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Abstract 

 
With the increasing use of geographical data in real-world 
applications, Geographic Information Systems (GISs) have 
recently emerged as a fruitful area for research. Nowadays, a 
GIS can be combined with World Wide Web (WWW) 
techniques to provide information to a multitude of users. A 
high-performance web-based GIS, called TerraFly, has been 
developed in order to provide web-based GIS accesses to the 
general public. The design of TerraFly considers three major 
aspects including system architecture, data structures, and 
networking. The system architecture utilizes the existing 
resources to achieve maximum performance by using the 
“ Internally Distributed Multithreading (IDMT)”  technique. A 
spatial access method, semantic R-trees, is used to search an 
object based on both spatial and semantic information. System 
performance results are presented and analyzed. Reducing 
network traffic to achieve faster response to users is also 
discussed. 
 
Keywords: GIS, Internally Distributed Multithreading (IDMT), 
Semantic R-tree. 
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1. INTRODUCTION 

The use of Geographic Information Systems with spatial 
data is becoming more and more popular nowadays. 
Dramatically increased availability and usage of remotely 
sensed data require advanced technologies in computer science 
and related areas. With the exponential growth of the World 
Wide Web (WWW), there are more domains open to GIS 
applications. A major consideration is to make a GIS system 
accessible to the general public, who have little knowledge of 
the spatial data, and allow them to interact with the system to 
manipulate and retrieve information they need. In order to 
address these issues, we developed a user-friendly web-based 
multimedia system, called TerraFly [2] The TerraFly system 
lets remote users using different platforms interact with the 
system, exploit spatial data of their interest, and issue queries 
to retrieve information they need, without the need for 
extensive training with the system, thus avoiding a painful 
experience. 

Numerous research works of GIS applications, both 
academic and commercial, have been performed for decades 
[4][6][7][8] and [9]. The existing research is extensive and 
advanced and focuses on the following areas:  

 
1) Database systems to efficiently store and retrieve 

heterogeneous spatial data;  
2) Spatial data analysis capabilities;  
3) Spatial data indexing methods.  
 
Even though there have been great achievements over the 

past decades on these areas, a web-based GIS application still 
suffers from the following drawbacks:  

 
1) Inability of databases to efficiently handle large and 

different spatial data sets;  
2) Tendency for complicated WWW technologies and 

distributed computing to add complexity to the 
system;  

3) Significant degradation of system performance in 
many misconfigured GIS systems. 

 
In this paper, detailed research on the methodology and 

techniques used to improve performance for a web-based GIS 
application are discussed. Overall performance of a web-based 
GIS system depends on the design of the system architecture. 
For a distributed GIS system, a desired design is to best utilize 
existing resources to obtain maximum performance. To 



achieve this goal, we designed a model called  “ Internally 
Distributed Multithreading Model (IDMT).”  In this model, 
componentization and distribution of threads are based on the 
different functionality each thread may have, enabling the 
system to better utilize server CPU and other resources. 

In a GIS system, users usually request specific 
information, such as “Find the nearest airport.”  This kind of 
information is very important for a GIS system, but is not used 
at all in constructing a spatial data structure such as an R-tree. 
A data structure called a Semantic R-tree that contains 
semantic information is proposed in this paper. This data 
structure provides significant savings in response time. Our 
experimental results show that the Semantic R-tree 
outperforms the well-known R-trees in answering specific 
information that users often request.   

This paper is organized as follows. In Section 2, we 
present our system architecture as a whole. The information 
server system structure is discussed in Section 3, and the 
Semantic R-tree is discussed in Section 4. Section 5 concludes 
the paper. 
 

2. SYSTEM ARCHITECTURE 
The system’s design is based on a three-tier client/server 

architecture as shown in Fig-1. The second tier handles all 
application logic: namely, it retrieves data requested by the 
clients and answer queries for the clients.  Java is used in 
developing the client side to generate byte codes running 
across different platforms. Each client is a data-less graphical 
user interface (GUI). The database server stores and retrieves 
multi-dimensional spatial data such as image data as well as 
alphanumeric data. Together, the client/server architecture 
forms a complete computing system with a distinct division of 
responsibility.  

 

 
Fig-1: TerraFly system architecture 

 
Java clients use a connection wrapper to synchronize data 

transmission. The clients send requests to either a web server 
or an information server, and receive data (image data and 
textual data) from different servers. When the web server 
receives a request from a client, the proxy server will parse the 
request, retrieve image and textual data related to the fly-over 
request from the database server, and send the data back to the 
client. The information server will search a spatial data 
structure (a semantic R-tree), to retrieve information related to 
range queries and nearest neighbor queries [15] from the 
database server, and send the answers to the client. 
 

2.1 Java client 
The client is written using Java to achieve platform 

independence. A snapshot of the client GUI is shown in Fig-2. 
The main features of the client include: 

1. Capability to fly over the Landsat TM data, Digital 
Orthophoto Quad (DOQ) at different directions by 
positioning the mouse within the image. 

2. Customized three-band (sensor) combination: users can 
select some predefined and useful three-sensor 
combinations to view false color images from a drop 
down menu. 

3. Advanced three-band color composite: this application 
allows scientific users to enter any three-band 
combinations (RGB) that the user is interested in 
studying or analyzing. 

4. RGB intensity control: this option allows the users to 
increase or reduce the intensity of any of the bands that 
represent the colors. 

5. Capability to issue range queries and nearest-neighbor 
queries. 

6. Capability to obtain feature extraction of the image. 
7. Capability to display online information (latitude, 

longitude, regions, etc.) of the images that users are 
viewing. 

 

 
 

Fig-2: TerraFly Client 
 

2.2 Database server  
The database server contains a multimedia spatial database 

system built by our group using the Semantic Object-Oriented 
Database Management System (Sem-ODB) [13] [14] based on 
Semantic Binary Object-Oriented Model [12]. In the Semantic 
Binary Object-Oriented Model, information is represented by 
logical association (relations) between pairs of objects and by 
the classification of objects into categories. Unlike the 
traditional database systems that consist only of alphanumeric 
data, the Sem-ODB not only has alphanumeric data, but also 
has data that cover multi-dimensional spaces such as image 
data (maps). Currently, the database contains semantic/textual, 
spatial/remote sensed (Landsat) and digital data including 
Digital Orthophoto Quad (DOQ) (Arial photograph) data. The 
Sem-ODB provides an efficient data storage and manipulation 
methodology. 
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2.3 Proxy server  
A proxy server is used to relay data requested by the 

clients to the database server, and to transmit the data retrieved 
by Sem-ODB back to the clients. This proxy needs to use two 
different protocols, one to interface with the clients, and 
another to interface with the Sem-ODB server. We use 
Common Gateway Interface (CGI) as the first protocol and 
Sem-ODB’s APIs as the second protocol. Upon receiving a 
request from a client, the proxy server must decode the request 
and retrieve approximate data from the database server. The 
proxy process accomplishes this by using Sem-ODB APIs. 
What the proxy server needs to do is to find where the 
database server is located. After the database connection is 
established, all queries can be performed using APIs provided 
by the Sem-ODB. 
 

2.4 Information server  
The system as a whole provides an integrated view of 

spatial and associated data along with the capability to display 
and manipulate spatial images. Also, being a GIS system, it 
provides the capability to issue range queries and nearest 
neighbor queries to satisfy particular interests of scientists and 
public users. Range queries are used to find spatial objects in a 
specific area around a location specified by the user. A sample 
query is “Find all rental car companies around Miami 
International Airport within six miles.”  Nearest neighbor 
queries are used to find the nearest spatial object to the object 
that the user specifies. For instance, “Find the nearest car 
rental company.”  The information server is designed for 
answering these two types of queries. The information server 
is a multithreaded application. It receives requests from the 
clients through a UNIX socket. The configuration of the 
information server is shown in Fig-3, which is discussed in 
detail in the following section. 
 

3. INFORMANTION SERVER 
In the TerraFly Information Server, we use POSIX threads 

[11] to enhance performance. The server is based on the 
Internally Distributed Multithreading Model (IDMT) that will 
be described next. 
  

3.1 Internally distr ibuted multithreading 
(IDMT) model 

In order to improve system performance, we propose an 
internally distributed multithreading (IDMT) model. Fig-3 
shows the proposed server structure. The backbone of this 
structure is a thread pool containing a number of threads that 
do computation in the back end, and we call these working 
threads the back-end threads. Their counterparts are the front-
end threads, which are dedicated to communicate with the 
clients. We will see that this structure not only achieves better 
performance than the general model, but that it also has better 
scalability property. 
 
3.2 Analysis of internally distr ibuted 

multithreading 
As mentioned earlier, the front-end communication threads 

are dedicated to communicating with the clients, and do first-
phase computations, such as converting data types and getting 
query values. All requests from the client-side are sent to the 

front-end threads through certain communication channels (we 
use sockets in this GIS system). When these threads receive 
the requests, they analyze the requests based on the agreed-to 
protocols between the server and the client, and post the 
analyzed requests to the job queue, where the back-end threads 
take over the job. 

We now describe how this distribution improves the server 
in three ways: throughput, internal load balancing, and 
scalability. 

 
Throughput: If a client sends multiple requests, the response 
time in the IDMT model is much less because the server 
distributes the requests to back-end threads that run 
concurrently to solve the requests from the same client. The 
best case is that these threads compute almost simultaneously 
to get the results. Heavy load is distributed to several threads, 
making the system more robust and achieving a better response 
time. 

 
Fig-3: The Internally Distr ibuted Multithreading Design 

 
 

Internal load balancing: The back-end threads in the server 
thread pool perform the major computations. When the server 
detects a heavy load, such as too many requests from the 
clients, it determines that there are not enough back-end 
threads to handle the situation. The server can then generate 
some extra back-end threads on demand to relieve the heavy 
load. This dynamic thread generation can balance the server 
performance with a minimal cost of resources needed. 
 
Scalability: When we separate a large process into several 
upgradeable components, we actually gain a benefit of 
scalability. Each component is independent from others and 
has its own functionality. If one component is upgraded, there 
is little impact on the other components. In our design, the 
communication module is separated from other modules. If 
another communication method is used, there is no effect on 
the server computation at all. The computation module consists 
of a number of back-end threads, which can actually be 
distributed to different powerful workstations. Thus, updating 
will have the minimal impact on the whole system. 
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4. SEMANTIC R-TREE FOR SEMANTIC 
QUERIES 

An R-tree is an extension of B-trees for multidimensional 
objects. An object in an R-tree is represented by its minimum 
bounding rectangle (MBR). Details of R-trees are discussed in 
[3]. There are various R-tree variants, such as the R+ tree [17], 
R* tree [1], and the packed R-tree [10][16]. An R-tree is based 
on heuristic optimization to minimize the area of each 
enclosing rectangle in the inner nodes. Most of the research on 
the R-trees focuses on minimizing overlapping MBRs and 
optimizing storage utilization. However, for a GIS system, 
more specific research on data structures is needed to answer 
all kinds of range queries, which are one significant feature of 
a GIS system. The R-tree and its variants are very efficient 
methods that support range queries. We can further improve 
the R-trees (or other spatial data structure) for a GIS system, 
especially a GIS with static data. 
 

4.1 Semantic query 
Semantic queries are used to find specified objects 

according to their relations to the base object. An example 
semantic query is “Find a nearest rental car company around 
Miami International Airport (MIA).”  In this query, the base 
object is “MIA,”  the specified object (i.e., the semantic object) 
is “a rental car company,”  and the relationship is “nearest to.”  
On the other hand, a query such as “Find an object nearest to 
MIA,”  where no attribute of this object is specified, is a general 
query. In comparing these two queries, a semantic object is 
defined as an object with some information that a user asks for. 
In the above example, a user wants to find a rental car 
company. This “ rental car company”  is one type of semantic 
information a user may specify. If a spatial data structure can 
be built with this type of information, query performance can 
be greatly enhanced. 

The difference between the semantic queries and the 
general queries is subtle but significant. A general query 
formula: 
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• G is a set operator that is either Union (∪) or Intersect (∩), 
• K is the number of union and/or intersect operations,  
• Oi is a set of objects to be found,  
• OBi is a base object,  
• Ri is a relation.   

A semantic object is Os=O(s), where s is the specified 
information (s ∈ Sj). For each GIS system, there are a number 
of semantic subsets. Let Sj be one semantic subset in a GIS 
semantic set S (Sj ⊆ S) and H be the number of semantic 

subsets in S, where .)(S
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A user uses a semantic query Qs to ask for information he/she 
wants. For each semantic subset Sj, there are a limited (fixed) 
number of elements. For example, in a map GIS system, S = 
{ S1, S2, S3} , where  

• S1 ={ Dade county, Broward County, Orange county…}  
by county;  

• S2 ={ river, bridge, route…}  by type;  
• S3 ={ school, building, shopping center…}  by category.  

The semantic subset information can be used to construct a 
spatial data structure to answer the semantic queries more 
efficiently. If a user specifies that he wants to find a rental car 
company nearest to him, the server will search the data 
structure not only by the spatial specifications, but also by this 
semantic information to find a car rental company.  In order to 
optimize (at least partially) a data structure based on the 
semantic subsets, these subsets first need to be found. In 
actuality, this is not a problem at all. Finding semantic subsets 
is a practical issue of searching the data sets to identify 
different properties, and then categorizing these properties into 
different subsets. Some unnecessary subsets can be further 
pruned according to the features of each GIS system so that 
only a few subsets need to be taken into consideration.  

 

4.2 Semantic R-trees 
A spatial data structure with built-in semantic information 

is better able to answer semantic queries. For this purpose, a 
spatial data structure with built-in semantic information, called 
a semantic R-tree, is proposed. Without such built-in semantic 
information, a spatial data structure has difficulty in answering  

 
Semantic-packing Algor ithm: 
 
Step 1:  Select one semantic subset that is best for one GIS 

system. 
Step 2:  Categorize data according to the selected semantic 

subset. 
Step 3: Sort data in each category based on the x or y 

coordinate. 
Step 4:  /* create the child node at level l (leaf nodes are at       

level 0) */ 
 

While (there are data in the sorted list) 
Generate a new R-tree node. 
If (the remaining P data in the same category 
     with P >= M) 

Assign the next M data into this node. 
Else 

Assign next P data into this node. 
Step  5:   /* create the parent node, at level (l + 1) */ 
 

While (there are nodes at level l not sorted yet) 
 Sort the nodes at level l based on their 
 generation times. 

Go to Step 4. 
 

 
Fig-4: Pseudo-code of Semantic-packing algor ithm 

 
a query such as “Find all schools within 20 miles”  efficiently. 
Searching the semantic R-tree will get all the objects within 20 
miles, and further processing is then required to get the desired 
objects (i.e., the schools) in answer to this query. With built-in 
semantic information, some sub-trees containing unrelated 
information can be pruned, which makes semantic searching 
quite efficient. In our design, the “category”  subset  



is used to build a semantic R-tree and the algorithm used is 
based on R-tree’s packing technique. For each node, its 
semantic information is categorized. Then, in each category, 
the MBRs are sorted on the x or y coordinate of one of the 
corners of the rectangle. Sorting MBRs is similar to the 
method proposed by Roussopoulos and Leifker [16]. In each 
category, the sorted list of rectangles is scanned and assigned 
to one R-tree leaf node until this leaf node is full or there is no 
data left for this category. The algorithm is shown in Fig-4. Let 
M be the maximum number of entries of one node. 

Because the semantic information is packed into an R-tree, 
there might be some underflow nodes (less than M/2 children). 
However, since only a fixed number of elements exist in one 
semantic subset (usually this number is small), there might be 
only a few underflow nodes. A semantic R-tree is also packed 
in the first place, so it may have a better space utilization than 
a non-packed R-tree. Therefore, better performance for the 
semantic query can be achieved.  
• Observation  1: Even if a semantic R-tree is partially 

optimized by semantic information, there are still many 
cases where a semantic R-tree outperforms an R-tree in 
answering a general query. If in some cases, the 
performance of a semantic R-tree degenerates in answering 
a general query, the degeneration is minimal. 

• Observation  2: A semantic R-tree data structure has 
better performance in answering semantic queries.  

 
4.3 Exper imental results 

The semantic R-tree was implemented and several 
experiments were conducted to demonstrate the capability and 
usefulness of the proposed semantic approach, applied to GIS 
semantic queries. Real data from the GNIS [5] was used. The 
tested data represents a map of Florida consisting of 32,108 
segments. The page size for data and the directory storage 
pages was chosen to be 1,024 bytes. From the chosen page 
size, the maximum number of entries in the directory pages 
was 40. 

We compare a semantic R-tree with an R-tree that uses 
quadratic split algorithm. The quadratic split algorithm is 
chosen because there is no essential performance gain resulting 
from the linear split algorithm [3]. The performance metric 
used is the response time of both general queries and semantic 
queries. In the general queries, the degree of degeneration of a 
semantic R-tree in comparison to an R-tree, if any, can be 
obtained. For the semantic queries, experiments were 
conducted to show how well the system is able to answer 
semantic queries using the semantic R-tree. 

The sample range sizes of the rectangles were large size 
(200 miles) and small size (20 miles) in the GNIS file. The 
sample areas chosen were northwest (NW) region, northeast 
(NE) region, southwest (SW) region, southeast (SE) region, 
and center (CEN) region in the data set. The number of nodes 
tested ranged from 5,000 to 30,000. 

Fig-5 and Fig-6 show the experimental results of the 
general queries. The Y-axis represents the ratio value, which is 
(response time using an R-tree)/(response time using a 
semantic R-tree). The critical value is one, and if this ratio is 
greater than one, it means that it takes more time searching the 
R-tree to find results than searching the semantic R-tree. The 
X-axis is the number of nodes. For the queries with a large 
rectangle size, the semantic R-tree outperforms an R-tree for 
some of the queries. When an R-tree performs better than a 

semantic R-tree, most of results show that the relative response 
time is very close to one (as shown in Fig-5), which supports 
our first observation in Section 4.2. Similar experimental 
results are obtained for small rectangle size (as shown in Fig-
6). Experimental results for semantic queries are shown in Fig-
7, where the X-axis is the number of nodes and the Y-axis 
represents the ratio value, which is (response time using an R-
tree)/(response time using a semantic R-tree). The critical 
value is one. The results support the second observation in 
Section 4.2: the semantic R-tree performs much better than the 
R-tree. If no objects are found for the queries, the relative 
response time may be higher than one. 

 

Fig-5: Test results for  Large range. 

 
 

 
Fig-6: Range query result with small size range 



 

Fig-7: Results of finding all objects with category “ Bank” . 
 

All these experimental results show that the semantic R-
tree is a very efficient method for answering semantic queries. 
As expected, the performance gain of the semantic R-tree over 
an R-tree in answering semantic queries is considerable. In 
many GIS applications, the support for semantic queries is 
more desirable since this kind of query can provide 
information that users often request. Hence, a semantic R-tree 
is more suitable in such cases. 
 

5. Conclusion 
In this paper, a GIS system called TerraFly is introduced. 

The TerraFly system is a multimedia application that allows 
users to view images, manipulate the retrieved data, and issue 
range queries and nearest neighbor queries.  A spatial access 
method, the semantic R-tree, is used to search the objects 
based on both the spatial and semantic information. The 
TerraFly information server uses a technique called “ Internally 
Distributed Multithreading Model (IDMT)”  to achieve better 
performance. A semantic object-oriented database 
management system is developed to meet the database 
requirements. Spatial data such as the maps can be stored and 
retrieved from this database.  Several experiments were 
conducted to compare the semantic R-tree with the R-tree 
based on general queries and semantic queries. The 
experimental results show that the semantic R-trees perform 
better than the R-trees for semantic queries, and have similar 
performance for general queries.   
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