
A REAL-TIME 3D ANIMATION ENVIRONMENT FOR STORM SURGE

Shu-Ching Chen1, Keqi Zhang2, Min Chen1

1Distributed Multimedia Information System Laboratory
School of Computer Science, Florida International University, Miami, FL 33199, USA

2International Hurricane Center
Florida International University, Miami, FL 33199, USA

ABSTRACT

This paper describes an approach to develop a high
performance animation environment for storm surge. The
system provides the capability to simulate the storm surge
effects in the physical world by (1) modeling a region
using the airborne light Detection And Ranging (LIDAR)
data, USGS orthophotos, RLG road data and photos; (2)
animating the storm impact by using the features of this
model; and (3) providing the capability for users to
explore the animation environment. We present our
system by modeling the dataset collected from Ft.
Lauderdale, a region in South Florida, USA.

1. INTRODUCTION

With the availability of digital data archive, the
exponential growth of the affordable computational power
and maturation of computer graphics technology, real
time animations of the locations and events in the physical
world become possible. Real time modeling of the
physical world has many uses, such as disaster impact
prediction, disaster recovery planning and training, urban
planning and virtual tourism.

However, the current state of technology lacks the
capability to translate storm damage predictions into a
meaningful form by depicting the actual damage estimate
at a location efficiently to be understandable by the
general public who has little knowledge of computations,
meteorology and mechanics. In order to address this issue,
we use the progressive morphology filter, developed by
our group, to process the LIDAR data to acquire a high-
resolution Digital Terrain Model (DTM) automatically
[1], utilize the OpenGL technology [6], 3D Studio tools
[7] and the Virtual Terrain Project (VTP) [5] to create the
3D interactive environments, and extend the capability to
animate buildings, vegetation and flooding as it pertains to
storm surge effects.

This paper is organized as follows. Section 2 outlines
the system architecture and introduces three modules in
this system. Section 3 concludes this paper.

2. SYSTEM PARADIGM

The high-level system architecture of our proposed
approach is outlined in Figure 1. As can be seen from this
figure, there are three modules in this system: dataset
processing module, model construction module and
animation module.

Figure 1: System architecture.

2.1. Dataset Processing Module
We have collected datasets to model the terrain, buildings,
roads and vegetation of Ft Lauderdale, Florida, USA,
which includes the collection of the LIDAR elevation data,
USGS orthophotos and RLG of road location, and photos
of real building and vegetation models. In order to create
a modeled area rapidly and accurately, an important step

Dataset
Processing

PHOTOS

USGS/
RLG

LIDAR

Model
Construction

Progressive
Morphology

Filter

Building
Model

Vegetation
Model

Terrain/
Road

Model

 Building
Animation

Vegetation
Animation

Flooding
Animation

VTP

3D Studio

Correct for
different

projections

Animation

is to generate a high-resolution DTM for that area by
processing the datasets automatically.

The methodology adopted in this system is the
progressive morphological filter [1] for removing the non-
ground measurements from the LIDAR data. The LIDAR
data were derived using Optech 1210 LIDAR mapping
system. Each flight surveyed a 600 m wide swath with a
0.3 m diameter laser footprint spaced approximately every
2.5 m. The raw points are sampled every 2*2 m2 cell. If
more than one measurement falls within a cell, the point
with the minimum elevation is selected. If there is no
measurement for a cell, nearest neighborhood
interpolation is used to derive an elevation.

In the progressive morphological filter, two
fundamental operations based on set theory, dilation and
erosion, are extended to remove non-ground
measurements in the LIDAR data. Considering a LIDAR
measurement p(x, y, z), the dilation of elevation z at x and
y is defined as follows.

)(max

),(
p

wyx
p zd

pp ∈
= (1)

where points (xp, yp, zp) represent p’s neighbors
(coordinates) within a filtering window w. Erosion is a
counterpart of dilation and is defined as follows.

)(min
),(pwyxp ze

pp ∈
= (2)

The combination of erosion and dilation generates the
opening operation that is employed to filter the LIDAR
data. The opening operation is achieved by performing an
erosion of the data set followed by a dilation. The erosion
operation removes the tree objects of sizes smaller than
the window size, while the dilation restores the features
larger than the window size.

There is an abrupt change in elevation between a non-
ground object (such as a building and a tree) and the
adjacent ground, while the elevation changes of the terrain
are gradual. This difference in elevation change makes the
progressive morphological filter to be able to extract the
DTM information by selecting the filtering window size
and elevation difference threshold in the following
manner. That is, instead of using a fixed filtering window
size as [2], we perform the opening operation to a laser-
scanned data with a line window that increases in sizes
gradually.
 12 += k

k bw (3)

where wk is the full window size, b is the base of an
exponential function, k = 0,1,2, …M, and 2bM+1 is equal
to the maximum window size.

Let dh0 be the initial elevation difference threshold, s
be the slope, c be the cell size, and dhmax be the maximum

elevation difference threshold. The elevation threshold
dh,k can be given by

















>
>
≤

+−= −

maxmax

01

0

3
3

)(
dhdhif

wif
wif

dh
dhcwws

dh
dh

k

k

k

kkk (4)

The DTM generating steps using the progressive

morphological filter is shown in Table 1.

Table 1: the DTM generating steps using the progressive

morphological filter

The advantages of using the progressive

morphological filter is that various sizes of non-ground
objects such as buildings and trees can be filtered out
from the LIDAR data without prior knowledge of detailed
size and elevation information of these objects. Therefore,
it enables the automation in processing the laser scanning
data. The resulting DTM, combined with the USGS
orthophoto and RLG road data following the same map
projection, is then imported to the model construction
module to create the terrain model.

2.2. Model Construction Module
To the aim of creating the 3D interactive environments
rapidly, we use OpenGL and VTP [5] (a current project
using Open Scene Graph (OSG) API [8]) in our system.

1. Given a set of LIDAR measurements P = {p1 ,
p2 , …, pn}, where n is the total number of the
points in the measurements and pi = (xi , yi , zi),
sample them in every 2*2 m2 cell.

2. If the number of sampled points m > 1 in one
cell, select the point p with minimum elevation
(zp).

3. If m = 0, use nearest neighborhood
interpolation to derive an elevation.

4. Upon the initial filtering window size w0 and
elevation threshold dh0 according to Equations
(3) and (4), using the morphological filter
whose major component is an opening
operation to the measurements.

5. Obtain the non-ground point pi,k with zi,k > dhk
and the approximate surface model.

6. Continue to calculate the next values for wk and
dhk by applying the morphological filter to the
surface model obtained from the previous
iteration, until wk is greater than a predefined
maximum value.

7. Generate the DTM based on the data set after
the non-ground measurements have been
removed.

OpenGL is an API that provides the interface to the
underlying platform 3D graphics hardware. Based on this
technology, our system provides the ability to support
lighting/shading models, textures mapping and polygon
manipulation, and delivers real-time 3D graphics display
performance. What is lacking from OpenGL is the support
for scene organization and collision detection between the
objects and occlusion detection.

VTP [5] solves this problem by providing the
capability to manage the creation and display of objects in
a scene. VTP also provides a user-friendly interface which
enables the users to easily walk or fly around the
environment by using mouse navigation, such as location
selection, compass control and zoom in/zoom out. In
addition, the libraries are written in C++ and allow for the
realization of maximum system performance. However,
VTP lacks the capability to model complicated 3d objects.
Most of the VTP objects consist of a single large polygon
for each surface, and thus the programmers have to define
the size, shape, location and texture for each polygon,
which is quite tedious and inefficient to create more
realistic objects.

In our model construction module, we provide the
capability to model a region automatically and realistically
by importing the DTM data and realistic 3D models into
our system using the VTP interface. The DTM data is
generated in the previous module, while the 3D models
are constructed in 3D Studio [7], based on the photos of
the typical building models and vegetation models in
South Florida area.

Model construction can be further grouped into three
categories: building models, vegetation models and
terrain/road models.
• Building models: As mentioned earlier, VTP lacks

the capability to model complicated buildings. To
solve this problem, we use 3D Studio that is a
prominent modeling tool used for animation, game
and architectural development. A 3D building model
can be created in 3D Studio by two major steps:
object construction and object rendering. First, we
create a building shape by using some primitive
object such as a box and a cylinder, or by making the
rotation or loft of some 2D object, with some
modifications to get more complicated shapes.
Second, to make a realistic building model, the
rendering operation is quite important. The material
properties, such as color, reflection and opacity, need
to be set. Images from close range photos are used to
map on the object to create textures. The result is then
exported as a 3ds file that can be read by the VTP. As
a result, we can import 3D Studio defined objects into
our system by using the VTP interface to create a
more realistic environment.

• Vegetation models: In addition to the believable
buildings, we use two approaches to generate our

vegetation models. One is planar billboard, and the
other one is to utilize the models created with 3D
Studio (as mentioned earlier). We combine these two
methods to produce more realistic vegetation. Along
each road, bush trees are densely distributed and palm
trees are sparsely distributed. Because of the large
number of bush trees, they are created by planar
billboard, which is composed of two perpendicular
meshes, to maintain the real-time performance of the
system. The palm trees are created by importing the
3ds files, which are much more realistic and normally
each palm tree has more than one hundred meshes.

• Terrain/Road models: The DTM created in the
dataset processing module can be read by the system
to create the terrain and road model directly.

Figure 2 presents the result of the modeled area based

on our proposed model construction module.

Figure 2: Modeled area including terrain, building, and
vegetation models.

2.3. Animation Module
The goal of the animation module is to generate
believable storm effects to the modeled area. To this aim,
we provide the capability to animate buildings, vegetation
and flooding. A user-friendly GUI has been developed to
allow users to navigate the animation environment.
• Flooding Animation: In our system, the approach of

parametric modeling has been implemented. This
technique provides a solution to the traveling wave
equation based upon the work of Gerstner and models
the wave as sinusoid modulated by decaying
exponentials [3][4]. It describes the disturbance (X, Y
and Z translation) of a particle on the water surface as
a wave passes the particle, which can then capture the
effect of the surface of the water flowing over itself.
In VTP, water surfaces are represented as meshes of
triangles, where the sizes of these triangles constrain

the levels of details achievable. A higher level of
detail is directly related to the computational cost. In
our system, we have applied this model to a portion
of the terrain in favor of real time rendering and have
approximated some of the fine scale detail by
textures. Figure 3 shows the simulated environment
in flooding.

Figure 3: Simulated environment in flooding.

• Vegetation Animation: Variation of the planar

billboard angles is used for vegetation animation in
our system. This approach involves changing the
angle of the planes with respect to the terrain surface.
The tree could be portrayed as slanting in the
direction of the wind. Figure 4 shows the animation
result of a tree in the wind.

Figure 4: A tree and its corresponding animation result.

• Building Animation: In order to animate the effects
of the shingle and sections of the roofs being blown
off, we made a mesh, which is divided into many
triangles, to model the surface. Then we calculate the
track of each triangle being blown off by wind and
change its location accordingly. Since these
operations are computationally expensive, we limited
them to the user’s immediate viewing area.

In summary, to create a believable animation
environment, we achieve fine scale modeling of dynamic
surfaces, which are computationally expensive, around the
user’s immediate viewing area; and employ simpler
texture mapping techniques at larger scales and distances
to maintain the real-time performance of the system.

3. CONCLUSION

In this paper, we presented the high performance 3D
animation environment for storm surge. Our system is
based on the progressive morphology filter methodology,
and utilizes the OpenGL technology, 3D Studio tools and
VTP. The inputs for this system are the LIDAR data,
USGS orthophotos, RLG road data and photos. This
system has a variety of applications. For example, it can
facilitate the planning and assessment of storm damage
predictions by public and researches.

4. ACKNOWLEDGEMENT

This research was partly supported by a grant (FEMA-
DR-1249-FL) from the Federal Emergency Management
Agency. We would also like to thank Jianhua Yan and
Jeff Strickrott for their contributions to this system.

5. REFERENCES

[1] Keqi Zhang, Shu-Ching Chen, Dean Whitman, Mei-Ling
Shyu, Jianhua Yan, and Chengcui Zhang, “A Progressive
Morphological Filter for Removing Non-ground Measurements
from Airborne LIDAR Data,” accepted for publication, IEEE
Transactions on Geoscience and Remote Sensing, 2002.

[2] P. Lohmann, A. Koch, and M. Schaeffer, “Approaches to the
filtering of laser scanner data,” International Archives of
Photogrammetry and Remote Sensing, vol. XXXIII, Part B3, pp.
540-547, 2000.

[3] A. Fournier and W. Reeves, “A Simple Model of Ocean
Waves,” Computer Graphics and ACM Proceedings of
SIGGRAPH, vol. 20, no. 4, pp. 75-84, 1986.

[4] D. Peachey, “Modeling Waves and Surface,” Computer
Graphics and ACM Proceedings of SIGGRAPH, vol. 20, no. 4,
pp. 65-74, 1986.

[5] http://www.vterrain.org

[6] http://www.opengl.org

[7] http://www.discreet.com

[8] http://www.openscenegraph.org

