
Residual Attention-based Fusion for Video Classification

Samira Pouyanfar, Tianyi Wang, Shu-Ching Chen
School of Computing and Information Sciences,

Florida International University, Miami, FL 33199, USA
{spouy001, wtian002, chens}@cs.fiu.edu

Abstract

Video data is inherently multimodal and sequential.
Therefore, deep learning models need to aggregate all
data modalities while capturing the most relevant spatio-
temporal information from a given video. This pa-
per presents a multimodal deep learning framework for
video classification using a Residual Attention-based Fu-
sion (RAF) method. Specifically, this framework extracts
spatio-temporal features from each modality using residual
attention-based bidirectional Long Short-Term Memory and
fuses the information using a weighted Support Vector Ma-
chine to handle the imbalanced data. Experimental results
on a natural disaster video dataset show that our approach
improves upon the state-of-the-art by 5% and 8% regarding
F1 and MAP metrics, respectively. Most remarkably, our
proposed residual attention model reaches a 0.95 F1-score
and 0.92 MAP for this dataset.

1. Introduction
Multimodal data analytics has recently attracted signif-

icant attention in the deep learning and computer vision
community. One of the useful yet challenging tasks in deep
learning is video content analysis and understanding [7].
Since video data includes visual, audio, metadata and text
description, it can provide a great opportunity in the mul-
timodal deep learning area. One of the main challenges in
video processing is how to integrate the information from
multiple data modalities to effectively gain insight from
the video. To tackle this challenge, many researchers have
proposed various data fusion techniques using deep learn-
ing [3]. It is also important to automatically learn the sig-
nificance of each data modality during the fusion step in-
stead of simply concatenating them. Besides, due to the
spatio-temporal nature of video, it is imperative to take both
static and temporal information into account. To overcome
these challenges, this paper presents a new framework using
Convolutional Neural Networks (CNNs) and Long short-
term memory (LSTM) for multimodal spatio-temporal fea-

ture extraction and fusion.
In deep learning research, “Attention” mechanism [9]

has been introduced and used in recent years for various
sequence-based tasks such as machine translation [2]. It
also shows promising results in visual data analytics such
as image classification [5]. In this paper, attention is used
and followed by temporal layers to not only allow the net-
work to pay attention to the parts of the video sequences
that are required, but also diminishing the irrelevant infor-
mation or noise. This is similar to human perception which
concentrates on only a subset of the whole information it
receives. We also incorporate the shortcut path or residual
mapping [4] to the attention-based recurrent layers to fur-
ther enhance the performance of the video classification.

This work is an extension of our previous work on mul-
timodal deep learning for natural disaster management [7].
Specifically, in this work, we investigate the importance of
residual connection and attention mechanism in LSTM for
multimodal data fusion. In particular, we proposed residual
attention for multimodal temporal feature extraction and fu-
sion. The experimental results illustrate the significance of
the residual attention connection in LSTM. Finally, we uti-
lized a Weighted Support Vector Machine (WSVM) for the
imbalanced video classification.

2. Proposed Framework
The proposed framework starts with static multimodal

feature extraction followed by temporal feature analysis and
fusion modules as explained below.

For static multimodal feature extraction, the state-of-the-
art pre-trained models are employed for each data modal-
ity. For visual data, the last pooling layer of the Inception-
V3 [8] is used to extract the features from video frames us-
ing transfer learning. Audio features are extracted using the
last convolutional layer of SoundNet [1] which utilizes the
natural synchronization between visual and audio data. Fi-
nally, text features are automatically obtained using GloVe
[6]. After each feature set is generated, they are combined
using the proposed spatio-temporal RAF module.

Figure 1 shows various residual attention mechanisms
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used in this work for spatio-temporal feature extraction
from each data modality. The proposed spatio-temporal fea-
ture extraction module generates the input for the fusion
module. The fused feature set is constructed by stacking
several Residual Attention Bi-directional LSTM (RABL)
blocks. Each RABL block takes the output of the previous
block as the input and then passes it to the first bidirectional
LSTM (BiLSTM) layer. Let c(i)t be the ith temporal feature
vector generated by the BiLSTM at time step t. The atten-
tion layer constructs a context vector ht for c(i)t at time step
t by assigning the attention weights a(i)t . The context vector
can be calculated as:

ht =

M∑
i=1

a
(i)
t c

(i)
t (1)

where M is the total number of features. The hidden state
ht from the first BiLSTM layer is fed into an activation
function to generate the relevant score s

(i)
t :

s
(i)
t = tanh(Wht + b) (2)

where s
(i)
t is the relevant score for feature i in time step t.

W and b are the weight and bias parameters that are learned
by the model. tanh() is the hyperbolic tangent function
(activation function). The attention module then generates
the attention weight a(i)t :

a
(i)
t =

exp(w
(i)
t s

(i)
t )∑M

j=1 exp(w
(j)
t s

(j)
t )

(3)

where w(i)
t is the learned model weight for feature i in time

step t. The denominator calculates the sum of the product of
the weight and the relevant score of all features in time step
t. The residual unit is formed by creating shortcuts between
each BiLSTM and attention layer. It helps the network min-
imize information loss by combining the learned non-linear
mapping F (x) with the identity mapping x:

Y = F (x) + x (4)

where x and Y are the input and output of the residual
block. In this work, we investigate different combinations
of the attention and residual components in BiLSTM. Fig-
ure 1 shows these combinations including a late attention
module (applying attention after a series of residual BiL-
STM), a fully residual attention module (applying residual
attention components after each BiLSTM), and finally a late
residual attention component (applying residual attention
after the final BiLSTM layer). The outputs of the resid-
ual attention modules for each modality are then fed into a
fully connected layer to generate the final features, which
are concatenated as the joint representation:

vc,t = [Wv,tcv,t,Wa,tca,t,Wk,tck,t] (5)
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Figure 1: The residual attention modules. (a) late attention;
(b) fully residual attention; (c) late residual attention.

where vc,t is the joint representation vector at time step t.
Wv,t, Wa,t and Wk,t are the learned weight parameters for
visual, audio and text features at time step t, respectively.

The weight for each feature in the joint vector is learned
automatically using a Weighted SVM that compensates the
class imbalance problem by penalizing the misclassification
of instances that belong to the minority classes.

3. Experimental Analysis

In this work, a natural disaster video dataset [7] contain-
ing 1540 video clips and seven concepts (shown in Figure 2)
is used for evaluation purposes. The performance met-
rics include micro F1 and Mean Average Precision (MAP)
which are the proper metrics for imbalanced data classi-
fication. Table 1 shows the performance comparison be-
tween the baselines and our proposed framework. The first
three rows show the performance results of single models in
which only one modality is used for video classification. It
can be seen from the table that the audio model provides less
information than the visual and textual models. On the other
hand, the textual model performs better than all of the other
single modality models regarding the F1 score and MAP.
The next model is the early fusion model that combines
static features from all data modalities and then applies sev-
eral BiLSTM layers which are followed by a dense layer for
classification, while the late fusion model concatenates the
BiLSTM features before applying the classification layer.
The results show the superiority of late fusion compared to
the early fusion model. Finally, the last three rows show the
performance of the proposed RAF techniques (please refer
to Figure 1 for the details of each method). It can be seen
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Figure 2: Dataset samples. (a) flood; (b) damage; (c) emergency response; (d) demo; (e) victim; (f) briefing; (g) human relief.

Table 1: Evaluation results on the disaster test dataset

Model F1 MAP
Audio model 0.502 0.420
Visual model 0.677 0.602
Textual model 0.779 0.695
Early fusion 0.812 0.735
Late fusion 0.902 0.841
Proposed framework
(late attention) 0.933 0.891

Proposed framework
(fully residual attention) 0.947 0.910

Proposed framework
(late residual attention) 0.953 0.920
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Figure 3: Micro F1 comparison of different proposed resid-
ual attention fusions for each disaster class

that the proposed technique improves both F1 and MAP be-
tween 0.3-0.5 and 0.5-0.8, respectively, compared to the
best previous results (late fusion). In particular, the late
residual attention outperforms the late attention and fully
residual attention regarding the F1 and MAP scores. The
detailed comparison results between the RAF methods are
shown in Figure 3. This figure shows the F1 score for each
proposed fusion method separated by each disaster class.
Although late attention performs better for two concepts
(e.g., “damage” and “victim”) compared to the residual at-
tention methods, it performs poorly on other concepts (e.g.,
“demo” and “human relief”). It can be concluded that resid-
ual attention connections are helpful in multimodal tempo-
ral data analysis.

4. Conclusion
This paper studies the impact of residual attention con-

nections in BiLSTM for multimodal deep learning. For this

purpose, a disaster video dataset including audio, image
frames, and text is utilized to evaluate the proposed mul-
timodal fusion technique. The experimental results demon-
strate the significance of the residual attention connections
when concentrating on specific times and modalities for
video classification.
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