hurricanes, is difficult for 
emergency planners. If there are long stretches of time 
where a hurricane does not strike land, the inhabitants tend 
to become complacent and ignore the warnings from the 
officials. This was the case in 1992 when many people 
ignored the warnings of the impending danger of 
Hurricane Andrew. It was also the case in 2004 when 
many people misinterpreted the dangers of Hurricane 
Charley, believing that it would impact only a specific area 
to the north, the citizens of Port Charlotte did not prepare 
and as a result they suffered devastating consequences. 
However, as a result of the damage caused by Charley, 
many people throughout the state responded by over-
preparing for the following three storms even though they 
were not in the projected paths. This limited the 
availability of emergency supplies for affected people. In 
the case of hurricanes, most people receive their 
information from their local meteorologist on the evening 
news. Generally, this involves the standard weather 
graphics involving radar imagery and projected paths of 

the storm or maps of areas that may experience flooding 
due to storm surge. Unfortunately, the charts and maps 
that are often used do not convey the personal impact that 
people can suffer. We believe our system will help in 
educating people to the possible dangers of a storm, by 
showing them how it may directly affect them and their 
homes. We do this by recreating locations where a 
hurricane may strike and animating storm related 
phenomena such as storm surge, rain, and wind effects on 
objects such as plants and buildings.  

The focus of this paper is the implementation of tree 
animation related to hurricane force winds where the trees 
are modeled as 3D objects rather than planar billboards. 
There is an abundance of work related to creating and 
rendering plant life [2][4][5], but very little with regard to 
animating it. Jeff Thelen’s “Blustery Trees” demo [8] 
performs tree animation with respect to wind, but it is 
limited to bending the tree model as a whole. Our 
implementation creates animations for the tree trunk and 
individual tree branches. This method is ideal for soft 
branches, such as those on palm trees, which are common 
in the locations we have modeled. In addition, our 
implementation also takes advantage of modern 
programmable graphics cards to efficiently animate many 
highly detailed models in real-time.  

This paper is organized as follows. Section 2 discusses 
the techniques used in our proposed model for tree 
animation. This includes the vertex weighting technique, 
lighting technique, the programmable graphics pipeline, 
and how they are applied in our tree animation model. The 
conclusion is given in Section 3. 
 

2. TREE ANIMATION 
 
In earlier versions of our system, we have implemented 
vegetation animation using planar billboard models of 
trees [1]. Planar billboards are simple to implement and 
consume very little computing resources, but they do not 



provide realistic models at close ranges. The lack of 
details in the model only allows us to perform simple 
rotation operations to pivot the tree trunk or branches at 
their base. However, billboard models are preferable at 
distances further away from the camera, where the lack of 
details is not so readily noticeable to the user. Our 
objective is to animate the bending and swaying of trees, 
yet save the computing power by using models with 
varying levels of details. Less detailed models, including 
planar billboards, will be displayed further away from the 
viewing camera. 
 
2.1. Vertex Weighting 
 
Our solution to bending the 3D tree models is using a 
technique known as Vertex Weighting or Vertex Skinning. 
It was developed to animate human skin around joints 
such as elbows and knees [6]. Using traditional animation 
of rigid bodies, sharp seams and gaps would appear when 
animating joints. Vertex Weighting provides a smooth 
bending around these areas by having each point on the 
skin reacts to the underlying bone structure. When a set of 
bones pivot at a joint, the vertices on the surface react 
accordingly depending on the influence each bone exerts 
on them. The new position of a vertex is calculated by 
taking this influence into account by assigning each bone a 
weight value. Equation 1 shows how the new vertex 
position, v’, is calculated. Mi is the transformation matrix 
that represents the ith bone. Our implementation only uses 
rotation transformations about the z-axis, which points in 
the “up direction” for our scene. wi is the weight value 
assigned to the ith bone, c is number of bones, and v is the 
original vertex position. The linear weighting method is 
used when assigning values to the individual bone weights. 
This means that the sum of all weights used should equal 
one. Values other than one can be used, but they result in 
shearing or twisting effects. 
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Equation 1. Calculating the new vertex position [7] 

 
2.2. Applying Vertex Weighting to the Model 
 
To apply Vertex Weighting technique to our tree model, 
we simulate three interconnected bones for the tree trunk 
and each branch. The bones are laid out in a similar 
fashion to that of a human arm, with an upper arm, 
forearm, and wrist. We then take into account the direction 
of the wind with respect the angle of the branch to 
determine how each branch will bend. As shown in Figure 
1, if we assume that the wind is coming from the west 
(180º), each branch will fall into one of 4 quadrants (Q1, 

Q2, Q3, & Q4). If the wind comes from a different angle, 
say 210º, then the quadrants can be rotated 30º counter-
clockwise to be positioned properly. Or, if the wind comes 
from 150º, then the quadrants would be rotated 30º 
clockwise.  

 

Figure 1. Branch angles separated into quadrants 

 The next step is to calculate what angle, with respect 
to the wind direction, that each branch will bend to if it 
were to bend at its maximum angle. This maximum angle 
is arbitrarily defined, so that the resulting animation is 
visually pleasing. In our case, if a branch were pointing 
directly into the wind, for example having an angle of 180º 
(Q3) with the wind also coming from that direction 
(flowing towards 0º), then the branch will bend forward 
120º so that its new angle is 300º. This is only in the 
extreme case, generally branches falling in Q1 and Q4 will 
have new angles in the range of ±[0, α2], and those falling 
in Q2 and Q3 will have new angles in the range of ±[α2, 
(α2+α1)] as shown in the shaded region of Figure 1. The 
values of α1 and α2 depend on how much we want the 
branches to bend. In our case, α1=10º and α2=20º. Larger 
values may be used for sturdier trees so that α1+α2≤180º. 
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Equation 2. Calculating the branch angle 
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Equation 3. Bone transformation formulas 



To apply these concepts to the tree model, we present 
Equations 2 and 3. Equation 2 lists a set of equations that 
are used to calculate the new branch angles based on 
which quadrant the branch is in. We then use these angles 
in Equation 3 to calculate the three bone transformation 
matrices per branch. ROTZ signifies that each Bi is a 
rotation matrix about the z-axis. wi is the weight value for 
ith bone, which is dependent on the position of the vertex, 
x, along the branch length L.  

Our models are created in the 3DS format in 3D 
Studio Max. Each branch contains information embedded 
within the model of its length (L) and the angle (�) that it 
is attached to the trunk with respect to the XY-plane as 
shown in Figure 2. Also shown in this figure is the same 
branch with vertex weighting applied to it as a result of the 
wind coming from two different angles. 
 

 
Figure 2. Branch bending due to wind direction 

 

 
Figure 3. Tree bending with different LOD models 

 
By applying rotation transformations to the trunk and 

branches of a Royal Palm tree model, we can bend them to 
varying degrees simulating the effects of high winds. A 
great advantage of using this technique is that it is not 
limited to 3D models. It may also be applied to planar-
billboards as long as there are enough polygons to bend. 
This allows us to create multiple models of the same tree, 
but with varying levels of details (LOD). Figure 3 shows 
this application to the 3D model of a Royal Palm tree. The 
first image is the model with no bending applied. The 
second and third images are wire-frame versions of the 
tree with different levels of details. The tree in the middle 
contains over 30,000 polygons. The tree on the right 
contains approximately 1,500 polygons. 

 
2.3. Programmable Graphics Pipeline 
 
One of our main goals is to implement a system that 
performs in real-time on a single consumer level computer, 
so we must always search for ways to reduce the workload 
on the CPU. Unfortunately, the vertex weighting method is 
computationally expensive. Fortunately, we can alleviate 
this problem because many modern consumer graphics 
cards now come equipped with a programmable graphics 
pipeline. This allows a developer to take advantages of 
hardware implementations of common 3D graphics 
operations.  

Figure 4 depicts the graphics pipeline of a modern 
GPU. The top four components are the standard graphics 
pipeline while those two components on the bottom of 
Figure 4 are the programmable parts of the pipeline 
consisting of the vertex and fragment processors. A 
programmer can take advantages of the vertex and 
fragment processors by writing vertex and pixel shaders. 
However, when doing so, certain sections of the standard 
pipeline are bypassed. We implemented the Vertex 
Weighting method as a vertex shader with the nVidia Cg 
language [9]. Cg is a C-like language specially designed 
for vertex shaders. Integrating a Cg shader with our system 
is seamless because nVidia provides a runtime 
environment that allows them to be integrated into C++ 
and OpenGL [10] programs, where our system is 
developed.  
 

 
Figure 4. Programmable graphics pipeline [3] 

 
2.4. Lighting 
 
One aspect of using the programmable pipeline is that the 
programmer must perform the operations that are bypassed 
in the standard pipeline. This includes lighting operations 
that give the objects their 3-dimensional appearance. The 
lighting model that we use to perform these operations is 
the diffuse lighting model. Each vertex in a model has an 
associated material property for ambient (MatAmbient), 
diffuse (MatDiffuse), and specular light (MatSpecular). A set of 
material coefficients, d and s for the diffuse and specular 
components respectively, are calculated using the Light 
(L), Normal (n’), Half (H), and View (V) vectors. These 
coefficients are then multiplied with the material 
properties and a final color (ColorFinal) is computed, as 



shown in Equation 4. The equation for n’ is related to 
Equation 1 for calculating the new vertex position. Figure 
5 depicts the vectors used in the lighting calculation, and 
Figure 6 depicts the tree animation with and without 
diffuse lighting applied to it. 
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Equation 4. Calculating the normal [7] and color [3] 

 

 

Figure 5. Calculating diffuse lighting [3] 

 

 
Figure 6. Tree model with no lighting (left) and with 

diffuse lighting applied (right) 

 
3. CONCLUSION 

 
In this paper, we described a method to implement 3D tree 
animation using the vertex weighting technique. Our 
implementation, in addition to performing trunk animation 
in a similar fashion to the “Blustery Trees” demo [8], also 
performs animation for the individual tree branches. The 
animation is implemented in OpenGL and the nVidia Cg 
language. With the Cg language, we have taken 
advantages of the programmable graphics pipeline 
available in modern graphics cards. This takes the 
computationally intensive operations performed in vertex 
weighting from the CPU to the GPU, allowing us to 

produce realistic animations on a single workstation level 
computer. This system’s intended application domain is as 
an educational tool for the citizens who live in hurricane 
affected areas. Visualizing possible damage effects by a 
storm in an affected area will allow people to make better 
informed decisions as to whether they should evacuate or 
not. Tree animation is a component of ambient details that 
adds to the overall experience of the virtual environment. 
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