

1

Abstract
Energy-minimizing active contour models (snakes) have

been proposed for solving many computer vision problems
such as object segmentation, surface reconstruction, and
object tracking. Dynamic programming which allows
natural enforcement of constraints is an effective method
for computing the global minima of energy functions.
However, this method is only limited to snake problems
with one dimensional (1D) topology (i.e., a contour) and
cannot handle problems with two-dimensional (2D)
topology. In this paper, we have extended the dynamic
programming method to address the snake problems with
2D topology using a novel graph reduction algorithm.
Given a 2D snake with first order energy terms, a set of
reduction operations are defined and used to simplify the
graph of the 2D snake into one single vertex while
retaining the minimal energy of the snake. The proposed
algorithm has a polynomial-time complexity bound and
the optimality of the solution for a reducible 2D snake is
guaranteed. However, not all types of 2D snakes can be
reduced into one single vertex using the proposed
algorithm. The reduction of general planar snakes is an
NP-Complete problem. The proposed method has been
applied to optimize 2D building topology extracted from
airborne LIDAR data to examine the effectiveness of the
algorithm. The results demonstrate that the proposed
approach successfully found the global optima for over
98% of building topology in a polynomial time.

1. Introduction
Significant research effort has been placed on

developing deformable models to determine a surface or a
contour having optimal properties in the past decade [1].
Applications of deformable models include medical image
analysis, geometric modeling, and tracking of non-rigid
objects. The deformable models which are also called
“snakes” or active contours were first introduced by Kass
et al. in 1988 [2]. Snakes usually start with an initial one
dimensional (1D) contour, two dimensional (2D) surface,
or even three dimensional (3D) volume [3-5] close to a
target model, and then gradually deform contour/surface
while minimizing energy functions so that the resulting
contour/surface best matches the target boundary/topology
of the object [4, 6]. The solution to the snake problem
often involves the derivation of an energy function and
minimization of the energy function.

Dynamic programming is an optimization approach
which finds global minima by analyzing a collection of
admissible solutions. In dynamic programming,
constraints are often placed on the set of allowable
solutions, thus reducing the computational complexity.
For example, in the case of 1D active contours, the set of
admissible solutions are in fact the set of all allowed
curves that connect the start point with the end point.
Unlike the variational method, dynamic programming can
be directly applied to the discrete grid without
approximations. Amini et al. [7] devised a time-delayed
discrete dynamic programming algorithm to minimize the
energy for 1D active contours. The discretization of the
contour energy E(C) is represented by E(C)=E1(v1, v2)+
E2(v2, v3)+…+ En-1(vn-1, vn), where C={v1, …, vn}. Each
contour point vi is allowed to only take on m possible
values. Instead of using exhaustive enumeration to find the
minimum of E(C), a discrete dynamic programming
method computes the global minimum in an efficient way.
However, the dynamic programming method is inherently
restricted to problems with 1D topology such as a contour
[1, 7, 9]. The dynamic programming method outlined for
1D topology cannot be directly extended to the bipartite
case [8]. The 2D snake problems, such as the
reconstruction of surfaces cannot be solved efficiently by
existing dynamic programming methods.

This paper presents an algorithm to minimize the energy
function associated with 2D snakes which represent 2D
surfaces with connected deformable graphs controlled by
vertices and edges. The first objective of the paper is to
develop the algorithm including a set of graph operations
which is capable of reducing certain types of planar snakes
to single vertices. The second objective is to apply the
proposed method to refining building topology extracted
from airborne light detection and ranging (LIDAR)
measurements to examine the effectiveness of the
algorithm.

The paper is organized as follows: Section 2 describes
the proposed approach by first giving a formal definition
of the 2D snake problem and analyzing the discretized
form of the energy function, then describing the details of
the proposed graph reduction algorithm, and finally
proving the polynomial time complexity of the algorithm.
Section 3 presents the experimental results of applying the
proposed algorithm to refining building topology from
LIDAR measurements, and Section 4 concludes the paper.

A Graph Reduction Method for 2D Snake Problems

Jianhua Yan1, Keqi Zhang2, Chengcui Zhang3, Shu-Ching Chen1, Giri Narasimhan1
1School of Computing and Information Sciences, Florida International University, {jyan001, chens, giri}@cs.fiu.edu
2Department of Environmental Studies & International Hurricane Research Center, Florida International University,

zhangk@fiu.edu
3Department of Computer and Information Sciences, University of Alabama at Birmingham, zhang@cis.uab.edu

1-4244-1180-7/07/$25.00 ©2007 IEEE

2

2. The Proposed Graph Reduction Approach
for 2D Snakes

The snake-based method to detect a complex graph
structure (topology) involves minimizing the energy of a
deformable topology. In this section, a domain-specific
energy function whose minimum represents the target
topology is constructed first. Then, the energy function is
gradually minimized starting with an approximate
topology which is usually obtained by low level image
processing and pattern recognition operations. Finally, the
topology corresponding to the minimum of the energy
function is derived to represent the target topology. The
core of this procedure is to develop an efficient algorithm
for graph energy minimization. We present a graph
reduction algorithm in the following subsections which is
able to find global minima for certain 2D snakes.

2.1. The Search Constraint and the Cost Function
We represent the deformable topology (2D snake) with a

weighted graph G=(V, E). Each vertex v is associated with
an uncertainty list ULv= {sv

m = (xm, ym) | m=1, 2… |ULv|},
which is a list of points whose distance to this vertex is
less than a pre-specified distance d. The number of points
in the uncertainty list represents the number of possible
states of the vertex v. For each state sv of v (sv∈ULv), there
is a corresponding energy value, denoted by EV(v, sv).
Correspondingly, for an edge e= (v, w) connecting two
vertices v and w, there are |ULv|×|ULw| allowable states and
each state is associated with a energy value, EE(e=(v, w),
sv, sw), sv∈ULv and sw∈ULw. For example, if v and w each
has 3 possible states, the total number of states of the edge
connecting these two vertices is 9. Note that the energy of
an edge only depends upon the two vertices to which the
edge is connected. Assuming that a list S = {(s1, s2, …, sk,
…, s|V|), sk∈ULk} represents a state of all vertices in G, we
define the cost (energy) for the deformable topologies as a
sum of cost for each vertex and edge in G which is given
by

wwvvvv ULsULswvULsv sswveEEsvEVGEG
∈∈∈ ∑∑ =+=

,
),),,((),()((1)

The formation of the energy functions EV and EE
depends upon the application need. Minimizing the total
cost (energy) generates the optimal topology that best fits
the given object. Without loss of generality, we assume
that there is only one minimum for EG and the
corresponding state of all vertices in G is unique.

2.2. A Graph Reduction Based Implementation
Let us consider the problem of finding the optimal

topology that has the same graph structure as the given
initial topology and fits best the target topology. The
corresponding energy minimization is denoted

by)(min GEG
S

, where S is a state list for all vertices in

G. A brute force implementation of finding the minimum
will try all possible combinations of state lists for vertices
and edges, which involves ∏

∈Vv
vUL || steps, making the

time complexity exponential. It can be proven that the
general 2D snake problem is NP-Complete, which means
no algorithm can resolve general 2D snake problems in
polynomial time. However, it is still possible to resolve a
special subset of 2D problems in polynomial time. This is
similar to the case of 3SAT (Boolean satisfiability
problem) in which 3SAT is NP-complete, but its subset
2SAT is not NP-complete [11]. In this section, a method
is proposed to derive the global minimization by
progressively simplifying the graph using the following
four graph reduction operations.

2.2.1 Type I operation
Given a vertex C which connects to two other vertices A

and B via edges E1 and E2 (i.e., the degree of C is two) as
shown in Figure 1, the vertex C and the two edges E1 and
E2 can be reduced to a new edge E3 that connects A and B.
The energy of the new edge E3 is determined by the
energies of the removed vertex C and the edges E1 and E2

by the following equation:

)},(),),,((

),),,(({min),),,((

2

1,3

CCB

CAULsULsULsBA

sCEVssCBEEE

ssCAEEEssBAEEE
CC

BBAA

+=

+===
∈∈∈ (2)

Equation (2) indicates that the energy of E3, given a pair
of states sA and sB for the vertices A and B, is determined
by the minimum sum of energies of E1 and E2 and C. The
state sC of C that minimizes Equation (2), for a given pair
of sA and sB, is recorded in a State Retrieval Table as
shown in Figure 1(c) after a Type I operation is
performed. For example, the first row in Figure 1(c)
indicates that the energy EE in Equation (2) reaches its
minimum when sC equals 3, given sA=1 and sB=1.

Figure 1: A Type I operation and its associated state retrieval

table.

It can be proven that the reduced graph G’ has the same

minimal energy as that of G after a type I reduction
operation is applied. The proof is omitted because of page
limitation. This conclusion is also true for all reduction
operations introduced in this section.

(c)

C

BA E3

E1 E
2

C

BA

E1 E
2

(a) (b)

sA sB sC

1 1 3

1 2 1

… … …

2 1 n

… … …

n n 2

3

2.2.2 Type II operation
A Type II atomic graph reduction operation is shown in

Figure 2. Given a pair of vertices A and C, if there is more
than one edge connecting these two vertices in G, those
edges can be reduced to one single edge between A and C.
The energy of the new edge is the sum of the energies of
all edges between A and C, as given in Equation (3). For
this operation, there is no need to keep a state retrieval
table because the energy of the new edge E3 is determined
solely by the vertices A and C. No other vertex is involved
in this operation.

∑
=

∈∈ ===
k

i
CAiULsULsCA ssCAEEEssCAEEE

CCAA
1

 ,3),),,((),),,(((3)

Where k is the total number of edges that connect A and
C, and k is equal to 2 for the example in Figure 2.

1

2

1

2

Figure 2: Type II operation.

2.2.3 Type III operation
A Type III atomic graph reduction operation is

illustrated in Figure 3 where the vertex C connects to one
single vertex (A) via one edge only (i.e., the degree of C is
one). In this case, the vertex C and the edge E1 which
connects C to A can be reduced to A. After reduction, the
energy of A is updated as follows:

)},(),),,(({min),(),(1 CCAULsAULsA sCEVssCAEEEsAEVsAEV
CC

AA
+=+=

∈∈
 (4)

By Equation (4), the minimum sum of energies of C and
E1, for each state of A (sA), will be added to the old EV(A,
sA). Similar to the situation in Type I operation, the sC that
minimizes the sum of the energies of C and E1, will be
recorded in the State Retrieval Table in Figure 3(c). As
the states of C and E1 in the global minimization are only
dependent on the state of A, if sA belongs to the list S =
{(s1, s2, …, sk, …, s|V|), sk∈ULk} that minimizes the total
energy of G, sC must also in S. Therefore, the minimization
of the total energy EG(G) can be reduced to minimizing
the total energy of the reduced graph G’(V’, E’), where
V’=V-C and E’=E-E1.

Figure 3: A Type III operation and its associated retrieval table.

By applying the above three atomic graph reduction
operations recursively, graphs with simple structures can
be reduced to one single vertex FG, and the minimum

energy of the original graph min{EG(G)} becomes
)},({min

G
GFGF

FULs
sFEV

∈
. In the traditional 1D snake problem,

the original graph is an opened polygon as shown in
Figure 4. We can recursively apply the Type III operation
to remove the leftmost vertex. Denote n = |V| and m =
|UL|. After n-1 operations, the original graph can be
reduced to a single vertex. For each removed vertex, the
state retrieval table has m entries and the complexity is (n-
1)×m. In addition, to determine an entry in the state
retrieval table, m calculations are needed. Thus, the total
time complexity is (n-1)×m2, which is the same as reported
in [7].

Figure 4: The topological graph G for a classical active contour

problem.

However, in many cases, the given graph G cannot be
reduced to one single vertex by just applying the above
three atomic operations. For those cases, we proposed
type IV operation which is described below.

2.2.4 Type IV operation

For a given pair of vertices A and C, as shown in Figure
5(a), we first find a connected subgraph GAC = (VGAC

, EGAC
) in

G, which only connects to the vertices A and C, but not to
any other vertex in G. For example, the subgraph in an
oval in Figure 5(a) is such a connected subgraph between
A and C. Then the three atomic reduction operations
(Types I, II, and III) are applied to subgraph GAC. If GAC
can be reduced to a single vertex (e.g., the vertex E in
Figure 5(c)), a Type IV operation will be applied to
replace GAC with a new edge connecting A and C directly
(e.g., the edge EAC in Figure 5(d)).

sA sC sB sD sE
1 1 3 2 1
1 2 1 3 4
… … … … …
2 1 2 3 1
… … … … …
n n 1 2 4

(e)
Figure 5: A Type IV operation and its associated retrieval table.

The minimum energy of GAC, as a portion of the

minimum energy of the whole graph G, is not only
determined by the vertices and edges of GAC, but also by
the pair of sA and sC. In a Type IV operation, the energy of

C

A

E1

… ...

C

A

E1

… ...
(a) (b)

sA sC

1 3

2 1

… …

n 2

(c)

4

each edge that connects A or C to the subgraph GAC is
added to that of the connecting vertex in GAC. In the
example shown in Figure 5(b), EBC, EDC, EEA, and EBA are
such edges connecting the subgraph with A and C. Given
a pair of states (sA, sC) for A and C, for each vertex v which
belongs to the subgraph and connects to A and/or C, we
change its energy into

∑
∈

∈∈ =+=
)},(),,{(),(

,),),,((),(),(
CAw

vvACG
sCsAsw

wvvULsVvv sswveEEsvEVsvEV
 (5)

Let FGAC
 be the single vertex reduced from GAC by Types I

to III atomic operations for a given pair of states (sA, sC)
for A and C. The minimum energy of FGAC

 is the same as
that of GAC, which is transferred to the energy of the new
edge EAC as follows:

),(min),),,((, ACGAC
ACGFACGF

CCAA FGULsULsULsCAAC sFEVssCAEEE
∈∈∈ == (6)

The state list of vertices in GAC that minimizes the
energy of GAC, given (sA, sC) for A and C, is denoted by SGAC

and shown in the table of Figure 5(e). After applying the
type IV operation to G, the problem of minimizing EG(G)
can be reduced to the minimization of EG(G’) where G’ is
the reduced graph.

2.3. Finding A Reducible Connected Subgraph
Before a Type IV operation can be performed, a

reducible connected subgraph GAC must be found. We have
developed the following algorithm which can find such a
subgaph for a Type IV operation.
1) Set scope to 1. Initialize a set Sij as empty for each pair

of vertices Vji ∈, (V is the set of vertices of G.)
2) For each pair of vertices i and j

• If(scope = = 1)
o Add the set of vertices directly connected to

vertices i and j to Sij.
Else
o Find the vertices directly connected to vertices in

Sij and add them into set Sij except for i and j.
• Partition Sij into subsets which form connected

subgraph and examine whether any subgraph
connects only to vertices i and j. If such a connected
subgraph is found and can be reduced to a single
vertex by the three atomic operations, the subgraph
is returned and the program terminates. Otherwise,
continue checking the next pair of vertices.

3) If all Sij==V-{i,j}, then the program terminates.
Otherwise, Increase scope by 1 and go to 2).

This algorithm gradually expands the search scope,
starting with the vertices directly connected to i and j. If a
reducible connected subgraph cannot be found, it adds to
Sij the vertices with indirect connections to i and j, and
stops whenever a reducible subgraph is found. The
advantage of this progressive algorithm is its efficiency –

we start with the smallest search scope and expand it only
when it is needed. In many cases, we can find the
connected subgraph by searching only the direct neighbors
of i and j. However, for i=1 and j=2 in Figure 6, we need
to search those vertices indirectly connected to i and j in
order to find G12. In this example, S12 = {3, 4, 7, 8, 9, 10,
13, 14} after Step 1) and will be partitioned into S1 = {3,
4}, S2 = {7, 8}, S3 = {9, 10}, and S4 = {13, 14} at Step 2).
Since S1, S2, S3, S4 connect to vertices other than i=1 and
j=2, the algorithm will continue searching other pairs of
vertices. Because no connected graphs for any pair of
vertices can be found when scope ==1, the program
increase scope by 1 and go back to step 2), where S12 is
expanded to the set {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}.
Then S12 is partitioned into S1 = {3, 4, 5, 6, 7, 8} and
S2={9, 10, 11, 12, 13, 14}. Either S1 or S2 can be returned as
a reducible connected subgraph for i=1 and j=2 because
they connect to 1 and 2 only and can be reduced to a
single vertex by Type I-III operations.

Figure 6: Another example of graph reduction.

2.4. The Algorithm of Graph Reduction
With Type I-IV operations and the algorithm for finding

connected subgraphs, we have developed the following
algorithm to reduce a graph G and derive the state list S =
{(s1, s2, …, sk, …, s|V|), sk∈ULk} that minimizes the total
energy of G.

Step 1: Reduce the graph by Types I to III operations

Without loss of generality, we scan the vertices in their
numerical order, starting from vertex 1. First, each vertex
in the current graph G is checked to see whether any of the
three atomic reduction operations can be applied to that
vertex. Then proper atomic reduction operations are
applied to qualified vertices to reduce the current graph G.
These operations are recorded in an array
AppliedOperations. If the current graph G can be
reduced to a single vertex FG, the procedure goes to Step 3
and constructs the state retrieval table. Otherwise, it goes
to Step 2 to further reduce the graph by Type IV
operations.

Step 2: Reduce the graph by Type IV operations

At this step, attempts are made to find one reducible
connected subgraph Gij by using the algorithm introduced
in Section 2.3. If one is found, a Type IV operation will be
performed to reduce the graph. The information related to
this operation will be recorded and added to
AppliedOperations. Then the procedure goes back to

5

Step 1 to reduce the current G by the three atomic
operations again. If no reducible subgraphs can be found,
the program will exit and report a message “This graph is
irreducible.”

Step 3: Construct the state retrieval table

Scan the operations recorded in array
AppliedOperations from its start and apply each
reduction operation to G as follows.

For each Type I/II/III atomic operation, the energy of
edges and/or vertices involved will be updated according
to Equations (2)-(4). The state retrieval table for each
operation is constructed as well.

For each Type IV operation, we store the atomic
operations used to reduce the subgraph Gij into a
temporary array. Given each pair of si and sj, the energy of
internal vertices in Gij will be first updated according to
Equation (5). Then we scan the atomic operations in the
temporary array from the start forward, and update the
energy of edges and/or vertices involved in each operation
and construct the state retrieval table if applicable. After
all the operations in the temporary array are performed, go
to Step 4 to calculate the minimum energy of the subgraph
Gij and retrieve the state list minimizing the energy of Gij.
This state list, together with si and sj, are stored as one row
in the state retrieval table for that Type IV operation.

After all the operations in the array AppliedOperations
are performed, go to Step 4 to calculate the minimum
energy of G and retrieve the state list that minimizes the
energy of G.

Step 4: Determine the minimum energy and the state list
minimizing the energy of graph G or a subgraph Gij

For a subgraph Gij, we first determine the minimum
energy of the vertex FGij

 reduced from Gij and the
corresponding state that minimizes the energy of FGij

.
Then, the corresponding states of other vertices in Gij are
retrieved by scanning the temporary array backward from
the end which contains all the reduction operations
associated with Gij. For each atomic operation, its state
retrieval table is looked up and the states of the
participating vertices can be determined in a retrospective
way. The state list that minimizes the energy of Gij is
returned and the procedure goes back to Step 3.

For a graph G, we first determine the minimum energy
of the single vertex FG reduced from G and the

corresponding state
GFs that minimizes the energy of FG.

Then the corresponding states of all the other vertices are
retrieved by scanning the array AppliedOperations from
its end. For each reduction operation, its state retrieval
table is looked up and the states of the participating
vertices can be determined in a retrospective way. Finally,
the minimum energy value together with the state list and
the AppliedOperations are returned as the result and the
program stops.

2.5. Complexity Analysis
Let n = |V| and m’ = |E|. In Step 1, each vertex is checked

to see if any atomic reduction operation (Type I/II/III
operation) can be applied to it. After each atomic
reduction operation, the graph shrinks by at least one
vertex (operations I & III) or one edge (operation I & II).
In Step 2, C(n, 2) pairs of i and j may be searched to find
subgraph for type IV reduction operation in the worst
situation. The reduced graph can also be proven to shrink
by at least one vertex or one edge. Therefore, with at most
(n+m’) times of reduction operations, the given (reducible)
graph can be reduced to one single vertex. Since each
operation costs polynomial time, the whole algorithm also
takes polynomial time to complete.

3. Experiment
The proposed algorithm has been applied to refining

building topology from airborne LIDAR measurements to
examine its effectiveness. The LIDAR technology
provides an effective way to derive 2D footprints and 3D
shapes of buildings by measuring building elevation
directly [10]. The test data site is located at the university
campus, covering 6 km2 of low relief topography. The
LIDAR data for building extraction with an average point
spacing about 1 m were collected in August 2003. The
buildings in the test site include residential houses,
commercial buildings, and institutional buildings.

A building topology is represented by a set of connected
roof plane surfaces (polygons) projected onto a 2D space,
which matches our proposed “2D snake” very well. Initial
footprints and internal topology of buildings are extracted
from LIDAR measurements through a plane-fitting
technique and regional growing algorithm. The boundaries
(edges) between different roof planes are noisy, and the
positions of critical corner vertices could not be located
correctly in the initial footprints due to the influence of
irregularly spaced point LIDAR measurements. The
process for refining building topology involves adjusting
the initial topology by changing the admissible states of
vertices through minimizing a defined energy function.
The allowable states of vertices are determined by the
spatial resolution and errors of LIDAR measurements.
Therefore, the refinement of building topologies from
LIDAR measurements provides an excellent case to test
the proposed algorithm.

The energy function for building topology refinement
can be defined in any format as long as it does not violate
the search constraints in Section 2.1. The energy function
for this test depends upon the length of an edge and the
angle between the edge and the dominant building
direction. The detailed discussion about the energy
function is beyond the scope of this paper since the
purpose of the experiment is to investigate the
effectiveness of the proposed graph reduction algorithm.
The focus of the experiment is to examine whether
connected building topology can be reduced by the

6

algorithm. The percentage of building topologies that are
successfully reduced by the algorithm is used to measure
the effectiveness of the algorithm. A successful reduction
of a building topology means that the raw topology of that
building can be reduced into a single vertex using the
proposed algorithm.

One data set including 67 institutional buildings in the
university campus and another data set including 211
residential and commercial buildings next to the university
campus have been used to test the algorithm. Our test
results indicates that 210 buildings from the data set next
to the university campus and 66 buildings from the data
set at the university campus can be successfully reduced
by the proposed algorithm. The reduction rate is over 98%
in both cases. The algorithm is capable of reducing the
topology of a building with a complicated shape. For
example, the topology of a building in the university
campus with a total of 46 vertices and 67 edges (Figure
7(a)) is successfully refined (Figure 7(b)) by the graph
proposed reduction algorithm. In addition, during the
graph reduction, the connected subgraphs for almost all
buildings (209 of 210) are identified by only searching
direct neighbors of vertex pairs using the algorithm in
Section 2.3. This expedites the process of graph reduction.
In our experiment, each vertex is allowed to move in a
5×5 window centered at the vertex, thus each vertex has
25 possible states. It took about 2 and 3 minutes for a PC
with a 2.8 GHz processor and 2 GB RAM to complete the
entire reduction process for the dataset for university
campus and the dataset next to university campus,
respectively.

(a) (b)
Figure 7: The raw (a) and the refined (b) topology of a
complicated building at the university campus.

4. Conclusion
Discrete dynamic programming has been widely used to

resolve snake problems. However, it is limited to snake
problems with 1D topology and cannot handle 2D snake
problems. In this research, we have demonstrated that a
subset of 2D snake problems can be resolved in
polynomial time. The topology of such a 2D snake
problem can be reduced to a single vertex by applying the
set of proposed graph reduction operations. The proposed
algorithm was applied to refining 2D building topology
extracted from airborne LIDAR data. Various topologies
for institutional, commercial, and residential buildings
have been used in the experiment. Over 98% of building

topologies have been successfully reduced and their global
optima have been found in polynomial time.

For those irreducible 2D snake problems, the domain–
specific knowledge could be used to derive the
approximate optimal solutions. For example, we can
remove the least important edges in a 2D snake gradually
till the remained graph is reducible. The minimum energy
of the remained reducible graph plus the energies of those
removed edges should be close to the global minimum
energy of the original graph. This remains as our most
immediate goal for future work.

References
[1] J. Montagnat, H. Delingette, and N. Ayache, “A review of

deformable surfaces: topology, geometry, and deformation,”
Image and Vision Computing, vol. 19, pp. 1023-1040,
2001.

[2] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: active
contour models,” International Journal of Computer Vision,
vol. 1, pp. 321-331, 1988.

[3] G. Subsol, J. P. Thirion, and N. Ayache, “A scheme for
automatically building three-dimensional morphometric
anatomical atlases: application to skull atlas,” Medical
Image Analysis, vol. 2, pp. 37-60, 1998.

[4] D. Terzopoulos, A. Witkin, and M. Kass, “Constraints on
the deformable models: recovering 3D shape and nonrigrid
motions,” Artificial Intelligence, vol. 36, pp. 91-123, 1988.

[5] J. P. Thirion, “Image matching as a diffusion process: an
analogy with Maxwell’s Demons,” Medical Image
Analysis, vol. 2, pp. 243-260, 1998.

[6] V. Caselles, R. Kimmel, G. Sapiro, and C. Sbert, “Minimal
surfaces based object segmentation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 19, pp. 394-
398, 1997.

[7] A. A. Amini, T. E. Weymouth, and R. C. Jain, “Using
dynamic programming for solving variational problem in
vision,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 12, pp. 855-867, 1990.

[8] Y. Boykov, O. Weksler, and R. Zabih, “Fast approximate
energy minimization via graph cuts,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 23, pp.
1222-1239, 2001.

[9] D. Geiger, A. Gupta, L. A. Costa, and J. Vlontzos,
“Dynamic programming for detecting, tracking, and
matching deformable contours,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 17, pp. 294-
302, 1995.

[10] J. R. Jensen, Remote Sensing of the Environment. Upper
Saddle River, NJ: Prentice-Hall, 2000.

[11] D. Lichtenstein, “Planar formulae and their uses,” SIAM
Journal on Computing, vol. 11, pp. 329-343, 1982.

