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ABSTRACT 
 
This paper describes an approach to develop a high 
performance animation environment for storm surge.  The 
system provides the capability to simulate the storm surge 
effects in the physical world by (1) modeling a region 
using the airborne light Detection And Ranging (LIDAR) 
data, USGS orthophotos, RLG road data and photos; (2) 
animating the storm impact by using the features of this 
model; and (3) providing the capability for users to 
explore the animation environment. We present our 
system by modeling the dataset collected from Ft. 
Lauderdale, a region in South Florida, USA. 
 

1. INTRODUCTION 
 
With the availability of digital data archive, the 
exponential growth of the affordable computational power 
and maturation of computer graphics technology, real 
time animations of the locations and events in the physical 
world become possible. Real time modeling of the 
physical world has many uses, such as disaster impact 
prediction, disaster recovery planning and training, urban 
planning and virtual tourism.  

However, the current state of technology lacks the 
capability to translate storm damage predictions into a 
meaningful form by depicting the actual damage estimate 
at a location efficiently to be understandable by the 
general public who has little knowledge of computations, 
meteorology and mechanics. In order to address this issue, 
we use the progressive morphology filter, developed by 
our group, to process the LIDAR data to acquire a high-
resolution Digital Terrain Model (DTM) automatically 
[1], utilize the OpenGL technology [6], 3D Studio tools 
[7] and the Virtual Terrain Project (VTP) [5] to create the 
3D interactive environments, and extend the capability to 
animate buildings, vegetation and flooding as it pertains to 
storm surge effects.  

This paper is organized as follows. Section 2 outlines 
the system architecture and introduces three modules in 
this system. Section 3 concludes this paper.   
 

2. SYSTEM PARADIGM 
 

The high-level system architecture of our proposed 
approach is outlined in Figure 1. As can be seen from this 
figure, there are three modules in this system: dataset 
processing module, model construction module and 
animation module. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: System architecture. 
 
2.1. Dataset Processing Module  
We have collected datasets to model the terrain, buildings, 
roads and vegetation of Ft Lauderdale, Florida, USA, 
which includes the collection of the LIDAR elevation data, 
USGS orthophotos and RLG of road location, and photos 
of real building and vegetation models. In order to create 
a modeled area rapidly and accurately, an important step 
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is to generate a high-resolution DTM for that area by 
processing the datasets automatically.  

The methodology adopted in this system is the 
progressive morphological filter [1] for removing the non-
ground measurements from the LIDAR data. The LIDAR 
data were derived using Optech 1210 LIDAR mapping 
system. Each flight surveyed a 600 m wide swath with a 
0.3 m diameter laser footprint spaced approximately every 
2.5 m. The raw points are sampled every 2*2 m2 cell.  If 
more than one measurement falls within a cell, the point 
with the minimum elevation is selected. If there is no 
measurement for a cell, nearest neighborhood 
interpolation is used to derive an elevation. 

In the progressive morphological filter, two 
fundamental operations based on set theory, dilation and 
erosion, are extended to remove non-ground 
measurements in the LIDAR data. Considering a LIDAR 
measurement p(x, y, z), the dilation of elevation z at x and 
y is defined as follows.  
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where points (xp, yp, zp) represent p’s neighbors 
(coordinates) within a filtering window w. Erosion is a 
counterpart of dilation and is defined as follows. 
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The combination of erosion and dilation generates the 
opening operation that is employed to filter the LIDAR 
data. The opening operation is achieved by performing an 
erosion of the data set followed by a dilation. The erosion 
operation removes the tree objects of sizes smaller than 
the window size, while the dilation restores the features 
larger than the window size.  

There is an abrupt change in elevation between a non-
ground object (such as a building and a tree) and the 
adjacent ground, while the elevation changes of the terrain 
are gradual. This difference in elevation change makes the 
progressive morphological filter to be able to extract the 
DTM information by selecting the filtering window size 
and elevation difference threshold in the following 
manner. That is, instead of using a fixed filtering window 
size as [2], we perform the opening operation to a laser-
scanned data with a line window that increases in sizes 
gradually. 
  12 += k
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where wk is the full window size, b is the base of an 
exponential function, k = 0,1,2, …M,  and 2bM+1 is equal 
to the maximum window size.   

Let dh0 be the initial elevation difference threshold, s 
be the slope, c be the cell size, and dhmax be the maximum 

elevation difference threshold. The elevation threshold 
dh,k can be given by 
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The DTM generating steps using the progressive 

morphological filter is shown in Table 1.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Table 1: the DTM generating steps using the progressive 

morphological filter 
 
The advantages of using the progressive 

morphological filter is that various sizes of non-ground 
objects such as buildings and trees can be filtered out 
from the LIDAR data without prior knowledge of detailed 
size and elevation information of these objects. Therefore, 
it enables the automation in processing the laser scanning 
data. The resulting DTM, combined with the USGS 
orthophoto and RLG road data following the same map 
projection, is then imported to the model construction 
module to create the terrain model.  
 
2.2. Model Construction Module 
To the aim of creating the 3D interactive environments 
rapidly, we use OpenGL and VTP [5] (a current project 
using Open Scene Graph (OSG) API [8]) in our system. 

1. Given a set of LIDAR measurements P = {p1 , 
p2 , …, pn}, where n is the total number of  the 
points in the measurements and pi = (xi , yi , zi ), 
sample them in every 2*2 m2 cell. 

2. If the number of sampled points m > 1 in one 
cell, select the point p with minimum elevation 
(zp). 

3. If m = 0, use nearest neighborhood 
interpolation to derive an elevation. 

4. Upon the initial filtering window size w0 and 
elevation threshold dh0 according to Equations 
(3) and (4), using the morphological filter 
whose major component is an opening 
operation to the measurements. 

5. Obtain the non-ground point pi,k with zi,k > dhk
and the approximate surface model.  

6. Continue to calculate the next values for wk and 
dhk by applying the morphological filter to the 
surface model obtained from the previous 
iteration, until wk is greater than a predefined 
maximum value. 

7. Generate the DTM based on the data set after 
the non-ground measurements have been 
removed. 



OpenGL is an API that provides the interface to the 
underlying platform 3D graphics hardware. Based on this 
technology, our system provides the ability to support 
lighting/shading models, textures mapping and polygon 
manipulation, and delivers real-time 3D graphics display 
performance. What is lacking from OpenGL is the support 
for scene organization and collision detection between the 
objects and occlusion detection.  

VTP [5] solves this problem by providing the 
capability to manage the creation and display of objects in 
a scene. VTP also provides a user-friendly interface which 
enables the users to easily walk or fly around the 
environment by using mouse navigation, such as location 
selection, compass control and zoom in/zoom out. In 
addition, the libraries are written in C++ and allow for the 
realization of maximum system performance. However, 
VTP lacks the capability to model complicated 3d objects. 
Most of the VTP objects consist of a single large polygon 
for each surface, and thus the programmers have to define 
the size, shape, location and texture for each polygon, 
which is quite tedious and inefficient to create more 
realistic objects.   

In our model construction module, we provide the 
capability to model a region automatically and realistically 
by importing the DTM data and realistic 3D models into 
our system using the VTP interface. The DTM data is 
generated in the previous module, while the 3D models 
are constructed in 3D Studio [7], based on the photos of 
the typical building models and vegetation models in 
South Florida area. 

Model construction can be further grouped into three 
categories: building models, vegetation models and 
terrain/road models. 
• Building models: As mentioned earlier, VTP lacks 

the capability to model complicated buildings. To 
solve this problem, we use 3D Studio that is a 
prominent modeling tool used for animation, game 
and architectural development. A 3D building model 
can be created in 3D Studio by two major steps: 
object construction and object rendering. First, we 
create a building shape by using some primitive 
object such as a box and a cylinder, or by making the 
rotation or loft of some 2D object, with some 
modifications to get more complicated shapes. 
Second, to make a realistic building model, the 
rendering operation is quite important. The material 
properties, such as color, reflection and opacity, need 
to be set. Images from close range photos are used to 
map on the object to create textures. The result is then 
exported as a 3ds file that can be read by the VTP. As 
a result, we can import 3D Studio defined objects into 
our system by using the VTP interface to create a 
more realistic environment. 

• Vegetation models: In addition to the believable 
buildings, we use two approaches to generate our 

vegetation models. One is planar billboard, and the 
other one is to utilize the models created with 3D 
Studio (as mentioned earlier). We combine these two 
methods to produce more realistic vegetation. Along 
each road, bush trees are densely distributed and palm 
trees are sparsely distributed. Because of the large 
number of bush trees, they are created by planar 
billboard, which is composed of two perpendicular 
meshes, to maintain the real-time performance of the 
system. The palm trees are created by importing the 
3ds files, which are much more realistic and normally 
each palm tree has more than one hundred meshes. 

• Terrain/Road models: The DTM created in the 
dataset processing module can be read by the system 
to create the terrain and road model directly. 

 
Figure 2 presents the result of the modeled area based 

on our proposed model construction module. 
 

 
 

Figure 2: Modeled area including terrain, building, and 
vegetation models. 

 
2.3. Animation Module  
The goal of the animation module is to generate 
believable storm effects to the modeled area. To this aim, 
we provide the capability to animate buildings, vegetation 
and flooding. A user-friendly GUI has been developed to 
allow users to navigate the animation environment.  
• Flooding Animation: In our system, the approach of 

parametric modeling has been implemented. This 
technique provides a solution to the traveling wave 
equation based upon the work of Gerstner and models 
the wave as sinusoid modulated by decaying 
exponentials [3][4]. It describes the disturbance (X, Y 
and Z translation) of a particle on the water surface as 
a wave passes the particle, which can then capture the 
effect of the surface of the water flowing over itself. 
In VTP, water surfaces are represented as meshes of 
triangles, where the sizes of these triangles constrain 



the levels of details achievable. A higher level of 
detail is directly related to the computational cost. In 
our system, we have applied this model to a portion 
of the terrain in favor of real time rendering and have 
approximated some of the fine scale detail by 
textures. Figure 3 shows the simulated environment 
in flooding. 

 

 
 

Figure 3: Simulated environment in flooding. 
 
• Vegetation Animation: Variation of the planar 

billboard angles is used for vegetation animation in 
our system. This approach involves changing the 
angle of the planes with respect to the terrain surface. 
The tree could be portrayed as slanting in the 
direction of the wind. Figure 4 shows the animation 
result of a tree in the wind.  

 

      
 

Figure 4: A tree and its corresponding animation result. 
 

• Building Animation: In order to animate the effects 
of the shingle and sections of the roofs being blown 
off, we made a mesh, which is divided into many 
triangles, to model the surface. Then we calculate the 
track of each triangle being blown off by wind and 
change its location accordingly. Since these 
operations are computationally expensive, we limited 
them to the user’s immediate viewing area. 

In summary, to create a believable animation 
environment, we achieve fine scale modeling of dynamic 
surfaces, which are computationally expensive, around the 
user’s immediate viewing area; and employ simpler 
texture mapping techniques at larger scales and distances 
to maintain the real-time performance of the system. 

 
3. CONCLUSION 

 
In this paper, we presented the high performance 3D 
animation environment for storm surge. Our system is 
based on the progressive morphology filter methodology, 
and utilizes the OpenGL technology, 3D Studio tools and 
VTP. The inputs for this system are the LIDAR data, 
USGS orthophotos, RLG road data and photos. This 
system has a variety of applications. For example, it can 
facilitate the planning and assessment of storm damage 
predictions by public and researches. 

 
4. ACKNOWLEDGEMENT 

 
This research was partly supported by a grant (FEMA-
DR-1249-FL) from the Federal Emergency Management 
Agency. We would also like to thank Jianhua Yan and 
Jeff Strickrott for their contributions to this system. 

 
 

5. REFERENCES 
 
[1] Keqi Zhang, Shu-Ching Chen, Dean Whitman, Mei-Ling 
Shyu, Jianhua Yan, and Chengcui Zhang, “A Progressive 
Morphological Filter for Removing Non-ground Measurements 
from Airborne LIDAR Data,” accepted for publication, IEEE 
Transactions on Geoscience and Remote Sensing, 2002. 
 
[2] P. Lohmann, A. Koch, and M. Schaeffer, “Approaches to the 
filtering of laser scanner data,” International Archives of 
Photogrammetry and Remote Sensing, vol. XXXIII, Part B3, pp. 
540-547, 2000. 
 
[3] A. Fournier and W. Reeves, “A Simple Model of Ocean 
Waves,” Computer Graphics and ACM Proceedings of 
SIGGRAPH, vol. 20, no. 4, pp. 75-84, 1986. 
 
[4] D. Peachey, “Modeling Waves and Surface,” Computer 
Graphics and ACM Proceedings of SIGGRAPH, vol. 20, no. 4, 
pp. 65-74, 1986. 
 
[5] http://www.vterrain.org 
 
[6] http://www.opengl.org 
 
[7] http://www.discreet.com 
 
[8] http://www.openscenegraph.org 


