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Abstract—This paper proposes a semantic content analysis
framework for reliable video event detection. In this work, we
target to improve the concept detection results by feeding the
learnt results from individual shallow learning models into a
generic model to dig out of the similarities in deeper layers.
Compared to the deep learning models, the shallow learning
models are memorizing rather than understanding the features.
The proposed framework tackles the issue in shallow learning
by integrating the strength of Multiple Correspondence Anal-
ysis (MCA) and Multilayer Perceptron (MLP) neural network.
The low-level features are taken as the initial inputs for MCA-
based models to abstract higher-level feature values. The output
values further involve interaction in the neural network for
better understanding. It earns the ability to put forward the
arguments. The framework provides final decisions of video
classifications by analyzing the decisions of every single frame
from the network outputs.

Keywords-Multiple Correspondence Analysis (MCA); Neural
Network (NN); disaster information system; video concept
detection

I. INTRODUCTION

Disasters take place frequently in recent years. They affect
the normal activities of communities with serious losses,
which includes economic and environmental losses, as well
as human lives [1][2][3]. If there exists an effective disaster
information management system [4] that can be triggered
immediately to provide the current status report of the hazard
to the community, it is possible to improve the ability of
stopping unnecessary consequential losses in time. In that
case, not only the hazard status but also the preparation
or recovery processes are critical to the populace and the
community [5][6].

In the Internet age, the volume of multimedia data (includ-
ing video, audio, image, and text) grows exponentially, car-
rying a variety of valuable information [7][8][9]. Multimedia
data can be accessed from different kinds of devices, making
it more convenient for people to get a visual understanding
of the situations that they care about [10][11]. When a catas-
trophe happens, the modern mobile devices become essential
and really helpful to capture disaster related multimedia
data. The time-sensitive information is no longer restricted
to be published to the public by the Emergency Operations

Center (EOC) but can be provided through any trustable
organizations.

Video semantic concept detection, which aims to explore
the rich information in the videos, uses various machine
learning and data mining approaches to address this chal-
lenge [12][13][14]. In addition, many existing approaches
are making every effort to better fill in the gap between
the low-level visual features and the high-level concepts
[15][16][17].

Unlike the simple disaster concept detection or disaster
classification tasks, which attempt to classify the disaster
scenes from non-disaster scenes, the information concen-
trated to one disaster includes the disaster event, damage
situation, disaster recovery, disaster effect, and in advance
prevention, to name a few [6]. The difficulty increases since
all those concepts are surrounding one major premise, which
will immensely increase the similarity between the concepts.
In the literature, various classifiers have be used to identify
the inherent concepts in videos [18], including Multiple
Correspondence Analysis (MCA), decision trees [19], etc.
However, there is still a large space of improvements.
Beyond the shallow learning method, neural networks, like
Multilayer Perceptrons (MLP) [20], are considered to target
complex learning purposes that achieve the ability to explore
in a greater detail.

In this paper, a novel framework of Multiple Corre-
spondence Analysis based Neural Network (MCA-NN) is
proposed to address the challenges in shallow learning. It in-
tegrates the Feature Affinity based Multiple Correspondence
Analysis (FA-MCA) models into one large neural network
model. The major contributions of this work are as follows:
First, this is the first time that the MCA-based model is
applied to separated groups of features and generates higher-
level features as the inputs of the deep learning component;
Second, the proposed semantic concept detection framework
is utilized to decide the video concept instead of frame-
based classification; Furthermore, the process of deciding the
neural network module is automatic. The most important pa-
rameters building the network are obtained from the outputs
of the FA-MCA models and the corresponding statistical
information.



The rest of this paper is organized as follows. Section II
discusses the related work in multimedia data analysis. Sec-
tion III details the proposed framework with the discussions
of each component. In Section IV, the experimental results
and performance evaluation are presented. Finally, the last
section concludes this paper.

II. RELATED WORK

The traditional multimedia data analysis uses hand-crafted
features (low-level features) with simple trainable classifiers
which are widely used in various domains [21][22]. Those
diversified representatives are converged in a single form and
stored for future analysis. High-level features or concepts
can be learnt from the raw data using trainable feature
extractors. In order to convey a group of low-level features
to a proper high-level semantic concept, several approaches
can be involved in the procedure, like feature selection
[23][24][25], feature extraction [26], and classifier selection
[27][28][29].

Feature selection reduces the feature dimension that ef-
ficiently speeds up the learning process. Furthermore, the
advances in technology have also made it possible to record
the multimedia data in higher resolutions. As a double-
edged sword, it improves the analysis results distinctively
by increasing the feature quality but also slows the analysis
process due to the increase in feature quantity.

The learning process is considered as deep learning if it
has more than one stage of non-linear feature transformation
[30]. Along with transforming the low-level features into
mid-level and high-level features, the level of abstraction
increases with the hierarchical representations. The MLPs
are used as the base of the deep learning architectures, which
provide a complex function to determine the feature values
in the feedforward direction.

In the MCA-NN framework, the input representations
of a low-level feature are transformed into a higher-level
value using FA-MCA model training. However, it is one
stage feature transformation, which is considered as shallow
learning while high-level features are more global and more
invariant. To address this issue, it is worth considering the
MLP neural network, which takes the transforming features
to the predictor.

III. THE PROPOSED FRAMEWORK

The overall framework is illustrated in Figure 1. It in-
cludes three major steps: pre-processing (the upper right
panel), training phase (the upper left panel), testing phase
(the lower right panel). The output classification results from
the network are frame based. The final classification of the
framework concludes the single frame decisions for each
video to produce the entire video classification.

The pre-processing phase includes key frame extraction
and feature extraction, which make the data cleaned and
structured. In the training phase, the model is trained using

the FA-MCA algorithm for each feature group indepen-
dently. The low-level features were learnt through each FA-
MCA model and transformed into a higher-level feature.
Each model produces one ranking score for each instance,
and the ranking score is normalized as a new feature that
includes a higher level semantic. Followed by the FA-MCA
model training, an MLP network is created using the FA-
MCA outputs to deeply learn the relationships between high-
level features.

The low-level feature value affinities are calculated and
accumulated as weighting factors, which will be used in the
testing phase to generate the high-level feature value of the
testing instances. The low-level feature sets are distributed
into different groups for high-level feature value extraction
based on the different representation levels (e.g., color space,
object space, etc.). For example, from the color space to
the object space, the feature groups form a flat structure,
indicating that each group is self-structured and relatively
independent. Afterward, the outputs from the FA-MCA
models are utilized as inputs of hierarchical feature learning
network, which makes use of the relationships between
independent high-level feature values.

A. Pre-processing

In video analysis, the pre-processing phase for each video
is independent while several low-level features are extracted
from every frame. To reduce the number of frames in the
process, one raw video is separated into different video
shots [31]. Only one key frame is selected to represent
the video shot, and all the selected key frames are used
to cover the whole idea of the video. This process reduces
the computation time significantly.

In this paper, several different types of low-level vi-
sual features are extracted from the raw data includes
Histogram of Oriented Gradient (HOG) [32], Color and
Edge Directivity Descriptor (CEDD) [33], Haar-like feature
[34], and color space information [35]. Specifically, HOG
feature is used for the purpose of object detection, which
is computed on a dense grid of uniformly spaced cells and
uses overlapping normalization for accuracy improvement.
CEDD feature, as it is named, obtains color information
and texture information. Haar-like feature is always used in
object recognition with Haar wavelets, especially useful in
face detection. Color space representations are considered
using Hue, Saturation, and Value (HSV), with YCbCr as
the supplemental information. As a result, one video is
represented by several key frames, and each key frame
is composed by several feature values. Hence, the dataset
consists of data instances at the frame level with the binary
class information. The finalized dataset is then split into
training and testing sets using three-fold cross-validation
[36] based on the count of videos. In other words, the
entire group of key frame instances that belong to one video
is assigned to either the training dataset or testing dataset
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Figure 1: Illustration of the MCA-NN framework

during the separation, in order to preserve the information
between frames that represents in each video.

B. Training Phase

In the training phase, there are two key components: low-
level feature transformation using FA-MCA and the MLP
neural network that takes the transformed feature values as
inputs; and feature transformation component uses FA-MCA
to produce a single value for each feature group, which
leverage the low-level feature group into a more abstract
representative value. The calculation bases on a weighting
matrix that takes each low-level feature into consideration
during learning process. The neural network builds up based
on the outputs and the statistics of the training results from
each FA-MCA model. The output values are ranking scores
for training instances that can be used for classification
purpose. However, in this proposed work, the ranking scores
are used as higher-level features for the following deep
learning process.

To fully utilize the value in each output, the number of
hidden layers is decided by the number of input layers.
Considering the permutation of N optional input layers, the
full permutation of the selection is N !. One bias weight
(wi0) is included in the total number of hidden neurons
and will not be updated during the back propagation, as
well as the one counts for the input neurons. For example,
in the proposed framework, there are four input layers for
different low-level features. As taking variable N as 4, there
are 5 input weights in total, which are 4 weights for different

inputs plus one bias weight. For the hidden layers, there are
4! = 24 weights plus one bias weight.

The tanh activation function is used to enable a wider
range of output instead of linear activation, the input neurons
(ai) for next layers are calculated base on the following
formula:

ai = tanh(neti) =
eneti − e−neti
eneti + e−neti

(1)

The tanh function restricts the output between -1 and 1,
which can be used to predict the event if the value turns
out to be positive or negative. Therefore, the transformed
features are normalized between -1 and 1 as well. If the
transformed feature is closer to -1, it means the FA-MCA
model has learnt that the low-level features for the specific
instance are more likely to represent the target concept, vice
versa.

In formula 1, neti is the correspondence neuron output of
current layer, which accumulates the weighted output from
the previous layers (shows in formula 2), Pred(i) is the set
of all neurons j for a connection j → i exists, called the set
of predecessors.

neti = wi0 +
∑

j∈Pred(i)

wijaj (2)

The initial weights for the calculations of all the hidden
layers use the F1 scores from the FA-MCA training results,
which are the values between 0 and 1. In that case, the
initial weight will be large if the transformation shows



high confidence by a large F1 score. A smaller weight
will be assigned if the confidence of specific FA-MCA
training model is lower. Therefore, the transformed high-
level features might not be able to carry out a well learnt
concept comparing with other features. To obtain better
initial weights for each input, the best F1 scores for the
training dataset using the FA-MCA models are modified to
fit in the range of [-0.5,0.5]. In order to get an initial output
between [-1,1], each weight is divided by 2 (E.g., 4 input
layers with each weight between [-0.25, 0.25]). The bias
weight takes the average F1 score for all low-level feature
transformation models and modified it also fit in the same
range of initial weight.

For the output layer (Dark green neuron in figure 1), all
the weights for calculating the hidden neurons are initiated
randomly following the requirement of range in [-0.5, 0.5].
Since each training data set is unique for each concept,
select the weights randomly will not restrict too much
to the output. However, it needs several rounds of back
propagation to compute gradients. The repeating process is
set to 10,000 times during experiments for regular runs to
have error plummets. The error rate is accumulated by p
training instances and calculated based on formula 3 once
of the training cycle to determine the learning rate of the
output layers for the next cycle, which is used in the process
of back propagation.

Etotal =
1

2

p∑
i=1

(targeti − outputi)2 (3)

The weights are updated during the back propagation in
order to have the actual output (outputi) to be closer to the
target output (targeti). Namely, minimizing the error for
each hidden neuron and the whole network. The changes of
weights (wi) in the output layer calculation affect the total
error by taking the partial derivation as following:

∂Etotal

∂wi
=

∂Etotal

∂outputi
∗ ∂outputi

∂neti
∗ ∂netti

∂wi
(4)

The partial derivative of the activation function is 1 minus
the square of the current layer output (shows in formula 5).

∂outputi
∂neti

= 1− tanh2(neti) (5)

The backward calculation of the weight changes for
hidden layers is similar but slightly different to account the
output of each hidden layer neuron contributes to the output
neuron. So every hidden layer weight change is the partial
derivative of the total hidden layer input with respect to each
weight (wji), where j is the total number of input neurons:

∂Etotal

∂wji
=(

∑
j

∂Etotal

∂outputj
∗ ∂outputj

∂netj
∗ ∂netj
∂outputji

)

∗ ∂outputji
∂netji

∗ ∂netji
∂wji

(6)

Both hidden layers’ and output layers’ weights are up-
dated during the runs to decrease the error by multiplying
by a learning rate, the following formula shows the update
step, where w+

i represents the updated weight:

w+
i = wi − η ∗

∂Etotal

∂wi
(7)

The learning rates η for both updating functions (output
layer and hidden layers) are set to 0.7 empirically at the
initial step. However, in some of the training process,
0.7 seems too large to tighten up the errors. It takes so
many learning cycles but still could not be able to find a
proper prediction value with a low error rate. The proposed
framework automatically detects the large error rates after
the first 1000 runs as tolerance. If the total error remains
greater than 0.01, the learning rate of the output layer will
be reduced by 10 times (reset to 0.07). Consequently, since
the learning rate affects the duration of the learning process,
the training cycle extended two times longer than the original
one to acquire an output prediction value with an acceptable
error rate.

C. Testing phase

The final weighting matrix generated during the training
phase of FA-MCA is used in the testing phase in order to
get the final ranking scores for the testing instances. Those
ranking scores are responsible for representing the high-
level concepts. The ranking procedure starts with adding
all feature weights for instance t, and calculates its average
value [37].

For the purpose of feeding the variables into the well-
trained neural network, all the ranking scores of the testing
instances are normalized between [-1,1] as the training
instances in order to better represent the value that is similar
to the output of the tanh function.

Since the best F1 score for the training data can be
calculated by attempting to separate the transformed low-
level features into the positive class (containing the target
concept) or the negative class (not containing the target
concept), the F1 score for each FA-MCA model is recorded
as the confidential variable that can be utilized for initializing
the MLP weights.

The well-trained MLP network is directly used by feeding
all the testing instances one by one to generate the prediction
values. As all the weights are updated and fixed during the
training phase to optimally derive the positive instances from
the negative instances, the testing phase is as easy as running
the fixed network to compute the output. Same to the ideal
distribution in the training phase, a smaller output value
in the range of [-1,1] predicts a positive instance, while a
larger output value predicts a negative one. The number 0 is
selected as the value to do the classification, which means
the instance holding a prediction value smaller than zero will
be classified as positive.



(a) Flood (b) Human Relief

(c) Damage (d) Training Program

(e) Disaster Recovery (f) Speak

(g) Interview

Figure 2: Different sample concepts in the dataset

D. Semantic concept detection

As mentioned earlier, the final semantic concept predic-
tions are concluded by the count of the videos. In that
case, the output from the neural network, which has the
classification results for each individual frame, needs to be
integrated to get the finalized decision of each video. The
framework takes the classification results of the frames for
one video to decide the final classification. By counting the
total number of frames for one video that are being tested,
the portion of the predicted class (negative or positive)
affects the final decision. During the experiments, the portion
threshold is set to be 0.6, which means if there are more than
60% of the frames being classified as negative, the video
will be classified as negative. Otherwise, the video will be
predicted as positive. The negative labeled video means that
the target semantic concept is not detected from the tested
video. On the contrary, if the video is classified as positive, it
means that the concept is detected. The experiments of how
to decide the threshold is shown in the following section.

No. Concepts Positive Instances Videos
1 Flood 258 21
2 Human Relief 92 4
3 Damage 281 21
4 Training Program 148 7
5 Disaster Recovery 369 16
6 Speak 1230 145
7 Interview 117 23

Total 2495 237

Table I: Dataset statistics

IV. EXPERIMENTAL ANALYSIS

A. Dataset Description

In this paper, a specific task of detecting disaster-related
semantic concepts is selected using a dataset obtained from
the Federal Emergency Management Agency (FEMA) web-
site, although the framework can be used as a general
framework that works for various multimedia application do-
main. The semantic concepts obtained from this website are
different from the normal disaster event concepts. It is more
useful to examine the effectiveness of the proposed MCA-
NN framework that improves the capability of detecting the
differences between similar concepts.

The dataset includes more than 200 videos, which contain
thousands of key frames that are related to seven different
concepts. However, there are still a great amount of simi-
larities between the concepts. The statistics information is
shown in Table I that depicts the name, the number of
positive instances, and the number of videos of each concept.
When the similarity between concepts increases, the task of
concept detection becomes more challenging. Meanwhile, a
well trained neural network for the transformation of features
improves the training and testing performance. These are
the reasons and motivation of proposing the MCA-NN
framework. As mentioned in Section III-A, the dataset is
split using three-fold cross-validation based on the number
of videos. In other words, the entire data set is divided into
3 different folds with approximately 1/3 of the videos (one
fold) for testing and 2/3 of the videos (two folds) for training.

Figure 2 also depicts the samples of each concept in
details on which are the key frames extracted from the
videos and used during evaluation process. It is easier to
differentiate the concept “Flood” in Figure 2a from the
concept “Human Relief” in Figure 2b than to distinguish the
concept “Speak” in Figure 2f from the concept “Interview”
in Figure 2g.

B. Evaluation Results

The performance evaluation takes the precision, recall,
and F1-score values as the criteria [38], which consider the
number of positive and negative instances in each class.
The F1-score measure is considered as the most valuable
comparison metric since it is the trade-offs between the
precision and recall values. All the classifiers are tuned to
achieve their best performance during the experiment.



Decision Tree MLP MCA-NN
Concepts Precision Recall F1 Precision Recall F1 Precision Recall F1
Flood 70.13% 45.23% 29.77% 70.27% 51.03% 34.90% 69.74% 76.19% 57.64%
Human Relief 1.43% 32.33% 2.73% 1.63% 31.30% 3.07% 33.99% 50.00% 23.51%
Damage 72.10% 61.40% 49.13% 5.10% 33.33% 8.87% 64.14% 71.43% 51.20%
Training Program 68.60% 40.87% 17.20% 25.67% 38.56% 15.61% 67.51% 88.89% 61.65%
Disaster Recovery 70.37% 61.67% 46.47% 70.57% 65.83% 49.87% 60.53% 81.11% 56.64%
Speak 82.93 81.37% 77.67% 78.23% 95.57% 83.67% 86.92% 93.88% 88.49%
Interview 68.77% 40.53% 18.90% 35.53% 36.77% 10.30% 70.09% 77.38% 59.01%
AVERAGE 62.05% 51.91% 34.55% 41.00% 50.34% 29.47% 64.70% 76.98% 56.88%

Table II: Performance evaluation results on a disaster dataset

The proposed framework shows the best performance on
average in comparison with the decision tree and MLP
classifiers (available in WEKA [39]). The performance by
each comparison criterion is illustrated in Figure 3. Each
plot takes the concept id as the x-axis and the percentage
evaluation result as the y-axis. The concept id that refers to
a different concept name can be found in Table I. It is clear
that, during the comparison of each criterion, the proposed
method wins most of them, especially in the comparison of
the recall and F1-score values, which are in Figure 3b and
Figure 3c, respectively.

Table II presents the experimental results in details. As can
be seen from this table, the improvement of the average F1-
score is more than 27% when comparing to MLP. Compared
to the Decision Tree, the average results (precision, recall,
F1 score) improve 2.65%, 25.07% and 22.33%, respectively.
Although the MLP recall performs nearly two percent better
than MCA-NN for one of the concepts (i.e., Speak), it
does not get the best F1 score, which means it takes as
many instances as positive; while more negative instances
are wrongly classified. Also, it shows poor performance
when the number of positive instances is very small (i.e.,
imbalanced data). However, MCA-NN performs well, no
matter whether the number of positive instances is large or
small in a dataset.

Additionally, since we prefer to recognize as many related
events as possible for the purpose of disaster information
analysis, the recall values earn more attention when com-
paring to the precision values. However, blindly increasing
the number of positive instances in the classification process
could only bring a higher recall value. A better F1 score
relies on a more accurate classification framework. In other
words, the increasing recall values at the cost of the precision
values would not be able to get a stable F1 score in the
experiments.

Figure 4 shows the experiments on selecting the best
threshold of making decisions for entire video classifica-
tions. It is clear that the precisions are affected slightly
during the test. The rightmost three bars, which represents
taking 0.6 as the threshold that is used for all the experi-
mental results depicted in Table II, show the best recall and
F1 score values in this test. From the test, we can conclude
that since the precision values would not be greatly affected

(a) Precision

(b) Recall

(c) F1

Figure 3: Different evaluation criteria results

by the threshold, it would be better to increase the threshold
in order to get the best recall and F1-score values. The bar
chart shows a gradually increasing trend for both recall and
F1-score values, accompanying with an increasing threshold.
However, when the threshold comes to 0.7, the precision
value suddenly dropped to 0 in the test. So the final threshold
is determined to be 0.6.



Figure 4: The experimental results for deciding the video
classification threshold

V. CONCLUSION

Disaster-related concept detection includes disaster event
detection, disaster preparation training, disaster recovery,
and disaster damage situation, to name a few. Since it
does not limit to the straight forward disaster events, the
concepts that need to be utilized are varied for the aim
of managing the disaster information. Since the correlations
between those concepts are higher than the diverse disaster
events, it makes the classification task more challenging. To
tackle this challenge, in this paper, the MCA-NN frame-
work is proposed to convey the low-level features into the
higher-level feature values through the FA-MCA models,
considering the relationship between the features within each
feature group. The shallow network learned and transformed
features were used as the input for a deeper learning neural
network for further training purpose. As a result, critical low-
level features are memorized and depicted as the higher-level
features. Consequently, the higher-level features are explored
in details to better understand the concepts.

Comparing with the decision tree and MLP classifiers,
the experimental results show significant improvements for
all the evaluation criteria, which means that the proposed
framework successfully transformed the low-level features
and truly learnt the concepts when differentiating the inter-
related concepts. However, there is still some improvements
that can be further carried out.

In the future, this framework will be further extended and
tested for more concept detection applications. It is worth
considering to do more research on the randomly assigned
initial weights in order to reduce the repeating cycles. Other
neural networks and back propagation algorithms can be
utilized to better fulfill the deep learning purpose.
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