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Abstract

In this paper, a powerful open Multiple Instance
Learning (MIL) framework is proposed. Such an open
framework is powerful since different sub-methods can be
plugged into the framework to generate different specific
Multiple Instance Learning algorithms. In our proposed
framework, the Multiple Instance Learning problem is first
converted to an unconstrained optimization problem by
the Minimum Square Error (MSE) criterion, and then the
framework can be constructed with an open form of
hypothesis and gradient search method. The proposed
Multiple Instance Learning framework is applied to the
drug activity problems in bioinformatics applications.
Specifically, experiments are conducted on the Musk-1
dataset to predict the binding activity of drug molecules.
In the experiments, an algorithm with the exponential
hypothesis model and the Quasi-Newton method is
embedded into our proposed framework. We compare our
proposed framework with other existing algorithms and
the experimental results show that our proposed
framework yields a good accuracy of classification, which
demonstrates the feasibility and effectiveness of our
framework.
Keyword: Multiple Instance Learning, Bioinformatics,
Neural Networks, Machine Learning.

1. Introduction

The Multiple Instance Learning problem is getting
more attention recently in the field of machine learning
and has been applied in drug discovery. Other applications
of Multiple Instance Learning include stock market
prediction and natural scene classification. In standard
supervised learning, each object in the training examples is
labeled and the problem is to learn a hypothesis that can
predict the labels of the unseen objects accurately.

However, in the scenario of Multiple Instance Learning,
the labels of individual instances in the training data are
not available; instead the labeled unit is a set of instances
(bag). In other words, a training example is a labeled bag.
The goal of learning is to obtain a hypothesis from the
training examples that generate labels to the unseen bags.

The Multiple Instance Learning technique is originally
used in the context of drug activity prediction. In this
domain, the input object is a molecule and the observed
result is the measurement of the degree to which the
molecule binds to a targeted “binding site.” A good drug
molecule will bind very tightly to the desired binding site,
while a poor drug molecule won’t [3]. A molecule has a
lot of alternative conformations and only one or few of the
different conformations of each molecule (bag) are
actually bound to the binding site and produce the
observed result; while the others typically have no effect
on the binding. Unfortunately, the binding activity of a
specific molecule conformation can not be directly
observed. Actually, only the binding activity of a molecule
can be observed. Therefore, the binding activity prediction
problem is a multiple instance learning problem. In this
sense, each bag is a molecule and the instances of a bag
(molecule) are the alternative conformations of the
molecule. The label of a bag (molecule) is a measurement
of the degree to which the molecule binds to a targeted
“binding site.” The goal of learning is to predict the degree
to which the molecule binds to a targeted “binding site.”

In this paper, an open Multiple Instance Learning
framework is proposed. The framework is open, which
means different sub-methods can be embedded into the
framework to generate different specific Multiple Instance
Learning algorithms. In our proposed framework, the
Multiple Instance Learning problem is first transformed to
an unconstrained optimization problem and further
converted to the standard supervised learning problem.
After those transformations, a learning framework can be
constructed. Performance comparison is performed on
Musk-1 dataset in the domain of drug activity prediction,



which compares our proposed framework with other
existing Multiple Instance Learning algorithms using the
accuracy of classification as the performance metrics. The
experimental results demonstrate the feasibility and
effectiveness of our proposed framework.

This paper is organized as follows. Section 2 briefly
introduces the related work in Multiple Instance Learning.
Section 3 describes the details of the proposed Multiple
Instance Learning framework. The experimental results are
presented and analyzed in Section 4. Section 5 gives the
conclusion.

2. Related work

Lots of algorithms in Multiple Instance Learning have
been proposed in the past few years. Dietterich et al. [3]
represented the target concept by an axis-parallel rectangle
(APR) in the n-dimensional feature space and presented
Multiple Instance Learning algorithms for learning axis-
parallel rectangles (APR). In [2], the MULTIINST
algorithm for Multiple Instance Learning that is also an
APR based method was proposed. In [5], the authors
introduced the concept of Diversity Density and applied a
two-step gradient ascent with multiple starting points to
find the maximum Diversity Density. [7] used the
investigated Multiple Instance Regression. Their
regression algorithm assumed that each bag has a
representative instance and treated it as a missing value
and then the EM (Expectation-Maximization) method was
used to learn the representative instances and do the
regression simultaneously.

Wang et al. [8] explored the lazy learning approaches
in Multiple Instance Learning. They developed two kNN-
based algorithms: Citation-kNN and Bayesian-kNN. In [9],
the authors tried to solve the Multiple Instance Learning
problem with decision trees and decision rules. Ramon et
al. [6] applied the Neural Network technique on Multiple
Instance Learning and proposed the Multiple Instance
Neural Network. Andrews et al. [1] utilized the Support
Vector Machine in Multiple Instance Learning.

3. The proposed Multiple Instance Learning
framework

3.1. Problem definition

In classical Multiple Instance Learning, the label of
each bag is either 1 (Positive) or 0 (Negative). A bag is
labeled Positive if the bag has one or more Positive
instances and is labeled Negative if and only if all its
instances are Negative. The Multiple Instance Learning
problem is to learn a hypothesis h mapping from a bag to

a label (either Positive or Negative). The classical Multiple
Instance Learning problem can be defined as follows:

Definition 1. Given the instance space α , the bag space
αβ 2= , the label space ( ) ( ){ }Negative0,Positive1=γ , a

set of training examples LBT ,= where

{ }niBBB ii L1, =∈= β is a set of n bag and

{ }niLLL ii L1, =∈= γ is the set of their associated

labels with iL being the label of iB , the problem of

Multiple Instance Learning is to generate a hypothesis
{ }1.0: =→ γβh which can predict the labels of unknown

bags accurately.

In our proposed Multiple Instance Learning
framework, the label space is transformed from a discrete
space ( ) ( ){ }Negative0,Positive1=γ to a continuous

space [ ]1,0' =γ and the label of a bag actually indicates

the degree to which the bag is Positive, instead of just
Positive or Negative. The label “1” means the bag is
Positive one hundred percent and the label “0” indicates
that the bag is impossible to be Positive. After this
transformation, the goal of the learner changes to generate

a hypothesis [ ]1,0: ' =→ γβBh from the training

examples. Given an unknown bag, the learned hypothesis

Bh predicts the degree to which the unknown bag is

Positive. When the predicted label is greater than 50%, we
can consider that bag is Positive; otherwise the bag is
predicted to be Negative.

Actually, each instance in a particular bag has a label
in the closed interval [ ]1,0 , which represents the extent to
which the instance is Positive. Given the labels of all the
instances in a bag, the label of the bag can be represented
by the maximum of the labels of all its instances. In other
words, { }ij

j
i lMAXL = where the label iL is the label of

bag iB and ijl is the label of the thj instance in iB . Let

[ ]1,0: ' =→ γαIh denote the hypothesis that predicts the

label of an instance. The relationship between hypotheses

Bh and Ih can be depicted in Figure 1. In Figure 1, each

bag iB has im instances and ijI represents the thj

instance of iB . ( )ijIij Ihl = is the label of instance ijI .

The label of bag iB is

( ) { } ( ){ }ijI
j

ij
j

iBi IhMAXlMAXBhL === (1)
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Figure 1. Relationship between Bh and Ih

3.2. Transforming MIL problem to the
unconstrained optimization problem

In our proposed Multiple Instance Learning
framework, the Multiple Instance Learning problem is
transformed into the unconstrained optimization problem
using the Minimum Square Error (MSE) criterion. In other
words, the goal of the learner is to generate a hypothesis

Bh from the given training examples LBT ,= to

minimize
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Suppose the hypothesis Ih has M parameters that are

{ } ( )Mkk ,,2,1, L== θθ . The Multiple Instance Learning

problem in our proposed framework finally is transformed

to the following unconstrained optimization problem:
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One class of the unconstrained optimization methods
is the gradient search method such as steepest descent
method, Newton method, Quasi-Newton method and
Back-propagation (BP) learning method in the Multilayer
Feed-Forward Neural Network. To apply those gradient-
based methods, the differentiation of the target
optimization function needs to be calculated. In our
Multiple Instance Learning framework, we need to
calculate the differentiation of the target optimization
function SE. In order to do that, the differentiation of the

MAX function needs to be calculated first. The following
section discusses how to differentiate the MAX function.

3.3. Differentiation of the MAX Function

As mentioned in [4], the differentiation of the MAX
function results in a ‘pointer’ that specifies the source of
the maximum. Let
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where ( )⋅U is a unit step function, i.e.,
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The differentiation of the MAX function can be
written as:
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3.4. Differentiation of the Target Optimization
Function

Equation (5) provides a way to differentiate the MAX
function. In order to use the gradient-based search method
to solve Equation (3), we need to further calculate the

differentiation of the function ( ){ }
2
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the parameters { }kθθ = of hypothesis Ih . The first

partial derivative is as follows:
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Suppose the th
is instance of bag iB has the maximum

value, i.e., ( ) ( ){ }ijIisI lhMAXlh
i

= . According to Equation

(5), Equation (6) can be rewritten as:
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Furthermore, the thz derivative of the target optimization

function E can be written as
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and the mixed partial derivation of function E can be
written as
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With Equations (7), (8) and (9) to differentiate
function E , the target optimization function SE can be
easily calculated.

3.5. MIL to Standard Supervised Learning

First let’s consider the following standard supervised
learning problem. Given the instance space α , the label

space [ ]1,0' =γ , a set of training examples LOT ,=
which includes a set of n objects

{ }niOOO ii K1, =∈= α and their associated labels

( ) ( ){ }{ }niPositiveNegativeLLL ii K1,1,0 =∈=
where iL is the label of object iO , the goal of the learner

to generate a hypothesis [ ]1,0: ' =→ γαoh which can

predict the labels of unknown objects accurately.
Similar to the analysis on Multiple Instance Learning

problem in Section 3.1 and Section 3.2, the traditional
supervised learning problem can also be converted to an
unconstrained optimization problem using MSE criterion
as shown in Equation (10).
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The partial derivative and mixed partial derivative of

the function ( )( )2
ioio OhLE −= are shown in Equations

(11) and (12), respectively.
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Notice that Equation (8) has the same format as
Equation (11), and Equation (9) has the same format as
Equation (12) except that

iisI in Equations (8) and (9)

represent the instances with the maximum label in bag iB

and respectively in Multiple Instance Learning; while iO

in Equations (11) and (12) represent the objects in
standard supervised learning. This similarity provides us
an easy way to transform Multiple Instance Learning to the
traditional supervised learning.

For the Multiple Instance Learning problem with
training examples LBT ,= which includes a set n bags

{ }...1,| niBBB ii == and their associated labels

{ }...1,| niLLL ii == where iL is the label of bag iB , the

steps of transformation are as follows:

1) For each bag ( )niBi ,,1 L= in the training set,

calculate the label of each instance ijI belonging to it.

2) Select the instance with the maximum label in each
bag iB . Let

iisI denote the instance with the maximum

label in bag iB .



3) Construct a set of objects ( )niOO i ,,1}{ L==
using all the instances isI , where

iisi IO = .

4) For each object iO , construct a label iLo that is

actually the label of bag iB . The set of labels is

{ }
iOO LL = ( )ni ,,1 L= .

5) The Multiple Instance Learning problem with the set
of training examples LBT ,= is converted to the

traditional supervised learning problem with the set of

training examples OLOT ,' = .

After this transformation, the gradient-based search
methods used in the standard supervise learning including
the steepest descent method, Newton method, etc. can be
applied to Multiple Instance Learning directly.

Despite the above transformation from Multiple
Instance Learning to the standard supervised learning,
there still exists a major difference between Multiple
Instance Learning and standard supervised learning. In the
standard supervised learning, the training examples are
static and usually do not change during the learning
procedure. However, in the transformed version of
Multiple Instance Learning, the training examples may
change during the learning procedure. The reason is that
the instance with the maximum label in each bag may
change with the update of the approximated hypothesis Ih

during the learning procedure and therefore the training
examples constructed along with the aforementioned
transformation may change during the learning procedure.
In spite of such a dynamic characteristic of the training
examples, the fundamental learning method remains the
same. Table 1 gives our proposed Multiple Instance
Learning algorithm.

Once the parameters θ are learned, the hypothesis Ih

is determined and thus the hypothesis Bh can be generated

by Equation (1). The labels of the unknown bags can be
generated by the hypothesis Bh . Obviously, the

convergence of our Multiple Instance Learning framework
depends on what kind of gradient-based search method is
applied at Step 4. Actually, it has the same convergence
property as when the gradient-based search method is
applied.

4. Experiments and results

In our proposed Multiple Instance framework, the
form of a hypothesis to be learned and the gradient search
method are open, which means many forms of the
hypotheses and search methods can be plugged into the
framework. In other words, such an open framework is

MIL ( )LB,

Input: { }( )niBB i ,,1 L== is the set of bags in the

training set and { } ( )iiji mjIB ,,1 L== where

ijI is the jth instance of bag iB and im is the number

of instances in iB .

{ }( )niLL i ,,1 L== is the set of labels where

iL is the label of bag iB .

Output: { }( )Mkk L,1== θθ is the set of parameters

of hypothesis Ih to be learned where M is the

number of parameters.

Procedure:
1. Set the initial values to parameters kθ in θ .

2. If the stop criterion has not been met, go to step 3;
else return the parameter set θ of hypothesis Ih .

/* The stop criterion can be based on error or the
number of iterations. */

3. Transform Multiple Instance Learning to traditional
supervised learning using the method described in this
section. The result of this transformation is a training

set LoOT ,' = where ( )niOO i ,,1}{ L== is a set of

objects and { }( )niLoLo i ,,1 L== is a set of

corresponding labels of object set O .

/* In each iteration, the training example 'T may be
different since the parameter set γ is updated during
the iteration, and the instance with the maximum label
in each bag may also change. */

4. Apply the gradient-based search method in traditional
supervised learning to update the parameters in θ .
/* The search method applied is not restricted to a
particular one. Instead, it is optional as long as it is a
gradient-based search method such as the steepest
descent method, Newton method, and BP algorithm in
the Multilayer Feed-Forward Neural Network */

5. Go to Step 2.
Table 1: The proposed MIL algorithm

more powerful since one can select any hypothesis and
search method suitable for a particular application. In the
conducted experiments, an algorithm that embeds the
exponential hypothesis model and the Quasi-Newton
method into our proposed framework is used. This
algorithm assumes that there is a target concept point in



the feature space of the instances. The probability of a
point (instance) being Positive is the exponential function
of its distance to the target concept point [5]. The Quasi-
Newton method is used to search the target concept point
and the optimum parameters.

Experiments are conducted on the Musk-1 dataset
from the UCI machine learning repository
(ftp://ftp.ics.uci.edu/pub/machine-learning-
databases/musk/), which has been used as the benchmark
for evaluating Multiple Instance Learning algorithms. The
experimental results show that our proposed framework
achieves the same accuracy as that of algorithm Iterated-
Discrim APR and higher accuracy than the other existing
algorithms.

4.1. Experiment Setup

The exponential hypothesis model and the Quasi-
Newton method are used in the algorithm for our proposed
Multiple Instance Learning framework. Assume the
dimension of the feature space of the instances is n and
thus each instance corresponds to a point in the n -
dimensional feature space. This algorithm models the
probability of an instance iI being Positive as,

( ) ( ) ( ) 












−== ∑

=

n

j
jijjiIi tfIhIp

1

2exp ω where ijf is the

thj feature of instance iI , ( )nj ttttt ,,,,, 21 LL= is the

target concept point in the feature space which is Positive
with 100% probability, and ( )nj ωωωωω ,,,,, 21 LL=

are the scale factors indicating the importance of the
different dimensions. In other words, this algorithm
assumes the probability of an instance being Positive is
exponentially proportional to its distance to the target
concept point t . In addition, this algorithm uses the Quasi-
Newton method as the gradient search method. The
parameters θ of the hypothesis model are the target
concept point ( )nj ttttt ,,,,, 21 LL= and the scale

factors ( )nj ωωωωω ,,,,, 21 LL= . The dataset, the

initial values for the target concept point and the scale
factors in the exponential hypothesis model, and the
termination condition of Quasi-Newton method used in the
experiments are set up as follows.

• Setup of the dataset.

The MUSK- I dataset is used in the experiments. The
MUSK- I dataset describes a set of 92 molecules of which
47 are judged by human experts to be musks and the
remaining 45 molecules are judged to be non-musks. Each

molecule is a bag and has a number of instances that is an
alternative conformation of a molecule. Each instance has
166 features. The goal is to learn to predict whether new
molecules will be musks or non-musks.

• Setup of the initial values of t .

First, the K-Nearest Neighbor algorithm is used to
cluster the instances in the training examples. Then the

cluster with the greatest ratio of
cesInsNegativeof

cesInsPositiveof

tan#

tan#

is selected. The centroid of all the Positive instances in the
selected cluster is calculated, and the initial target concept
point t is set as this centroid.

• Setup of the initial values of ω.

Each jω is initialized with a random value between 0

and 1.

• Setup of the termination condition of the Quasi-
Newton method.

The termination condition is set to be
( ) ( ) ( )11 −− ×<− kkk EEE η , where ( )kE denotes the value

of the optimization target function E at the thk iteration
and η is a small constant. In our experiments, η is set to

0.005.

4.2. Experimental Results and Analysis

We compare the performance of our algorithm with
other existing algorithms such as five APR-based
algorithms [3], Diversity density [5] and Multiple Instance
Neural Network [6] using the Musk-1 dataset, and the 10-
fold cross-validation is used to estimate the accuracy of
classification. Table 2 shows the accuracy of the various
algorithms, where the accuracy is the average accuracy
across 10 runs using 10-fold cross validation.

Algorithm Accuracy (%)
Iterated-Discrim APR[3] 92.4
GFS elim-kde APR [3] 91.3

GFS elim-count APR [3] 90.2
GFS all-positive APR [3] 83.7
All-positive APR [3] 80.4

Multiple Instance Neural Network [6] 88.0
Diversity density [5] 88.9
Our algorithm 92.4

Table 2: Performance comparison
on the Musk-1 dataset



As can be seen from Table 2, our algorithm achieves
92.4% accuracy of classification and outperforms all the
algorithms listed in Table 2 except the Iterated-Discrim
APR algorithm which also obtained the 92.4% accuracy.

The most advantage of our work is that it actually
proposes an open framework of multiple instance learning.
The form of the learned hypothesis and the specific
optimization method are not fixed. Many forms of the
hypotheses and optimization methods can be plugged into
the framework. Compared with the other algorithms in the
literature, where the form of hypothesis and learning
method are fixed, our framework is flexible and more
powerful. The reason is that for different specific
applications, different kinds of hypotheses and learning
methods may produce the best results. In fact, it is not
possible to find one approach that can generally best suit
all the applications. For example, we tried to use a three-
layer feedforward neural network as the hypothesis and the
back-propagation algorithm as the leaning method, and
plugged them into our multiple instance learning network,
which achieved 91.3% accuracy of classification on Musk-
1 dataset. This is worse than the result we discussed
previously by applying the exponential hypothesis model
and the Quasi-Newton method into the framework. This
means the latter are more suitable for dataset Musk-1. On
the other hand, we also made experiments on an artificial
dataset using those two algorithms in our framework and
we found out that the three-layer feedforward neural
network and back-propagation algorithm performed better
on that dataset. Hence, our proposed Multiple Instance
Learning framework provides the capability of selecting
different forms of hypothesis and learning algorithm for
different applications. Therefore, it is more flexible and
powerful than other multiple instance learning algorithms
in the literature.

5. Conclusions

Different with other work in Multiple Instance
Learning, this paper presented an open Multiple Instance
Learning framework. Our proposed framework is more
powerful since different forms of hypotheses and gradient
search methods for optimization can be plugged into the
framework easily to generate a specific Multiple Instance
leaning algorithm. The proposed learning framework
converts the Multiple Instance Learning problem to an
unconstrained optimization problem by the Minimum
Square Error (MSE) criterion. Experiments were
conducted to compare the accuracy of classification on the
Musk-1 dataset for the bioinformatics application. In the

experiments, an algorithm that embeds the exponential
hypothesis model and the Quasi-Newton method into our
proposed Multiple Instance Learning framework was used.
The experimental results justify the feasibility and
demonstrate good performance in term of the prediction
accuracy.
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