
A Graphics-User Interface
In Support of a Cognitive Inference Architecture

Isaí Michel Lombera1, Jayeshkumar Patel2, Stuart Rubin3, Shu-Ching Chen4 and Gordon Lee1

1Dept. of Electrical &
Computer Engineering
San Diego State
University
5500 Campanile Drive
San Diego, CA 92182

2Dept. of Computer
Science
San Diego State
University
5500 Campanile Drive
San Diego, CA 92182

3SPAWAR -
Systems Center
53560 Hull Street
San Diego, CA 92152
email:
stuart.rubin@navy.mil

4Dept. of Computing
and Information
Sciences
Florida International
University
Miami, FL 33199
email: chens@cs.fiu.edu

Abstract - The objective of this paper is to present a
graphical-user-interface (GUI) in support of a decision
support system (KASER) for machine understanding. In
order to provide information between the user and the
KASER during the learning process, the approach is to
combine information science and cognitive science in the
form of several virtual and physical multimedia screens
(e.g., a whiteboard running a pen-based OS ensemble, a
menu-driven touch-screen, or a multimedia output screen).
The touch-screen will also facilitate navigation between
virtual screens. An application to homeland security is
provided as an example; however the approach has vast
applicability to many problems in which a graphical form of
learning is required.

The integration between human and machine is to be
seamless which allows the user to pose questions and
retrieve answers through the multimedia system, thus
accelerating the learning process.

1. INTRODUCTION
The KASER is a knowledge amplifier (the acronym

stands for Knowledge Amplification by Structural Expert
Randomization) based on the principle of randomization.
This principle refers to the use of fundamental knowledge in
the capture and reduction of a larger, dependent space of
knowledge (not excluding self-reference). In a KASER
system, the user supplies declarative knowledge in the form
of a semantic tree using single inheritance. Unlike
conventional intelligent systems, however, KASERs are
capable of accelerated learning in symmetric domains [1-2].

Conventional expert systems generate cost curves below
the breakeven line. In conventional expert systems, cost
increases with scale and the increase is never better than
linear. In the case of KASER systems, the cost decreases
with scale and is always better than linear, unless the domain
is asymmetric (random). Perfectly (asymmetric) random
domains are trivial constructs and are not encountered in the
construction of practical applications [3].

Conversely, perfectly symmetric (non-random) domains
are also trivial and are also not found in practice [3]. In other

words, a perfectly random domain would have no embedded
patterns (true random numbers), while a perfectly symmetric
domain would be infinitely compressible (free of
information content). Clearly, such constructs are strictly
artificial. The more symmetric is the operational domain, the
less the cost of knowledge acquisition.

As a synopsis of the KASER, a production rule is
defined to be an ordered pair whose first member is a set of
antecedent predicates and whose second member is an
ordered list of consequent predicates. Predicates can be
numbers or words [4-5]. The linking of the two members
forms rules or courses of action.

KASER systems can be classified as Type I and Type II,
depending on their characteristics. In a Type I KASER,
words and phrases are entered through the pull-down menus.
The user is not allowed to enter new words or phrases if an
equivalent semantics already exists in the menu. In a Type II
KASER, distinct syntax may be equated to yield the
equivalent normalized semantics. The idea in a Type II
KASER is to ameliorate the inconvenience of using a data
entry menu with scale. In a Type II KASER, selection lists
are replaced with semantic equations from which the list
problem is automatically solved.

Thus a KASER system can amplify a knowledge base. It
represents an advance in the design of intelligent systems
because of its capability for symbolic learning and
qualitative fuzziness. In a conventional expert system, the
context may cover the candidate rule antecedent, in which
case an agenda mechanism is used to decide which matched
rule to fire (most-specific match, first to match, chance
match.). The KASER system follows the same rule-firing
principle – only the pattern-matching algorithm is
necessarily more complex and embeds the conventional
approach as its degenerate case.

In order to transmit and receive information back and
forth between the user and the KASER system in a
symbiotic manner, a novel graphics-user-interface has been
designed. We note that the GUI plays an important role in
supporting learning for the KASER through the user. In fact,
this synergy accelerates learning through visualization.

274

2. THE GUI PHILOSOPHY
The GUI design methodology serves the goal of being

able to rapidly enter contexts, rule antecedents, and rule
consequents for processing by the rule-based KASER expert
system. This enables it to be most effectively used by a
single user or a team of analysts.

The problem addressed by this methodology pertains to
the selection of semantic (normalized) phrases based on
natural language conceptual specification for use in the
loading of a context for a KASER decision support system.
A corrective action may similarly be specified for use in
training the KASER. There will typically be far too many
phrases to enable the efficient linear (lexicographic) search
through them for a semantic match. This methodology
addresses the problem of how to rapidly retrieve the desired
semantic phrases in real-time for contextual specification. At
the same time, semantic uniformity enables creativity in the
KASER once linked to this GUI.

Rule predicates are maintained in a move-to-the-head list
ordering. Antecedent predicates are features, while
consequent predicates are procedures. This needs to be a
learning system as follows. Of course, the algorithms need to
run fast too and be able to be run on parallel hardware.

The display (see Figure 1) will consist of a PC LCD
screen or a wall-sized touch screen. The left-most menu will
be used to display keyword and key phrases. The menu to
the right will be used to display a list of possible action
phrases (AP). The fields and buttons above these menus
serve to filter their contents. The context and action
textboxes below these menus are iteratively defined using
AP menu selections. Successive constraints are not
performed on the associated menu until the associated button
is clicked. The rule action is a sequence of action phrases.
Maximal reuse of previously used keywords and phrases
facilitates retrieval and semantic specification. Keywords
and phrases are only added as necessary. Selected keywords
or phrases are inserted at the point of the blinking cursor.
Sub-menus will not be used. Rather, the contents of each
pull-down menu will be dynamically ordered upon use to
best reflect their relevance to natural language constraints
and/or keywords, phrases, or even letters and/or their
probability of selection based on the usage history. The
possibility field and metaphorical explanation button are for
future expansion at this time.

All predicates bi-directionally translate to/from a unique
integer id through the use of a hash table. A predicate
phrase, once created, can only be destroyed through a least-
recently-used (LRU) mechanism. Once a predicate phrase is
expunged, its unique integer id is to be reused. A separate
hash table holds antecedent (i.e., keyword and key phrases)
and consequent (i.e., action phrases) predicates. Predicates
having a positive sign suffix augment the context. Similarly,
such predicates having a negative sign suffix will erase from
the context the exact same predicate having an implied
positive sign suffix, if present. Only such signed
consequents may modify the context on the next iteration.

The predicate matching processes will not find positive sign
suffixes when matching the context (predicates having
negative sign suffixes are self-erasing). This effects truth
maintenance operations (i.e., retracting or replacing
assertions and conclusions that are no longer true). Of
course, consequent predicates may pose questions – the
answer to which will modify the context via user (or
possibly procedural) interaction.

The pull-down menu on the left are ordered from most-
frequently-used (MFU) to least-frequently used (LFU). New
entries are inserted at the top and the LFU ones are deleted
from the bottom, but only to free space as needed. While it
has been shown that the method-of-transposition is more
efficient than the move-to-the-front method, the latter is used
to update in view of the principle of temporal locality. That
is, having been recently referenced greatly increases the
probability of a reference in the immediate future. A logical
array-based pointer system is used for the update.

Lowercase letters are not case sensitive. Moreover, the
user iteratively enters zero or more predicate substrings for
an implicit conjunction. This iteratively filters the predicate
list in a pull-down menu. If one states, must contain, "TNT
and terror", it might list such things as, “Terrorist uses TNT
to blow up...,” or “TNT found in suspected terrorist camp,”
etc. These constraints act as a filter on the presented items in
the pull-down lists.

This process could result in too many entries or too few
in the resultant pull-down menus. Then, the only recourse
the user has is to iteratively retype a different set of
keywords in the hope of getting it "correct". This process is
laborious and thus time-consuming and hence is deemed to
be unacceptable in view of our need for rapid predicate
specification. Nonetheless, when used judiciously and
sparingly, this filter can be advantageous.

The phrase, "The Taliban used TNT to bring down a
commercial airliner" would not be retrieved by the literal
constraints, {explosives, terrorists, airplane}, though clearly
it should be. Another associative recall would be, "A shaped
charge was dropped on a tank and exposed the populace to
shock and awe". Here, "shaped charge" derives from
explosives, "shock and awe" derives from terrorists, and
"dropped" weakly derives from airplanes. Note that these
derivations must be learned from use - not a preloaded
dictionary.

The problem with generalization is that, beyond a single
predicate, it rapidly loses validity through the generation of
improper combinations.

3. THE GUI DESIGN

In this section, the details of the GUI system (Figure 1)
are described along with the expected actions. The
fundamental principle underpinning the GUI is that of
facilitating associative recall. Here, the left-hand-side of the
top three buttons pertains to the Contextual Keywords and
Phrases (CKP) menu while, the right-hand-side of these
buttons pertains to the Action Phrases (AP) menu.

275

All contextual and action predicates bi-directionally
translate to/from a unique integer id through the use of
separate hash tables (associative memories). Hash table load
factors are kept below 50 percent to minimize collisions [6].
Whenever a hash table load factor equals or exceeds 50
percent, the bottommost 5 percent of the KASER rules
will be expunged, the frequency use counts and (reverse)
hash tables for the involved CKP and AP predicates updated,
and all resulting unreferenced or “dangling” predicates be
likewise expunged.

The percentage set here for block deletion (garbage
collection) will be large enough to prevent thrashing, while
small enough to preserve as much of the KASER knowledge
base as practical. Open addressing hash tables store the
records directly within the array, where in double hashing,
the interval between probes is computed by a second hash
function. Double hashing has a considerable advantage over
linear probing. Note that if the hash table stores large records
of about five or more words per record, chaining uses less
memory than open addressing. Chaining, unlike open
addressing, requires extra indirection for external storage. In
summary, double hashing is to be preferred to direct
chaining where the records are small enough to preclude the
use of external storage. Again, the design of an associative
GUI supports the principle of reuse.

One hash table holds antecedent (i.e., Contextual
Keywords and Phrases (CKP)) and the other consequent
(i.e., Action Phrases (AP)) predicates. Clearly, double
hashing is used for the CKP menu and if the abstract is
included in the hash, then direct chaining is the appropriate
hash method for the AP menu, when RAM is limited. As
mentioned before, once a predicate phrase is expunged from
the KASER rule base and hence the GUI; its unique integer
id is to be reused (e.g., through the use of a stack
mechanism).

A random (direct) access Java database will be used to
incrementally maintain updates to data structures stored in
RAM on secondary memory (e.g., for reloading). This may
not significantly slow down processes executing in RAM
and only updates during detected idle periods and just prior
to system shutdown, as necessary.

The words INS and ERA are reserved and result in
automatic modification of the context textbox with the word
or phrase that follows (these reserved words are delimited by
a space and the phrase that follows is delimited by a
comma), which enables subsequent inferences to be
automatically made. These two reserved words are hard
coded and are always the first two words in the initial AP
menu by default.

Predicates prefixed by INS will augment the context.
Similarly, such predicates prefixed by ERA will erase from
the context the matching predicate, if present. Only such
prefaced consequents will automatically modify the context
on the next iteration of the inference engine. This process of
insertion and erasure effects truth maintenance operations
(i.e., iteratively retracting or replacing assertions and

conclusions that are no longer valid as a result of rule
actions). Of course, consequent predicates may also pose
questions – the answer to which will modify the context via
user (or in theory procedural) interaction.

A single AP consequent may specify an arbitrary number
of INS and ERA commands which will be executed in
sequential order from left to right. The context may not
contain redundant integers, since it is a set.

For example, the contextual set placed in numerical order
to facilitate search operations (which use the bisection
search) might be, {1, 34, 35, 41, 897}. Next, a fired rule
action might be: ERA suspect is a terrorist. Here, the quoted
phrase is taken from the AP menu. If this phrase had been
hashed to the integer say, 41, then ERA 41 will change the
context to, {1, 34, 35, 897}. It is permissible to attempt to
erase an integer not present. This will simply result in an
“identity” operation with no messages produced. The use of
the INS reserved word is similar.

The specification of the Context and Action textboxes
are performed through selection from (insertion into) the
CKP and AP menus, respectively. Direct keyboard entry into
the Context or Action textboxes is never permitted and will
result in a dead key.

The reason for this strict requirement to go through the
menus to enter context and/or action text is to maximize
reuse, thereby enabling the KASER system’s creativity. The
Context and Action textboxes scroll horizontally to
accommodate any length entry. The CKP and AP menus
similarly scroll horizontally as well as vertically (see Figure
2). They are separated by a divider max bar, which allows
the menu in use to expand and cover the one not in use. This
serves to facilitate the viewing of the longer phrases in either
menu.

Context Undo and Action Undo Buttons

The (sub) AP list is not sorted because its MFU-ordering
is deemed to be more useful. The Context Undo button
deletes one integer conjunct at a time (where the CKP menu
entry is defined by the CKP integer hash table) from right to
left. The Action Undo button deletes one concatenated
integer Action Phrase at a time (where the AP menu entry is
defined by the AP integer hash table) from right to left.
These operations can result in dangling menu entries, which
are deleted if they were just created for this insertion and
thus are not already present in the rule base.

Clear Button and Clear Operations

The topmost Clear button clears the top six textboxes
when clicked. One can also backspace one character at a
time within the top six textboxes to selectively clear them.

Entering text on either side of the Add, Conceptual
Constraints, or Literal Constraints buttons automatically
clears all text from the corresponding opposite side of those
buttons. The eight textboxes scroll horizontally to
accommodate any length entry.

276

The lowermost Clear button clears the Context and
Action textboxes as well as the Possibility metric when
clicked. One cannot backspace one character at a time within
a Context or Action textbox to clear it. The system enforces
this constraint using a dead key. Any attempt to directly
enter text in either of these two textboxes is locked. The
Undo buttons must be used for the purpose of deletion. In
this manner, possible fragmentation of the contents of the
Context and Action textboxes is prevented.

Add Button

We note that the textual entries associated with the Add
and Conceptual Constraints buttons are preprocessed by a
commercial, royalty-free (Java-based) spell and grammar
checker prior to menu insertion.

The Add button is used to make an entry into the CKP or
AP menu, as appropriate, but, ideally only as semantically
necessary (i.e., when a word or phrase having the same
meaning is not already present). Syntactically duplicate
entries are never permitted. In this case, the Add and
Conceptual Constraint textboxes are automatically cleared.
Whenever a CKP phrase is selected or successfully added to
the menu, it is simultaneously appended as a conjunction
(separated by commas) at the right of the Context textbox.
Similarly, whenever an AP phrase is selected or successfully
added to the menu, it is simultaneously concatenated,
separated by commas, at the right of the Action textbox
(otherwise, why add it to the AP menu?). This implies that
CKP and AP menu entries are checked at the time of their
creation to be sure that they do not contain any commas.

Every AP points to an abstract unless empty, which is
entered/viewed through a pop-up textbox and again resides
in RAM. This abstract is made available to a multimedia
system, where it will be presented beneath the fired rule
consequent in front of the appropriate image background,
when the touch-screen is tapped. Note that the allowance for
a concatenation of actions results in non-determinism in the
induced rule base. New menu entries are tagged with one or
more conceptual constraints, although not every entry need
be tagged.

Again, conceptual constraints may also be added to
existing menu entries. For example, “computer” and “food”
are two very different conceptual constraints on “apple”. The
conceptual constraint, “computer” would have been added in
the 1980s subsequent to the release of the “Apple
McIntosh”. Note that “computer”, but not “food” is a
conceptual constraint on “Apple”. Figure 3 shows this
example.

Clicking on the Add button will insert the associated text
into the appropriate menu if it is not already present there.
Otherwise, this button will operate the same as if the existing
entry had been selected from the appropriate menu. Note
that “may” and “May” and the like are distinct case-sensitive
entries.

If the Conceptual Constraint textbox below it is not
empty and contains new title(s) delimited by commas, but

not spaces to allow for the inclusion of phrases, then they
will be added to the hash and reverse hash of the text
associated with the Add button, as necessary. That is, titles
not presently hashed will be inserted into the hash and
reverse hash tables. Titles manually deleted from this
textbox will similarly be detected as missing and thus
expunged from the appropriate hash table. They will be
expunged from the appropriate reverse hash table if they
would otherwise become dangling pointers. Menu entries are
similarly expunged when they are no longer used by any rule
in the KASER rule base – as evidenced by their frequency
use counts falling to zero. The deletion of a menu entry can
result in a dangling conceptual constraint.

Multiple successive clicks of the Add, Conceptual
Constraints, or Literal Constraints buttons will result in no
further action (i.e., unless there is a change in an associated
textbox). Similarly, multiple successive clicks of the Clear,
Metaphorical Explanation, Save, Submit, Delete, and Help
buttons will be without effect.

Conceptual Constraints Button

The Conceptual Constraints button is used to categorize
and thus filter the entries in the associated menu. Again,
menu entries should be tagged with conceptual constraints
when added, or whenever deemed appropriate to facilitate
subsequent retrieval. The relationship between menu entries
and conceptual constraints is many to many. For example,
the CKP entry “red” might be assigned the two conceptual
constraints; namely, “colors”, “flag colors”. Hashing on
“red” would bring up these two titles without repetition (i.e.,
redundancy). Reverse hashing on “flag colors” would bring
up “blue”, “red”, and “white” (in lexicographic order). Note
though that machine search is predicated on an integer
ordering. Menu items may be selected with a left-click or
deleted with a right-click (i.e., Windows protocols).

Alternatively, when using a touch-screen, one tap is used
to select and two to delete a menu item. Two taps will bring
up a confirmation box (e.g., Are you sure you want to delete,
“name”?). In another version of the GUI, delete buttons are
added at the bottom of the pull-down menus; when an entry
is highlighted, the delete button is enabled. Then the user
may press the delete button to delete the menu item. The
delete button is then disabled.

A title is to be deleted when all of its associations are
deleted and otherwise updated for each deletion – all through
the efficient use of hashing. The system checks a menu
entry, whenever it is updated with new conceptual
constraints, to update the hash and reverse hash tables as
appropriate (maintaining separate hash and reverse hash
tables for the CKP and AP menus – for a total of four hash
tables plus the two integer and reverse integer translation
hash tables). Such compilations, unlike linked-list
associations, save on runtime, which is critical to the
efficient use of the GUI with scale. Reverse hashing on an
unknown title will have no effect on the presented menu
entries.

277

We use CKP for the left menu and AP for the right one.
Multiple titles are implicitly OR’d and their results are
presented in union in the appropriate pull-down menu.

Titles are not to be recursively treated as CKPs or APs
themselves. To do so would make it impossible to specify an
initial conceptual constraint. Conceptual constraints are
simply added to, or expunged from, the hash and reverse
hash tables, as necessary, when the Add button is clicked to
enter the non-empty contents of its associated textbox. For
example, the title, “car” will enable the user to find the base
entry say, “1929 Porter” above that of, “Contents of Address
Register (CAR)”. Observe the importance of having the user
be specific in the specification of titles (e.g., use
“automobile” in lieu of, or at least in addition to, “car”).
Note that literal constraints, if any, are independent of and
operate subsequent to the effects of conceptual constraints.

Whenever an entry is selected from a menu, it will
replace the contents of the appropriate textbox associated
with the Add button and its conceptual constraints, if any,
will be listed, in lexicographic order, immediately below.
This affords the user the chance to add (and/or delete) one or
more titles, which are then linked to (de-referenced from)
the hash and reverse hash tables by clicking on the Add
button as before. Any known titles will be quickly
discovered and ignored. The number of entries produced in
the appropriate menu is updated when appropriate and
shown at the center-top of the menu (or twice – once at the
left and once at the right, where the active menu overlays the
inactive one). These integers provide the user with feedback,
which supports the user in specifying better filters.

Literal Constraints Button

The literal constraints “X” followed by a comma
delimiter, then a “Y” would iteratively constrain the
appropriate resultant pull-down menu entries to include both
case-sensitive letters “X” and “Y” in any order when the
Literal Constraints button is clicked. Lowercase letters are
not case sensitive. Substrings may include spaces, but not
commas, which serve as delimiters. The user iteratively
specifies zero or more substrings. Multiple literal constraints
are implicitly AND’d and their results are presented in
intersection in the appropriate pull-down menu. Literal
constraints, akin to conceptual constraints in this respect, are
not treated as CKPs or APs and thus are not inserted into
these menus. Literal constraints are, of course, not subject to
spelling or grammar checks.

Again, the literal constraining process is in addition and
subsequent to that of the conceptual constraints, if used
above it. Clicking on the Literal Constraints button will
automatically perform a Conceptual Constraint if the
corresponding title textbox of the latter is not empty and has
not been previously clicked.

Possibility Feature

The Possibility is a statistic, computed by the KASER,

that refers to the chance that a non-validated rule is actually
valid (validated [Saved] rules are assigned a 99 percent
possibility, by definition). It is cleared whenever the lower
Clear button is pressed, or whenever the contents of the
Context or Action textboxes changes for any reason (i.e.,
other than a new rule being specified [Save button], or a rule
being fired upon successful return [Submit button], of
course).

Explanation Button

The Metaphorical Explanation button brings up a textbox
that shows the sequence (in words) of transformation rules
supplied by the KASER, if any, that were applied to the
context to ultimately fire the shown rule along with its
Possibility. Only the context supplied by the GUI (in words)
and the fired KASER rule (in words) is shown if no
transforms were applied. Otherwise, the applied transforms
are shown in sequence sandwiched in between these two
along with their possibilities at each step, where supplied by
the KASER.

Submit Button

The Submit button will send a non-empty GUI-supplied
context to the KASER, which in turn will supply an action,
if successful, for the user to adjudicate. Clicking on the
Submit button will initially clear the Action textbox and its
associated Possibility metric before forwarding to the
KASER. The integer contextual set presented to the KASER
is numerically sorted. The integer action sequence, received
from the KASER, is to be hashed back into text for
presentation to the user in the Action textbox, as previously
described. Any INS or/and ERA command(s) is (are)
implemented on the Context, but not shown.

Note that the set of keywords for multimedia retrieval is
synonymous with the supplied context subsequent to its
transformation, if transformation was used to fire a KASER
rule. Notice that the supplied set of multimedia keywords
may thus be a superset, which covers the fired rules
antecedent. This will facilitate retrieval of the most-specific
multimedia. Moreover, the multimedia system may process
the fired rule consequent and its associated abstract, if
supplied, to elicit further information. All available
information must be included in each and every search for
appropriate multimedia content (i.e., to avoid over-
generalizing and thus incurring too many ‘hits’). This
process is to be automated and perhaps pre-saved in the
multimedia system to allow for real-time selection and
retrieval of multimedia content.

Save Button

The Save button saves a validated rule in the KASER
rule base after checking for non-redundancy there. If the
hashed, sorted, non-empty GUI context’s textbox (i.e., an
empty textbox here cannot be matched by definition) exactly
matches an antecedent in the KASER rule base, then the

278

rules consequent will be overwritten with the distinct user-
supplied non-empty Action textbox.

Delete Button

The Delete button deletes an exactly matching rule from
the KASER rule base (there can be at most one) and reports
success, or reports that the rule was not found. A successful
delete will update menus, hash, and reverse hash tables (and
the two bidirectional integer hash tables) as necessary to
remove otherwise dangling references. This will also result
in the deletion of any associated abstract for the rule
consequent when the frequency use counts for these AP
menu entries goes to zero.

Help Button

The Help button is simply a textual End-User How-to-
Guide, which covers how to use the system. It links to an
external .txt (.doc) file, which can be readily and
independently updated. Indexed search (e.g., Windows
Help) will be included in future development.

4. CONCLUSIONS
This paper presents the design of a system that provides

the interface between a user and a cognitive system. During
the learning process, the user can pose questions or supply
information through the GUI.

Through this system, the learning process is accelerated,
as visualization is used to provide information to the user
and retrieve knowledge from the user in a symbiotic human-
machine relationship.

The realization of the system interface provides well-
documented benefits of diagrammatic displays for human
information processing and knowledge acquisition, such as,
shifts to top-down information processing strategies and
enhanced recall, while alleviating adverse effects evident in
confusion and motivational disengagement arising from
complex diagrammatic displays.

5. REFERENCES

[1] Rubin, S. and Lee, G., “Learning Using an
Information Fusion Approach”, Proc. of the ISCA Int’l
Conference on Intelligent and Adaptive Systems, Nice,
2004.

[2] Rubin, S. and Lee, G. “On the Use of
Randomization for System of Systems (SoS) Design of
Intelligent Machines”, Proc. of the World Automation
Congress, ISSCI, Budapest, 2006.

[3] G.J. Chaitin, “Randomness and Mathematical
Proof,” Sci. Amer., vol. 232, no. 5, pp. 47-52, 1975.

[4] L.A. Zadeh, “From Computing with Numbers to
Computing with Words – From Manipulation of
Measurements to Manipulation of Perceptions,” IEEE Trans.
Ckt. and Systems, vol. 45, no. 1, pp. 105-119, 1999.

[5] S.H. Rubin, R.J. Rush, Jr., J. Boerke, and Lj.
Trajkovic, “On the Role of Informed Search in Veristic

Computing,” Proc. 2001 IEEE Int. Conf. Syst., Man,
Cybern., pp. 2301-2308, 2001.

[6] http://www.cs.bham.ac.uk/~mhe/foundations2/node
92.html.

Figure 1: The GUI Configuration

Figure 2: Example of the Scroll Feature

Figure 3: Example of Adding Conceptual Constraints

279

