
A High-Per formance Web-Based System Design for Spatial
Data Accesses*

Shu-Ching Chen
School of Computer

Science
Florida International

University
chens@cs.fiu.edu

Xinran Wang
School of Computer

Science
Florida International

University
wang01@cs.fiu.edu

Naphtali Rishe
School of Computer

Science
Florida International

University
rishen@cs.fiu.edu

Mark Allen Weiss1

School of Computer
Science

Florida International
University

weiss@cs.fiu.edu

Abstract

With the increasing use of geographical data in real-world
applications, Geographic Information Systems (GISs) have
recently emerged as a fruitful area for research. Nowadays, a
GIS can be combined with World Wide Web (WWW)
techniques to provide information to a multitude of users. A
high-performance web-based GIS, called TerraFly, has been
developed in order to provide web-based GIS accesses to the
general public. The design of TerraFly considers three major
aspects including system architecture, data structures, and
networking. The system architecture utilizes the existing
resources to achieve maximum performance by using the
“ Internally Distributed Multithreading (IDMT)” technique. A
spatial access method, semantic R-trees, is used to search an
object based on both spatial and semantic information. System
performance results are presented and analyzed. Reducing
network traffic to achieve faster response to users is also
discussed.

Keywords: GIS, Internally Distributed Multithreading (IDMT),
Semantic R-tree.
1

*This research was supported in part by NASA (under grants
NAGW-4080, NAG-5095, NAS5-97222, and NAG5-6830),
NSF (CDA-9711582, IRI-9409661, HRD-9707076, and
ANI-9876409), ARO (DAAH04-96-1-0049 and DAAH04-
96-1-0278), AFRL (F30602-98-C-0037), BMDO (F49620-
98-1-0130 and DAAH04-0024), DoI (CA-5280-4-9044), and
State of Florida.

1
 Mark Allen Weiss was supported in part by NSF (EIA-
9906600).

1. INTRODUCTION

The use of Geographic Information Systems with spatial
data is becoming more and more popular nowadays.
Dramatically increased availability and usage of remotely
sensed data require advanced technologies in computer science
and related areas. With the exponential growth of the World
Wide Web (WWW), there are more domains open to GIS
applications. A major consideration is to make a GIS system
accessible to the general public, who have little knowledge of
the spatial data, and allow them to interact with the system to
manipulate and retrieve information they need. In order to
address these issues, we developed a user-friendly web-based
multimedia system, called TerraFly [2] The TerraFly system
lets remote users using different platforms interact with the
system, exploit spatial data of their interest, and issue queries
to retrieve information they need, without the need for
extensive training with the system, thus avoiding a painful
experience.

Numerous research works of GIS applications, both
academic and commercial, have been performed for decades
[4][6][7][8] and [9]. The existing research is extensive and
advanced and focuses on the following areas:

1) Database systems to efficiently store and retrieve

heterogeneous spatial data;
2) Spatial data analysis capabilities;
3) Spatial data indexing methods.

Even though there have been great achievements over the

past decades on these areas, a web-based GIS application still
suffers from the following drawbacks:

1) Inability of databases to efficiently handle large and

different spatial data sets;
2) Tendency for complicated WWW technologies and

distributed computing to add complexity to the
system;

3) Significant degradation of system performance in
many misconfigured GIS systems.

In this paper, detailed research on the methodology and

techniques used to improve performance for a web-based GIS
application are discussed. Overall performance of a web-based
GIS system depends on the design of the system architecture.
For a distributed GIS system, a desired design is to best utilize
existing resources to obtain maximum performance. To

achieve this goal, we designed a model called “ Internally
Distributed Multithreading Model (IDMT).” In this model,
componentization and distribution of threads are based on the
different functionality each thread may have, enabling the
system to better utilize server CPU and other resources.

In a GIS system, users usually request specific
information, such as “Find the nearest airport.” This kind of
information is very important for a GIS system, but is not used
at all in constructing a spatial data structure such as an R-tree.
A data structure called a Semantic R-tree that contains
semantic information is proposed in this paper. This data
structure provides significant savings in response time. Our
experimental results show that the Semantic R-tree
outperforms the well-known R-trees in answering specific
information that users often request.

This paper is organized as follows. In Section 2, we
present our system architecture as a whole. The information
server system structure is discussed in Section 3, and the
Semantic R-tree is discussed in Section 4. Section 5 concludes
the paper.

2. SYSTEM ARCHITECTURE
The system’s design is based on a three-tier client/server

architecture as shown in Fig-1. The second tier handles all
application logic: namely, it retrieves data requested by the
clients and answer queries for the clients. Java is used in
developing the client side to generate byte codes running
across different platforms. Each client is a data-less graphical
user interface (GUI). The database server stores and retrieves
multi-dimensional spatial data such as image data as well as
alphanumeric data. Together, the client/server architecture
forms a complete computing system with a distinct division of
responsibility.

Fig-1: TerraFly system architecture

Java clients use a connection wrapper to synchronize data

transmission. The clients send requests to either a web server
or an information server, and receive data (image data and
textual data) from different servers. When the web server
receives a request from a client, the proxy server will parse the
request, retrieve image and textual data related to the fly-over
request from the database server, and send the data back to the
client. The information server will search a spatial data
structure (a semantic R-tree), to retrieve information related to
range queries and nearest neighbor queries [15] from the
database server, and send the answers to the client.

2.1 Java client
The client is written using Java to achieve platform

independence. A snapshot of the client GUI is shown in Fig-2.
The main features of the client include:

1. Capability to fly over the Landsat TM data, Digital
Orthophoto Quad (DOQ) at different directions by
positioning the mouse within the image.

2. Customized three-band (sensor) combination: users can
select some predefined and useful three-sensor
combinations to view false color images from a drop
down menu.

3. Advanced three-band color composite: this application
allows scientific users to enter any three-band
combinations (RGB) that the user is interested in
studying or analyzing.

4. RGB intensity control: this option allows the users to
increase or reduce the intensity of any of the bands that
represent the colors.

5. Capability to issue range queries and nearest-neighbor
queries.

6. Capability to obtain feature extraction of the image.
7. Capability to display online information (latitude,

longitude, regions, etc.) of the images that users are
viewing.

Fig-2: TerraFly Client

2.2 Database server
The database server contains a multimedia spatial database

system built by our group using the Semantic Object-Oriented
Database Management System (Sem-ODB) [13] [14] based on
Semantic Binary Object-Oriented Model [12]. In the Semantic
Binary Object-Oriented Model, information is represented by
logical association (relations) between pairs of objects and by
the classification of objects into categories. Unlike the
traditional database systems that consist only of alphanumeric
data, the Sem-ODB not only has alphanumeric data, but also
has data that cover multi-dimensional spaces such as image
data (maps). Currently, the database contains semantic/textual,
spatial/remote sensed (Landsat) and digital data including
Digital Orthophoto Quad (DOQ) (Arial photograph) data. The
Sem-ODB provides an efficient data storage and manipulation
methodology.

CGI Proxy

Socket

I nformation
Server

D
atabase Server

Client 1 Web Server

Client 2

Client N

2.3 Proxy server
A proxy server is used to relay data requested by the

clients to the database server, and to transmit the data retrieved
by Sem-ODB back to the clients. This proxy needs to use two
different protocols, one to interface with the clients, and
another to interface with the Sem-ODB server. We use
Common Gateway Interface (CGI) as the first protocol and
Sem-ODB’s APIs as the second protocol. Upon receiving a
request from a client, the proxy server must decode the request
and retrieve approximate data from the database server. The
proxy process accomplishes this by using Sem-ODB APIs.
What the proxy server needs to do is to find where the
database server is located. After the database connection is
established, all queries can be performed using APIs provided
by the Sem-ODB.

2.4 Information server
The system as a whole provides an integrated view of

spatial and associated data along with the capability to display
and manipulate spatial images. Also, being a GIS system, it
provides the capability to issue range queries and nearest
neighbor queries to satisfy particular interests of scientists and
public users. Range queries are used to find spatial objects in a
specific area around a location specified by the user. A sample
query is “Find all rental car companies around Miami
International Airport within six miles.” Nearest neighbor
queries are used to find the nearest spatial object to the object
that the user specifies. For instance, “Find the nearest car
rental company.” The information server is designed for
answering these two types of queries. The information server
is a multithreaded application. It receives requests from the
clients through a UNIX socket. The configuration of the
information server is shown in Fig-3, which is discussed in
detail in the following section.

3. INFORMANTION SERVER
In the TerraFly Information Server, we use POSIX threads

[11] to enhance performance. The server is based on the
Internally Distributed Multithreading Model (IDMT) that will
be described next.

3.1 Internally distr ibuted multithreading
(IDMT) model

In order to improve system performance, we propose an
internally distributed multithreading (IDMT) model. Fig-3
shows the proposed server structure. The backbone of this
structure is a thread pool containing a number of threads that
do computation in the back end, and we call these working
threads the back-end threads. Their counterparts are the front-
end threads, which are dedicated to communicate with the
clients. We will see that this structure not only achieves better
performance than the general model, but that it also has better
scalability property.

3.2 Analysis of internally distr ibuted

multithreading
As mentioned earlier, the front-end communication threads

are dedicated to communicating with the clients, and do first-
phase computations, such as converting data types and getting
query values. All requests from the client-side are sent to the

front-end threads through certain communication channels (we
use sockets in this GIS system). When these threads receive
the requests, they analyze the requests based on the agreed-to
protocols between the server and the client, and post the
analyzed requests to the job queue, where the back-end threads
take over the job.

We now describe how this distribution improves the server
in three ways: throughput, internal load balancing, and
scalability.

Throughput: If a client sends multiple requests, the response
time in the IDMT model is much less because the server
distributes the requests to back-end threads that run
concurrently to solve the requests from the same client. The
best case is that these threads compute almost simultaneously
to get the results. Heavy load is distributed to several threads,
making the system more robust and achieving a better response
time.

Fig-3: The Internally Distr ibuted Multithreading Design

Internal load balancing: The back-end threads in the server
thread pool perform the major computations. When the server
detects a heavy load, such as too many requests from the
clients, it determines that there are not enough back-end
threads to handle the situation. The server can then generate
some extra back-end threads on demand to relieve the heavy
load. This dynamic thread generation can balance the server
performance with a minimal cost of resources needed.

Scalability: When we separate a large process into several
upgradeable components, we actually gain a benefit of
scalability. Each component is independent from others and
has its own functionality. If one component is upgraded, there
is little impact on the other components. In our design, the
communication module is separated from other modules. If
another communication method is used, there is no effect on
the server computation at all. The computation module consists
of a number of back-end threads, which can actually be
distributed to different powerful workstations. Thus, updating
will have the minimal impact on the whole system.

Front-
end

Front-
end

Job Queue

Back
-end

Back
-end

Back
-end

D
atabase Server

To
client

Front-
end

4. SEMANTIC R-TREE FOR SEMANTIC
QUERIES

An R-tree is an extension of B-trees for multidimensional
objects. An object in an R-tree is represented by its minimum
bounding rectangle (MBR). Details of R-trees are discussed in
[3]. There are various R-tree variants, such as the R+ tree [17],
R* tree [1], and the packed R-tree [10][16]. An R-tree is based
on heuristic optimization to minimize the area of each
enclosing rectangle in the inner nodes. Most of the research on
the R-trees focuses on minimizing overlapping MBRs and
optimizing storage utilization. However, for a GIS system,
more specific research on data structures is needed to answer
all kinds of range queries, which are one significant feature of
a GIS system. The R-tree and its variants are very efficient
methods that support range queries. We can further improve
the R-trees (or other spatial data structure) for a GIS system,
especially a GIS with static data.

4.1 Semantic query
Semantic queries are used to find specified objects

according to their relations to the base object. An example
semantic query is “Find a nearest rental car company around
Miami International Airport (MIA).” In this query, the base
object is “MIA,” the specified object (i.e., the semantic object)
is “a rental car company,” and the relationship is “nearest to.”
On the other hand, a query such as “Find an object nearest to
MIA,” where no attribute of this object is specified, is a general
query. In comparing these two queries, a semantic object is
defined as an object with some information that a user asks for.
In the above example, a user wants to find a rental car
company. This “ rental car company” is one type of semantic
information a user may specify. If a spatial data structure can
be built with this type of information, query performance can
be greatly enhanced.

The difference between the semantic queries and the
general queries is subtle but significant. A general query
formula:

)OB R (O
1

iii

K

i
GQ

=
= where

• G is a set operator that is either Union (∪) or Intersect (∩),
• K is the number of union and/or intersect operations,
• Oi is a set of objects to be found,
• OBi is a base object,
• Ri is a relation.

A semantic object is Os=O(s), where s is the specified
information (s ∈ Sj). For each GIS system, there are a number
of semantic subsets. Let Sj be one semantic subset in a GIS
semantic set S (Sj ⊆ S) and H be the number of semantic

subsets in S, where .)(S
1

� H

j
jS

=

= A semantic query is

)OB R (s)(O
1

iii

K

i
s GQ

=
=

A user uses a semantic query Qs to ask for information he/she
wants. For each semantic subset Sj, there are a limited (fixed)
number of elements. For example, in a map GIS system, S =
{ S1, S2, S3} , where

• S1 ={ Dade county, Broward County, Orange county…}
by county;

• S2 ={ river, bridge, route…} by type;
• S3 ={ school, building, shopping center…} by category.

The semantic subset information can be used to construct a
spatial data structure to answer the semantic queries more
efficiently. If a user specifies that he wants to find a rental car
company nearest to him, the server will search the data
structure not only by the spatial specifications, but also by this
semantic information to find a car rental company. In order to
optimize (at least partially) a data structure based on the
semantic subsets, these subsets first need to be found. In
actuality, this is not a problem at all. Finding semantic subsets
is a practical issue of searching the data sets to identify
different properties, and then categorizing these properties into
different subsets. Some unnecessary subsets can be further
pruned according to the features of each GIS system so that
only a few subsets need to be taken into consideration.

4.2 Semantic R-trees
A spatial data structure with built-in semantic information

is better able to answer semantic queries. For this purpose, a
spatial data structure with built-in semantic information, called
a semantic R-tree, is proposed. Without such built-in semantic
information, a spatial data structure has difficulty in answering

Semantic-packing Algor ithm:

Step 1: Select one semantic subset that is best for one GIS

system.
Step 2: Categorize data according to the selected semantic

subset.
Step 3: Sort data in each category based on the x or y

coordinate.
Step 4: /* create the child node at level l (leaf nodes are at

level 0) */

While (there are data in the sorted list)
Generate a new R-tree node.
If (the remaining P data in the same category
 with P >= M)

Assign the next M data into this node.
Else

Assign next P data into this node.
Step 5: /* create the parent node, at level (l + 1) */

While (there are nodes at level l not sorted yet)
 Sort the nodes at level l based on their
 generation times.

Go to Step 4.

Fig-4: Pseudo-code of Semantic-packing algor ithm

a query such as “Find all schools within 20 miles” efficiently.
Searching the semantic R-tree will get all the objects within 20
miles, and further processing is then required to get the desired
objects (i.e., the schools) in answer to this query. With built-in
semantic information, some sub-trees containing unrelated
information can be pruned, which makes semantic searching
quite efficient. In our design, the “category” subset

is used to build a semantic R-tree and the algorithm used is
based on R-tree’s packing technique. For each node, its
semantic information is categorized. Then, in each category,
the MBRs are sorted on the x or y coordinate of one of the
corners of the rectangle. Sorting MBRs is similar to the
method proposed by Roussopoulos and Leifker [16]. In each
category, the sorted list of rectangles is scanned and assigned
to one R-tree leaf node until this leaf node is full or there is no
data left for this category. The algorithm is shown in Fig-4. Let
M be the maximum number of entries of one node.

Because the semantic information is packed into an R-tree,
there might be some underflow nodes (less than M/2 children).
However, since only a fixed number of elements exist in one
semantic subset (usually this number is small), there might be
only a few underflow nodes. A semantic R-tree is also packed
in the first place, so it may have a better space utilization than
a non-packed R-tree. Therefore, better performance for the
semantic query can be achieved.
• Observation 1: Even if a semantic R-tree is partially

optimized by semantic information, there are still many
cases where a semantic R-tree outperforms an R-tree in
answering a general query. If in some cases, the
performance of a semantic R-tree degenerates in answering
a general query, the degeneration is minimal.

• Observation 2: A semantic R-tree data structure has
better performance in answering semantic queries.

4.3 Exper imental results

The semantic R-tree was implemented and several
experiments were conducted to demonstrate the capability and
usefulness of the proposed semantic approach, applied to GIS
semantic queries. Real data from the GNIS [5] was used. The
tested data represents a map of Florida consisting of 32,108
segments. The page size for data and the directory storage
pages was chosen to be 1,024 bytes. From the chosen page
size, the maximum number of entries in the directory pages
was 40.

We compare a semantic R-tree with an R-tree that uses
quadratic split algorithm. The quadratic split algorithm is
chosen because there is no essential performance gain resulting
from the linear split algorithm [3]. The performance metric
used is the response time of both general queries and semantic
queries. In the general queries, the degree of degeneration of a
semantic R-tree in comparison to an R-tree, if any, can be
obtained. For the semantic queries, experiments were
conducted to show how well the system is able to answer
semantic queries using the semantic R-tree.

The sample range sizes of the rectangles were large size
(200 miles) and small size (20 miles) in the GNIS file. The
sample areas chosen were northwest (NW) region, northeast
(NE) region, southwest (SW) region, southeast (SE) region,
and center (CEN) region in the data set. The number of nodes
tested ranged from 5,000 to 30,000.

Fig-5 and Fig-6 show the experimental results of the
general queries. The Y-axis represents the ratio value, which is
(response time using an R-tree)/(response time using a
semantic R-tree). The critical value is one, and if this ratio is
greater than one, it means that it takes more time searching the
R-tree to find results than searching the semantic R-tree. The
X-axis is the number of nodes. For the queries with a large
rectangle size, the semantic R-tree outperforms an R-tree for
some of the queries. When an R-tree performs better than a

semantic R-tree, most of results show that the relative response
time is very close to one (as shown in Fig-5), which supports
our first observation in Section 4.2. Similar experimental
results are obtained for small rectangle size (as shown in Fig-
6). Experimental results for semantic queries are shown in Fig-
7, where the X-axis is the number of nodes and the Y-axis
represents the ratio value, which is (response time using an R-
tree)/(response time using a semantic R-tree). The critical
value is one. The results support the second observation in
Section 4.2: the semantic R-tree performs much better than the
R-tree. If no objects are found for the queries, the relative
response time may be higher than one.

Fig-5: Test results for Large range.

Fig-6: Range query result with small size range

Fig-7: Results of finding all objects with category “ Bank” .

All these experimental results show that the semantic R-
tree is a very efficient method for answering semantic queries.
As expected, the performance gain of the semantic R-tree over
an R-tree in answering semantic queries is considerable. In
many GIS applications, the support for semantic queries is
more desirable since this kind of query can provide
information that users often request. Hence, a semantic R-tree
is more suitable in such cases.

5. Conclusion
In this paper, a GIS system called TerraFly is introduced.

The TerraFly system is a multimedia application that allows
users to view images, manipulate the retrieved data, and issue
range queries and nearest neighbor queries. A spatial access
method, the semantic R-tree, is used to search the objects
based on both the spatial and semantic information. The
TerraFly information server uses a technique called “ Internally
Distributed Multithreading Model (IDMT)” to achieve better
performance. A semantic object-oriented database
management system is developed to meet the database
requirements. Spatial data such as the maps can be stored and
retrieved from this database. Several experiments were
conducted to compare the semantic R-tree with the R-tree
based on general queries and semantic queries. The
experimental results show that the semantic R-trees perform
better than the R-trees for semantic queries, and have similar
performance for general queries.

6. References

[1] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger,

“The R*-tree: An Efficient and Robust Access Method
for Points and Rectangles,” Proc. ACM SIGMOD Int.
Conf. on Management of Data, pp. 322-331, 1990.

[2] Shu-Ching Chen, Naphtali Rishe, Xinran Wang, and
Mark Allen Weiss, “A User-Friendly Multimedia System
for Querying and Visualizing of Geographic Data,” In
Proceedings of the World Multiconference on Systemics,
Cybernetics and Informatics (SCI 2000), 2000, Vol II,

Information Systems Development: pp.689-694, July 23-
26, 2000, Orlando, Florida.

[3] Guttman, “R-tree: A Dynamic Index Structure for Spatial
Search,” in Proc. ACM SIGMOD, pp. 47-57, June 1984.

[4] http://elib.cs.berkeley.edu.

[5] http://mapping. usgs.gov/www/gnis/gnisftp.html.

[6] http://www.envi-sw.com.

[7] http://www.erdas.com.

[8] http://www.esri.com.

[9] http://www.gvu.gatech.edu/gvu/virtual/VGIS/.

[10] Ibrahim Kamel, Christos Faloutsos, “On Packing R-
trees,” CIKM, pp. 490-499, 1993.

[11] Bill Lewis, Daniel J. Berg, Multithreaded Programming
With Pthreads, Sun Microsystems Press, 1998.

[12] Naphtali Rishe, A Semantic Approach to Database
Design: the Semantic Modeling Approach, McGraw-Hill,
1992.

[13] N. Rishe, A. Vaschillo, D. Vasilevsky, A. Shaposhnikov,
and S.-C. Chen, “A Benchmarking Technique for
DBMS̀ s with Advanced Data Models,” to appear in ACM
SIGMOD ADBIS-DASFAA Symposium on Advances in
Databases and Information Systems, September 2000.

[14] N. Rishe, J. Yuan, R. Athauda, S.-C. Chen, X. Lu, X. Ma,
A. Vaschillo, A. Shaposhnikov, and D. Vasilevsky,
“SemanticAccess: Semantic Interface for Querying
Databases,” to appear in the International Conference on
Very Large Databases (VLDB), September 2000.

[15] N. Roussopoulos, C. Faloutsos, and T. Sellis, “Nearest
Neighbor Queries,” Proc. ACM SIGMOD Int. Conf. on
Management of Data, pp. 71-79, 1995.

[16] N. Roussopoulos and D. Leifker, “Direct Spatial Search
on Pictorial Database Using Packed R-trees,” Proc. ACM
SIGMOD, May 1985.

[17] Timos Sellis, Nick Roussopoulos, and Christos Faloutsos,
“The R+-tree: A Dynamic Index for Multi-Dimentional
Objects,” Proc. 13th Int’ l Conf. on Very Large Data
Bases, pp. 507-518, 1987.

