
The Architecture for Semantic Data Access to Heterogeneous Information Sources 
 

Naphtali Rishe, Alexander Vaschillo, Dmitry Vasilevsky, 
Artyom Shaposhnikov, Shu-Ching Chen 

 
High-performance Database Research Center 

School of Computer Science 
Florida International University, University Park, Miami, FL 33199 

(305)348-1706, Fax (305)348-1705, 
{rishen,avasch01,dvasil01,shaposhn,chens}@cs.fiu.edu, 

http://hpdrc.cs.fiu.edu 
 

Abstract1 
This paper presents the analysis and high-level 

design of a system that will allow uniform access to 
heterogeneous data sources such as semantic databases, 
relational databases, web sites, ASCII files, and others via 
a common query interface. This interface is based on the 
Semantic Database Model, which is superior to other data 
models in expressive power and ease of use, and which 
allows us to represent a unified semantic schema of all the 
combined sources — the United Semantic Schema. 
Interoperability with commonly used tools is supported 
via ODBC. A particular application of the system to 
provide an ODBC interface to the WWW as a data source 
is discussed. 
Keywords: heterogeneous databases, semantic databases, 
interoperability, WWW, data models, query execution. 

1. Introduction 
Hundreds of different Database Management 

Systems are used to store data today. Most of them have 
different data formats that are not interchangeable. In 
order for applications to interact with different database 
systems, the ODBC standard was introduced. It allows 
arbitrary applications to access data from any database 
without care as to the specific DBMS and data format 
used to store the data. 

We can look at the World Wide Web as a global 
database containing terabytes of useful information that is 
distributed all over the world. Such a database contains 
many different data sources, but the only standard 
interface to access these data sources is HTML, which is 
basically a GUI data representation format. While this is 
fine for presenting data on the user's screen, it is 
troublesome for a computer program to extract the data 
and process it. 

                                                           
1 This research was supported in part by NASA 

(under grants NAGW-4080, NAG5-5095, NAS5-97222, 
and NAG5-6830) and NSF (CDA-9711582, IRI-9409661, 
HRD-9707076, and ANI-9876409). 

Some computer-friendly interface should be 
introduced for computer programs to access the data from 
this global database, the Internet. The best candidate for 
such an interface is currently ODBC, since there are many 
currently existing application programs that “speak”  
ODBC. If we could hide the Internet behind an ODBC 
interface, all of those applications would be able to work 
with the Internet as if it were a local database. 

Imagine opening your favorite data processing 
program, whether it is Microsoft Office, Crystal Reports, 
or some financial analysis software package, and being 
able to access and analyze World Wide Web data with it. 
Would you like Microsoft Excel to draw you a 3D graphic 
of the current state of your stock portfolio by taking the 
latest prices from the Internet? Would you like Microsoft 
Access to find the cheapest ticket to Moscow for you, or 
build a table of prices depending on the day of week? All 
of this could be done if only the Internet could speak 
ODBC — if we had an ODBC driver for the global 
WWW database. 

On the other hand, users already keep their 
important data in their own databases; some users even 
have several different databases in use. On many 
occasions, a user would want to automatically join data 
from his local databases with data from the Internet. As 
an example, a user may have a list of employees and the 
dates and destinations of their business trips for the next 
month kept in an Oracle database. He could run a query 
that would find the cheapest airplane tickets for all of 
them. The software implementing the architecture 
presented in this paper would run a query on an Oracle 
database, use its results to make queries to an Internet site 
for airline reservations and present the user with a table 
which would have all his original data as well as itinerary 
data such as the flight number, time, price, and totals for 
the month. The user would receive all of these results into 
the ODBC-compatible application program of his choice.  

Imagine a more complex query like "How many 
and which stocks from my portfolio should I sell to 
generate enough money to buy a ticket to an island in the 
Pacific Ocean?" Our software would take the information 
about user's portfolio from wherever he keeps it (a local 



ODBC database or one of the internet services), find the 
current prices of each stock and trends in their prices from 
the Internet, choose a stock to sell according to the criteria 
the user specifies, go to a geographic information Internet 
site to find all of the islands in the Pacific, join this 
information with the information from airline reservation 
sites, and give the user the resulting table in Microsoft 
Excel (for example) showing him the choices he can 
afford. All this would be done on-line using currently 
available WWW information. One just has to write a 
corresponding query using a favorite query processor. 

The High Performance Database Research 
Center (HPDRC) [6] has implemented a database engine, 
Sem-ODB, based on the Semantic Binary Model SBM 
[4]. It has been shown to be very efficient when compared 
to relational database on a class of applications that utilize 
the semantic features [7, 9]. 

Our paper presents the architecture for a system 
[11] that will provide semantic access to a variety of 
heterogeneous data sources. A user will view the united 
database through a semantic schema and access it via the 
standard interface of the semantic database, which will 
allow him to run arbitrary queries to the combined data 
sources. As one of the applications for this system, we 
will build an ODBC driver for the World Wide Web. 

The rest of the paper is organized as follows. 
Section 2 introduces the architecture of our system. 
Section 3 describes the data flow within the system. 
Section 4 shows an algorithm for query execution. 
Section 5 presents an application of the system. 

2. The architecture of the GTOU 
system 

There are many data sources that do not share a 
common format or common interface. These data sources 
include semantic databases, relational databases, web 
sites, ASCII files, and many others. While some of these 
data sources are structured, some are not. Some do have 
standard interfaces, some do not; even those that have 
them often use different standards. 

There are many applications that present data to 
the user. These applications must extract data from the 
data sources through some interfaces. The most common 
data retrieval interface supported by Windows 
applications is now ODBC. 

It would appear to be beneficial to have some 
common interface or several interfaces between 
applications and data sources as well as between data 
sources. We introduce a module named GTOU, which 
will provide a query interface to the application level and 
which will introduce a standard for this interface. This 
interface is powerful enough to satisfy the requirements of 
the application level, is easily computer-readable (without 
parsing), and allows convenient transformations to be 
done by a computer. It is semantic in nature, so an 
application is able to use the semantic features of the 

underlying database (if they exist), and it is native to 
Sem-ODB (an implementation of the SBM developed at 
HPDRC). Implementing an ODBC driver for this 
interface will provide automatic compatibility with the 
vast world of Windows ODBC applications. 

The same GTOU Module would be used to 
communicate with data sources via some interface; we 
propose to use the same interface for all data sources. 
This interface is native to Sem-ODB so communication 
with semantic data sources is efficient and does not lose 
or hide any Semantic features. The interface, however, is 
independent of the type of data source, which allows us to 
make all the algorithms within the Module data source 
independent and application independent. We will try to 
shift most of the algorithms to this level (inside the 
Module) in order to implement just one algorithm which 
can be used for any data source and for any application. 

Since the interface between the Module and all 
the data sources is the same, and not all of the data 
sources support a common interface, the idea is to create a 
wrapper around every single data source that will provide 
a common interface for all data sources. The examples of 
such wrappers are the WWW Wrapper for WWW data 
sources and the Semantic Wrapper for relational 
databases [10]. Once a Wrapper is implemented for a data 
source, the data source may become part of the grand 
picture. It can be used by the GTOU Module and thus 
interoperate with other subsystems. All the algorithms 
developed inside the module are automatically applicable 
to this data source. 

The GTOU Module must have an internal data 
structure to represent queries and their results. We have 
developed a flexible structure named AVDV [8] for this 
purpose. 

The GTOU Module will contain a united schema 
of all data sources used by the Module and will represent 
them via a semantic schema, the United Semantic Schema 
of a universe, where universe is defined as the domain 
covered by the union of the domains covered by 
individual data sources. 

The algorithms inside the GTOU Module should 
be able to: 
• accept a query from the application level interface, 
• do some transformations on the query, 
• decide which data sources may be used to obtain the 

results of a query, 
• break up a query into subqueries which can be 

executed by each data source wrapper (in the case of 
WWW, for example, the task of determining which 
query can be executed is far from obvious), 

• represent the subqueries in such a way that they can 
be executed by each data source wrapper, 

• understand the order of the subqueries’  execution 
and the possibilities of their parallelization, 



• pass the subqueries to the corresponding data source 
wrappers either in parallel or in the order dictated by 
the query, 

• obtain results from the data sources, including the 
possibility of accepting partial results in order to 
optimize the execution by using pipelining, 

• feed the obtained results into the other subqueries as 
required and execute those, 

• obtain all final results from all data source wrappers, 
• perform the necessary conversions and filtering on 

the results such as joins between data sources, 
filtering out extra data returned by data sources that 
can not do filtering themselves (ex: WWW 
Wrapper), and 

• provide the application that posed the query with an 
application level interface so it can obtain the 
results. 

The algorithms within the GTOU Module are 
sufficient to support a distributed/parallel Semantic 
database. Since the United Semantic Schema may 
represent several semantic databases, and since we have 
already described a general algorithm that can execute a 
query posed to this United Schema by using data from 
several data sources (in this case semantic databases) and 
merge the results, the distributed database can be 
considered a sub-case of our system. 

The algorithms within the GTOU Module are 
sufficient to support a Heterogeneous Database based on a 
semantic view. We will use the same arguments that we 
did for the distributed database, considering that the 
Wrappers for relational data sources and WWW data 
sources that represent those data sources as semantic 
databases are implemented. Additional wrappers for data 
sources not included above can also be implemented as 
long as the structure of the interface provided by such 
wrappers is flexible enough; our structure is flexible 
enough to allow this to happen [8]. 

The algorithms within the GTOU Module are 
sufficient to support userviews in semantic databases via 
the semantic wrapper for the current semantic database 
(which currently supports only elementary queries). By 
using the GTOU module, we extend the Semantic 
interface from elementary queries to complex queries, 
allow for general algorithms of optimization of these 
complex queries [2], and implement userviews as virtual 
categories and relations defined as complex queries on top 
of the current elementary Semantic queries with the help 
of the AVDV structure [8]. 

3. Data Flow in the System 
In this section, we will define the data flow in 

the system. In Figure 1, white rectangles denote modules, 
gray rectangles denote data structures, solid arrows denote 
interfaces, and dotted arrows denote modules that are 
subclasses of other modules. The GTOU Module includes 
Analyzer and Results Compiler modules. The main 

execution loop for a query is from Analyzer to Semantic 
Wrappers to Result Compiler and back to Analyzer. The 
AVDV structure is used as an intermediate interface 
structure here. Once the final results of a query are 
obtained, they are returned to an application via the 
Results Iterator Module. 

The schema compiler is a module that unites 
several semantic schemas provided by data sources into 
the United Semantic Schema of the universe. The Query 
Repository Structure is a knowledge base containing 
information about the types of queries a data source is 
able to perform. ODBC can be built on top of SQL server. 

The following is a brief definition of every 
module, data structure and interface with an explanation 
of their part in the data flow inside the system. 

• ANALYZER — module (A complex module 
which takes a query to be executed, analyzes it with the 
help of the United Semantic Schema of the universe and 
the repository of queries. Understands how to break a 
query into sub-queries suitable for execution on data 
sources. Parallelizes, optimizes, and pipelines the query 
execution.) 

• SEMANTIC-WRAPPER — module (A 
module which translates a query from the language of 
AVDV structures to the native language of the underlying 
data source (ODBC, HTTP, ...). Converts results of the 
query into AVDV structure format. [5]) 

• RESULTS-COMPILER — module (Inserts 
results of sub query into AVDV structure) 

• APPLICATION — module (An application 
could be SQL server, WWW query tool, C++ API, Java 
API or any other application which is able to pose queries 
in AVDV structure using United Semantic Schema of the 
universe and to receive results through the result iterator.) 

• AVDV-STRUCTURE — data structure (This 
is a data structure representing a query to the system. The 
query is built based on the United Semantic Schema of 
the universe.) 

• SUB-AVDV-STRUCTURE — data structure 
(A structure similar to the AVDV structure. Represents a 
sub query that can be fully executed on one corresponding 
data source. May contain partial results of earlier 
executed queries.) 

• DATA-SOURCE — module (Any external 
data source. Semantic or relational database, WWW, 
ASCII file...) 

• SUB-AVDV-RESULTS-STRUCTURE — 
data structure (Contains the results of query execution by 
a data source.) 

• RESULT-ITERATOR — module (A module 
which provides an iterative interface to the results of a 
query.) 

• UNITED-SEMANTIC-SCHEMA-
STRUCTURE — data structure (A semantic schema of 
the universe. It also contains data that allows finding out 
where a particular category or relation came from. This 



will be used to choose the proper data sources to be used 
for the query.) 

• SCHEMA-COMPILER — module (Takes 
several semantic schemas from different data sources and 
compiles a united semantic schema of the universe. May 
be automatic or manual.) 

• QUERY-REPOSITORY-STRUCTURE — 
data structure (A repository of all types of queries that a 
data source is able to execute on its schema. A common 
database is very likely to be able to execute almost any 
query. But data sources like WWW can execute only a 
few types of queries to its schema, so a list of such 
queries together with translation rules [1, 2, 3] is stored 
here.) 

• SQL-SERVER — one of the modules of type 
APPLICATION (SQL server should be able to translate an 
SQL statement into an AVDV structure, pass it on to the 
system, obtain query results from the results iterator, and 
represent them to the user in relational form.) 

• WWW-QUERY-TOOL — one of the modules 
of type APPLICATION (A tool which is able to build an 
AVDV structure through web interface, pass it to the 
system for execution, obtain results from the results 
iterator, and pass them to the user usually in the form of 
HTML or ASCII.) 

• WWW-DATA — one of the modules of type 
DATA-SOURCE (A WWW data source. It will probably 
correspond to one HTML entry form (or several 
correlated forms) and one set of tables returned by a 

WWW site. Its wrapper should provide the schema 
compiler with a Semantic schema of the WWW data 
source (created manually or perhaps automatically), tell 
the query repository it is only able to execute a few 
(usually one) types of queries (most probably taking the 
fields corresponding to the HTML data entry form as 
input parameters and returning one semantic category 
corresponding to the output HTML table), translate 
AVDV structures into HTTP request (or several requests), 
and translate the HTML (or ASCII) results returned by 
WWW site into the sub-AVDV results structure (probably 
using the semantic loader).) 

• SEMANTIC-DATABASE — one of the 
modules of type DATA-SOURCE (A semantic database 
containing one data source. AVDV structure is its native 
interface. Its semantic schema will be passed to the 
schema compiler to be included in the United Schema and 
its query repository entry is trivial since it can execute any 
arbitrary query supported by AVDV structure.) 

• RELATIONAL-DATABASE — one of the 
modules of type DATA-SOURCE (A relational database. 
Its wrapper should automatically build a semantic schema 
corresponding to a relational schema and provide it to the 
schema compiler, tell the query repository that it can 
execute an arbitrary query, translate queries from AVDV 
structure form into ODBC SQL queries and pass them to 
RDBMS, and obtain results from the ODBC RDBMS and 
translate them into sub-AVDV results structure form.) 

• execute — data flow from SEMANTIC-
WRAPPER to DATA-SOURCE (1:1,total) (Passes a query 
in the language native to the data source) 

• return-results — data flow from DATA-
SOURCE to SEMANTIC-WRAPPER (1:1,total) (Returns 
query results in the form native to the data source (ODBC 
for relational database, ASCII or HTML for WWW)) 

• provides-schema — data flow from 
SEMANTIC-WRAPPER to SCHEMA-COMPILER (m:1) 
(Provides a semantic schema of the data source in order to 
compile a United Semantic Schema of the world) 

• compiles — data flow from SCHEMA-
COMPILER to UNITED-SEMANTIC-SCHEMA-
STRUCTURE (1:1) (A schema compiler generates the 
United Semantic Schema of the universe.) 

• sees — data flow from APPLICATION to 
UNITED-SEMANTIC-SCHEMA-STRUCTURE (m:1) (An 
application will see the united semantic schema of the 
universe and will be able to pose queries to it.) 

• poses-query — data flow from APPLICATION 
to AVDV-STRUCTURE (m:m) (An application poses a 
query to the system in terms of AVDV structure.) 

• obtains-results — data flow from 
APPLICATION to RESULT-ITERATOR (m:1) (An 
application will obtain results of the query through an 
interface of the result iterator.) 

• builds — data flow from SEMANTIC-
WRAPPER to QUERY-REPOSITORY-STRUCTURE 

Figure 1. Data flow in the system

RESULTS
COMPILER

WWW DATA

SEMANTIC
DATABASE

DATA SOURCE

UNITED
SEMANTIC SCHEMA

STRUCTURE

APPLICATION

SUB AVDV
STRUCTURE

SQL SERVER

SUB AVDV
RESULTS

STRUCTURE

RESULT
ITERATOR

ANALYZER

AVDV
STRUCTURE

RELATIONAL
DATABASE

SEMANTIC
WRAPPER

SCHEMA
COMPILER

WWW QUERY
TOOL

QUERY
REPOSITORY
STRUCTURE

execute
(1:1,total)

return results
(1:1,total)

provides schema
(m:1)

compiles
(1:1)

sees
(m:1)

poses query
(m:m)

obtains results
(m:1)

builds
(1:m)

uses
(1:m)

goes to
(m:1)

extracts
(1:m)

views
(m:1)

return final result
(1:m)

executed by
(m:1)

returns
(1:m)

fed into
(m:1)

inserts
(m:1)



(1:m) (A semantic wrapper must build a repository of all 
queries it is able to execute on its data source.) 

• uses — data flow from ANALYZER to QUERY-
REPOSITORY-STRUCTURE (1:m) (Analyzer uses the 
query repositories of different data sources to make sure a 
data source can execute the query to be passed to it. It 
must adjust the query to a type that is accepted.) 

• goes-to — data flow from SUB-AVDV-
STRUCTURE to SEMANTIC-WRAPPER (m:1) (A sub 
query is posed to the data source. The data source 
guarantees it will be able to answer the query since the 
query is built according to the repository.) 

• extracts — data flow from ANALYZER to SUB-
AVDV-STRUCTURE (1:m) (Analyzer extracts a sub-
query from the big query in such a way that it can be 
executed by the data source. This sub-query may include 
some data obtained as a result of some other sub query.) 

• views — data flow from ANALYZER to 
UNITED-SEMANTIC-SCHEMA-STRUCTURE (m:1) 
(Views the United Semantic Schema of the universe to 
understand the query and distribute it between data 
sources correctly.) 

• return-final-result — data flow from AVDV-
STRUCTURE to RESULT-ITERATOR (1:m) (When a 
query is executed and the final results are obtained, they 
are provided to the application via a result iterator) 

• executed-by — data flow from AVDV-
STRUCTURE to ANALYZER (m:1) (A B query is 
executed by analyzer. This operation may be performed 
several times as the B query structure is filled with partial 
results step by step until the final result of the original 
query is produced.) 

• returns — data flow from SEMANTIC-
WRAPPER to SUB-AVDV-RESULTS-STRUCTURE (1:m) 
(Returns a semantic userview filled with data as a result 
of a sub-query execution.) 

• fed-into — data flow from SUB-AVDV-
RESULTS-STRUCTURE to RESULTS-COMPILER (m:1) 
(The results of a sub query are fed into the results 
compiler which will place them into the proper place of 
the full query, possibly filtering and rearranging the data.) 

• inserts — data flow from RESULTS-
COMPILER to AVDV-STRUCTURE (m:1) (Inserts results 
of a sub query into the original AVDV structure.) 

4. An algorithm for query 
execution 

The AVDV structure, formally defined in [8], is 
a structure that defines a query for the semantic database 
and that allows the definition of virtual categories and 
relations that consist of virtual objects derived from the 
existing objects and the relationships between them. 

AVDV is a tuple ),,( TPV=Γ , where }{ iaV =  is a 

set of variables built for existing categories, }{ ipP =  is 

a set of predicates restricting those variables, and 

}),..,{(
21 jiii n

aaaT =  is a set of tuples of variables. 

The tuples in T define virtual categories. Tuples in T are 
usually tuples of one element. Predicates in P usually 
represent relations between two variables (Ex: 
Takes(Student,Course), where Takes is a relation from the 
database) or comparisons of two concrete values (Ex: 
Student.age > Professor.age). The goal of query execution 
is to obtain a semantic database containing the results of 
the query. This database can then be accessed through the 
same interface used for Sem-ODB. 

The AVDV structure can be graphically 
represented by a graph where V is the set of vertexes and 
P is the set of edges. Since in our system an AVDV query 
is formulated against the United Semantic Schema, the 
variables in V can belong to categories from different data 

sources D1, D2,..Dn ( ii Dv ∝ ). The algorithm of 

execution for a query ),,( TPV=Γ  performs the 

following actions: 
1. Determine which data source Di supports which 

variable vi. This information is taken from the United 
Semantic Schema Structure. 

2. Break the graph ),,( TPV=Γ  into maximal 

subgraphs 

),,( iiii TPV=Γ : iii DvVvVV ∝⇒∈∀⊂ , , 

inini DvvPpvvpPP ∝⇒∈∀⊂ ,..:),..(, 11 . 

3. Execute each Γi on the corresponding data source Di. 
The independent execution is possible by a Theorem2 
proven in [8]. The same paper shows that this 
structure can be executed for Sem-ODB. The 
execution of this structure for relational databases is 
described in [10]. To execute it for the Web data 
sources, we can consider all our predicates as one 
Boolean formula where the predicates are joined with 
conjunction. Such constraint queries can then be 
executed with an algorithm similar to [1]. 

4. Collect the partial results from different data sources 
into sub-AVDV results structure and load them into 
Sem-ODB. 

5. Execute the rest of the predicates as queries within 
Sem-ODB. 

                                                           
2 If we can split an AVDV structure ),,( TPV=Γ  into 

two AVDV structures ),,( 111 ∅=Γ PV  and 

),,( 222 ∅=Γ PV : 21 VVV
�

= , ∅=21 VV � , 

QPPP �� 21= , ∅=21 PP � , where 

Q=AreRelated(a,b,R)∈P, a∈V1, b∈V2, then Γ1 and Γ2 can 
be executed independently and the final result can be 
obtained from partial results. This theorem can be easily 
extended for cases when Q≠AreRelated. 



6. At this point the final results are represented in the 
form of a semantic database and can be accessed 
through standard interface such as ODBC. 

5. ODBC for the World Wide Web 
As an application of this architecture, we 

describe the implementation of an ODBC driver on top of 
the GTOU Module. This will provide users with ODBC 
access to the entire united database, which may include 
some WWW sites as data sources. 

This technology is based on our Semantic Object 
Database Management System, Sem-ODB. The user has 
to install our Semantic ODBC driver on his computer. A 
query constructed in his application program will go to 
our ODBC driver, which will then pass it to the Sem-
ODB engine. The Sem-ODB engine can be installed as an 
Internet server anywhere in the world or on the user’s 
computer if so desired. Sem-ODB will process this query, 
break it into subqueries, and then send the subqueries to 
corresponding ODBC databases and/or the Internet. The 
data retrieved is then processed by our data-cleansing tool 
and passed to the Sem-ODB loader. The loader extracts 
the data from the data-source specific format and loads 
the resulting data into the AVDV result structure. After 
the data from all sources is loaded, the regular Sem-ODB 
mechanism will be used to execute the complex query 
joining the data. The query result is then returned to the 
ODBC to be passed to the application. 

The Sem-ODB database may be used to cache 
the data retrieved from the Internet or other sources if 
desired. To do this, we will simply keep the retrieved data 
for some time. If we do not want to keep even the 
intermediate query results in the Semantic Database, our 
Lazy Query technology [9] allows that. 

In order to add another data source (ODBC 
database or WWW site) to our system so that this data 
source can be accessed together with the others through 
the same ODBC interface, the following steps should be 
taken: 
• A semantic schema (userview) should be designed 

for the data source and that schema should be added 
to the United Semantic Schema of the universe. 

• The rules implementing this userview should be 
programmed if they are not evident [1]. 

• A control file for the Sem-ODB Loader should be 
written in a loader’s language, which will allow the 
loader to parse and load data from the output format 
produced by the data source wrapper (e.g. HTML). 

6. Conclusions 
In this paper we described a top-level 

architecture of a system that creates a framework for 
uniform access to different data sources. It is based on the 
Semantic Binary Database Model, which has enough 
expressive power to efficiently represent other data source 

models and to provide user-friendly query interface to the 
data. The Sem-ODB database engine implemented by 
HPDRC handles inter-database relationships and query 
distribution. An exciting application of this system is 
providing an ODBC interface to World Wide Web Data. 
Another important application is a heterogeneous system 
united under the control of Sem-ODB. An intermediate 
structure used in this module (AVDV structure [8]) is 
shown to be flexible enough to support such 
heterogeneity. 

References 
[1] C.-C. K. Chang, H. Garcia-Molina, "Mind Your 

Vocabulary: Query Mapping Across Heterogeneous 
Information Sources," Proc. of the ACM SIGMOD 
International Conference on Management of Data, 
pp. 335-346 June 1999. 

[2] L. M. Haas, D. Kossmann, E. L. Wimmers, and J. 
Yang, "Optimizing queries across diverse data 
sources," Proc. of VLDB, pp. 276-285, Aug. 1997. 

[3] C. Lee and C.-J. Chen, "Query Optimization in 
Multidatabases Systems Considering Schema 
Conflicts," IEEE Trans. on Knowledge and Data 
Engineering, pp. 941-955, Vol. 9, No. 6, 1997. 

[4] N. Rishe, Database Design: the semantic modeling 
approach, McGraw-Hill, 1992, 528 pp. 

[5] M. T. Roth and P. M. Schwarz, "Don’t scrap it, wrap 
it! A wrapper architecture for legacy data sources," 
Proc. of VLDB, pp. 266-275, August 1997. 

[6] N. Rishe, W. Sun, D. Barton, Y. Deng, C. Orji, M. 
Alexopoulos, L. Loureiro, C. Ordonez, M. Sanchez, 
A. Shaposhnikov, "Florida International University 
High Performance Database Research Center,’’ 
SIGMOD Record, 24, 3, pp. 71-76, 1995. 

[7] N. Rishe, A. Vaschillo, D. Vasilevsky, A. 
Shaposhnikov, S.-C. Chen, "A Benchmarking 
Technique for DBMS‘s with Advanced Data 
Models," Submitted to the ADBIS-DASFAA 
Symposium on Advances in Databases and 
Information Systems, Sept. 2000. 

[8] N. Rishe, A. Vaschillo, D. Vasilevsky, A. 
Shaposhnikov, S.-C. Chen. "Query Paradigm for 
Semantic Databases," Submitted to the 19th ACM 
SIGMOD-SIGACT-SIGART Symposium on 
Principles of Database Systems, May 2000. 

[9] A. Shaposhnikov, "Algorithms for Efficient 
Transaction Management and Consistent Queries in 
Client-Server Semantic Object-Oriented Parallel 
Databases," Ph.D. Dissertation, Florida International 
University. 

[10] A. Vaschillo, "A semantic paradigm for intelligent 
data access," Ph.D. Dissertation, Florida 
International University. 

[11] A. Vaschillo, "The Architecture for GTOU System," 
FIU SCS Technical Report TR-99-11, 1999. 


